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Abstract: This paper presents the development of a visual-perception system on a dual-arm mobile
robot for human-robot interaction. This visual system integrates three subsystems. Hand gesture
recognition is utilized to trigger human-robot interaction. Engagement and intention of the par-
ticipants are detected and quantified through a cognitive system. Visual servoing uses YOLO to
identify the object to be tracked and hybrid, model-based tracking to follow the object’s geome-
try. The proposed visual-perception system is implemented in the developed dual-arm mobile
robot, and experiments are conducted to validate the proposed method’s effects on human-robot
interaction applications.

Keywords: hand-gesture recognition; model-based tracking; visual-servo control; human-robot
interaction; mobile robots

1. Introduction

Service robots that use human-robot interactions (HRIs) have been widely demon-
strated to have superior performance with older adults, compared to those which use either
human-machine interaction (HMI) or human-computer interaction (HCI) [1–3]. The elderly
population is expected to reach two billion by 2050 [4]. Therefore, the potential demand for
robots designed to care for the elderly and to keep them company is increasing daily. Robots
are expected to significantly improve the quality of life of the elderly, while reducing the
workload of human caregivers and addressing living and working needs [5]. In addition,
robots can engage, interact, and communicate more naturally and effectively with human
individuals under their care, thereby meeting social and entertainment needs. However,
functionality and design of robots cannot be limited to a sociomedical perspective; a robot
that falls short of the expectations and imaginations of elderly individuals may negatively
affect their perceptions and experiences [6].

Typically, the elderly need to take specific medicines, drink fluids, maintain proper
nutrition, and attend to other necessary daily routines. Yet, these behaviors increase
their risk of falling and injury. At home, family members need constant attention and
monitoring; in a care center, the constant need to perform small tasks for elderly residents
can exhaust caregivers, especially when centers are often understaffed. Fortunately, robotics
has the potential to serve as an alternative assistive solution for the long-term care of the
elderly. A robot can use simultaneous localization and mapping (SLAM) to patrol within
an environment and identify, from an image obtained through a camera, when an elderly
individual needs help. Furthermore, by learning the needs of the elderly through dialogues,
an appropriately equipped robot can use dual arms to track and grab required objects.
Since robots have the potential to be used in many elderly-related areas, this paper focuses
on using robots in general elderly care to reduce the workload of caregivers, improve
the quality of life of the elderly, and maintain the normal daily activities of the elderly
by integrating functions of hand-gesture recognition, visual feedback, and human-robot
interaction into a dual-arm mobile robot.

Sensors 2022, 22, 9545. https://doi.org/10.3390/s22239545 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239545
https://doi.org/10.3390/s22239545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4585-5881
https://doi.org/10.3390/s22239545
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239545?type=check_update&version=2


Sensors 2022, 22, 9545 2 of 19

In addition to language, humans use hand gestures to communicate. The shape of
the hand established by the relative positions of fingers can represent different meanings.
Hand-signaling systems can be divided into two types according to the method used to
collect such data. The first employs a wearable device that uses various sensors to obtain
information about the joints of the fingers and the palm. For example, soft-curvature
sensor [7] changes resistance as it deforms under the pressure exerted on its embedded
microchannel, and flexible-optical-fiber transducers measure angular displacements [8].
However, this method faces many challenges, such as hardware integration, short battery
life, mechanical wear, and the need for a communication network. The second method
uses non-contact sensors, such as cameras [9,10], radar sensors [11], and infrared (IR) detec-
tors [12], to obtain the required information. For example, skeleton-based recognition [9]
typically uses machine learning to obtain skeleton points of the hand; depth-based recogni-
tion [10] uses time-of-flight to obtain the depth of each pixel and distinguish the desired
object through different depth intervals. It is worth mentioning that the hand’s natural
warmth makes it a viable infrared light source for non-contact, human-machine interaction.
The computer converts IR images into machine-readable signals, which can be recognized
in low light or even darkness [12]. However, such systems are currently unable to identify
more complex gestures. In conclusion, it is clear that the camera is not only one of the most
ubiquitous sensors available for gesture recognition, but its accuracy and frequency also
meet the needs of real-time use.

A visual servoing system combines robot vision and control [13], and its research
fields encompass image processing, image detection, image tracking, robot kinematics and
dynamics, and more. According to the different cues used for control, visual servoing can
be divided into three categories [14–16]: One is position-based visual servoing (PBVS),
the second is image-based visual servoing (IBVS), and the third is hybrid-based visual
servoing (HBVS), also known as 2.5D visual servoing. In this framework, position-based
visual servoing uses a Cartesian-pose-error signal to drive the robot to its goal. The error
is obtained by comparing the current 3D pose with the desired views of an object. The
current 3D pose, including position and orientation, and the desired 3D pose, which acts
as the target, are reconstructed digitally using information extracted from features in the
image. However, this method is sensitive to camera parameters due to its reliance on 3D
reconstruction. Therefore, inaccurate camera parameters may cause many errors.

In contrast, the second category, image-based visual servoing, uses the error value of
pixel-coordinate features as the input to drive the robot until the error is zero. Its unique
strength lies in obtaining the error directly from the image space, making it remarkably
robust in the face of errors in calibration and image noise, unlike calculations in a Cartesian
space. A robot using an image-based system keeps moving to bring the current image
features to the desired values. However, calculating the transformation from the error of
feature points in pixel coordinates and translating this into commands to the robot are
challenging. When the displacement value of pixel-coordinate features becomes too large,
the camera may reach a local minimum or cross a singularity of the interaction matrix.
Furthermore, the camera’s motion can become unpredictable due to the coupling of the
related interaction matrix.

The third category, hybrid-based visual servoing, unites PBVS and IBVS methods,
combining 2D and 3D information to direct a robot. It divides the tracking control of the
object’s pose into two parts: The camera position is controlled directly in the image space,
and the camera orientation is controlled by using motion estimation in a Cartesian space.
One important consideration is how best to capture the necessary object information in the
camera image because visual servoing relies on the information in the image to control a
robot. Objects can be represented by points, primitive geometric shapes, silhouettes, and
contours. Selecting the right features to detect an object is critical in tracking. The most
commonly selected visual features are colors, textures, shapes, and spatial relationships.
The four most common methods to detect these features are point detection, background
subtraction, segmentation, and supervised learning. Point detectors include Harris, KLT,
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SIFT, SURF, FAST, and ORB. The position of an object relative to the scene can be acquired
using two strategies: one uses markers, and the other uses markerless methods. In the
first category, the end-effector adds a physical marker to calculate the transformation
relationship between the end-effector and the camera [17]. The literature [18] shows
one solution consisting of four main parts for markerless-visual servoing on unknown
objects: treating it as a least-squares minimization problem, employing a recursive-Bayesian-
filtering technique, treating it as a nonlinearly constrained optimization problem, and
employing an image-based, visual-servo control. In the second category, the superquadric
model method can be used to achieve markerless visual tracking. When the object to be
tracked and its geometry are not complicated, Computer-Aided Design (CAD) model of
the object is utilized for visual servoing, deploying real-time virtual visual servoing (VVS)
to track and update the position between the object and the camera. In addition, You Only
Look Once (YOLO) can be employed to extract the range of the CAD-bounding box to
improve the effectiveness of CAD-based visual servoing [19].

Human behavior can be divided into explicit and implicit behavior, both essential to
generating behavioral cues for a robot. The cues of explicit behavior, including speech,
body language, sign language, vocalizations, facial expressions, actions, and the direction
of gaze [20], all provide direct and intuitive messages in interactions. The cues of implicit
behavior, including emotions, intention, social space, and personality, are covert since
the information from others cannot be obtained directly; it must be inferred. Because
behavioral cues and social signals differ less than individuals and cultures, only a small set
needs to be recognized. Nevertheless, quantifying and measuring these cues and signals
are challenging yet essential to successful HRI.

To measure the interaction between robots and humans in a more standardized way,
the degree of interaction may be divided into four levels [21]: safety, comfort, naturalness,
and sociability. Safety covers the minimum requirement when designing a robot; comfort
ensures that interaction with a robot does not cause annoyance and pressure; naturalness is
an advanced condition that captures the degree to which a robot acts like a human being,
thereby achieving readability. Sociability reflects a robot’s ability to comply with high-level
cultural conventions. Robots can make their judgments and comply with social norms and
expectations. Historically, HRI research is divided into two approaches [22]: user-centric
HRI and robot-centric HRI. Initially, pioneering robot engineers were understandably
more focused on the growing capabilities of their creations; hence, HRI was robot-centric.
Increasingly, robot designers have been taking a more holistic viewpoint, prioritizing the
acquisition and development of specialized knowledge about how users perceive and
regard products. This new user-centric HRI aims to accomplish human goals by delivering
a high-quality user experience of robots that can perceive, cognize, and deal effectively
with their surroundings.

Service robots mainly perform tasks targeting the well-being of humans in a semi- or
fully autonomous way, unlike those targeting industrial-automation applications. Within
this human-centered domain, multiple application areas exist, such as medical-robot assist,
transportation robots, maintenance robots, shopping robots, and care robots [23,24]. Due
to advances in medicine and healthcare, human lifespan has been considerably extended,
bringing about a growing demand for healthcare services. Thus, the number of caregivers
needed will increase day-by-day. Many of the problems caused by this rise of the elderly
population can be averted by the application of service robots to elderly care. Care robots
mainly provide physical, cognitive, or emotional support, including the completion of daily
tasks, monitoring of behavior and health, and the provision of companionship [25–28]. To
ensure quality of life, elderly individuals require respect, love, and help [29]. Therefore, for
robots to fill this niche successfully, they need specific knowledge of how to care for the
elderly and general recognition of human needs.

Motivated by the need to develop a visual-servo system on a mobile-robot system,
this paper illustrates a method that integrates the hand-gesture-recognition model, cog-
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nitive system, and virtual servoing into a developed, dual-arm mobile robot for human-
robot interaction.

The remainder of this paper offers the following:
The visual-perception system on a mobile robot involves three subsystems. Hand-

gesture recognition triggers an event where an elderly individual needs assistance. The
cognitive system identifies the participation of the users. Visual servoing controls the
dual-arm mobile robot to accomplish the tasks from the visual information. The visual-
perception system is implemented on a developed, dual-arm mobile robot, and an example
illustrates the applications of the visual system in human-robot interaction.

2. Visual Perception on a Dual-Arm Mobile Robot Design

Figure 1 illustrates the architecture of the cognitive system of a dual-arm mobile robot,
which utilizes the hand-gesture-recognition model to trigger HRI based on engagement,
intention, and HRI models. In addition, visual tracking and an arm application are added
to the HRI.
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2.1. Hand Gesture Recognition Model

Many human behaviors can trigger interactions between humans and robots, one
of which is gestures. The use of gestures is supported by 2D-pose estimation, a popular
research topic that covers a wide range of applications. When an elderly individual has
mobility problems or needs help, hand-gesture recognition is an intuitive way to alert the
robot. The procedure for hand-gesture cognition includes extracting human-joint-point
information, calculating feature vector, and obtaining intended gestures through feature
comparison and voting. Score threshold of the required help is used to determine whether
help is needed.

1. Feature Extraction

An open-source library, OpenPose [30,31], is utilized to obtain the positions of key
points in the image space and their reliability.

2. Feature Matching

First, the feature vector of hand gesture for recognition is defined;the feature vector
of test gesture and the feature vector of a pre-defined gesture is compared. If the test and
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pre-defined feature vectors are the same, the similarity is +1. If different, the similarity is
−1. Similarity is unchanged if a zero-feature is in the test feature vector. Thus, the similarity
between the test feature vector and a defined feature vector is between −14 and +14. Lastly,
a similarity threshold is set if no similarity is higher than this threshold. The result of
the recognition is an undefined hand gesture. The defined hand gesture with the highest
similarity above the threshold is chosen as the result of the recognition, and the index of
the defined hand gesture is returned.

3. Voting and Score

A single-frame image from the stream of images may not accurately represent the
intended human gesture. It may just be a meaningless and temporary state, or a transitional
state between two actions. Voting is utilized to filter data to eliminate any incorrect answer
from a single recognition by OpenPose. Once a pre-defined list is populated with voted
members, the program outputs the resulting gesture with the highest vote. However,
the same static hand gesture may have different meanings in different situations. Scores
based on different requirements are utilized to determine whether to trigger an event. The
schematic diagram of the event trigger is shown in Figure 2.
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In our application, our primary objective is to use hand-gesture recognition to trigger
an event in which an elderly individual needs help. Therefore, the gestures to initiate a help
call must be simple and intuitive to the user. Because individuals in a variety of settings
generally raise their hands to indicate that they need help, the necessary condition of the
hand higher than the shoulder is utilized as the trigger gesture.
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2.2. Cognitive System

During an HRI, a robot must be able to identify when humans want to interact with
it. Therefore, an engagement model is used to distinguish the level of engagement. The
intention model judges the human individual’s intention by indirect information after an
interaction is established. The HRI model is responsible for communication between the
two participants in the interaction.

1. Engagement Model

According to [32], engagement is a process by which individuals in an interaction start,
maintain, and end their perceived connection with one another. Thus, engagement consists
of four stages: the initial point of engagement, duration of engagement, disengagement,
and reengagement. The laboratory model obtains the information required to build an
engagement model through three information signals and a hidden Markov model (HMM);
the architecture of this engagement model is shown in Figure 3 [33].
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• Head Pose

Because eye gaze alone is not a reliable indicator, head pose is used to provide an
approximation of eye gaze for attention recognition. Individuals are first detected using
YOLOv3. The face detector of the OpenCV library is then used, along with a maximum
margin target detector (MMOD); the orientation is finally obtained through a landmark-free
method, FSA-Net [34]. Furthermore, yaw (α), pitch (β), and roll (γ) angles are used to
distinguish whether individuals are facing the camera, as shown in the following equation:

f (α, β, γ)

{
1, ‖α‖ ≤ α′ ∩ ‖β‖ ≤ β′ ∩ ‖γ‖ ≤ γ′

0, else
(1)

where α′, β′, γ′ are the threshold of yaw, pitch, and roll, respectively.

• Eye Gaze

The image identified by the face detector is input to the gaze tracker, which is com-
posed of a convolutional neural network (CNN). The horizontal and vertical angles of the
eyes, produced as the output by the model, are used to check whether the agent is looking
at the robot with the following equation:

g
(
θα, θβ

)
=

{
1, ‖θα‖ ≤ θ′α ∩ ‖θβ‖ ≤ θ′β
0, else

(2)

where θα, θβ are the horizontal and vertical angles. θ′α, θ′β are their upper bounds.

• Action

Because motion recognition must consider human motion and the surrounding envi-
ronment at the same time [35], it needs to operate at close to 30 frames per second (fps) in
real-time applications. However, there are only a few key points in the stream. Therefore,
the laboratory model uses a Two-Stream 3D-ConvNet and SlowFast [36] to obtain good
efficiency and accuracy. The Kinetics-400 [37] dataset is used as the training data and is
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divided into interactions with a human and no interaction with a human, as shown in the
following equation:

h(a) =
{

1, interaction
0, non− interaction

(3)

2. Intention Model

Intention [38] is in a decision maker’s mind, so it cannot be directly observed or
measured. Therefore, one must use the emotions of the interactor to infer intentions. To
build an intention model, the laboratory model obtains intention through two information
signals with three sentiment indexes and an HMM; the architecture of the intention model
is shown in Figure 4 [33].
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• Emotion Classifier

The laboratory uses a convolutional neural network (CNN) to construct an emotion
classifier and uses FER-2013 [39] as the training dataset. The classifier is divided into seven
emotions and their scores, which range from −1 (negative) to 1 (positive), among the three
sentiment indexes, as shown in Table 1.

Table 1. Sentiment indexes of emotion.

Sentiment Index
Positive Neutral Negative

Happy (0.9)
Neutral (−0.1)

Disgust (−0.9)
Angry (−0.9)

Surprise (0.3)
Fear (−0.8)

Emotion

Sad (−0.9)

• Google NLP Sentiment

In addition to analyzing emotions through facial expressions, human emotions can
be learned through language. The robot uses its microphone to obtain a recording of an
individual’s voice and inputs it to the speech analyzer, Google Speech-to-Text API, and
obtains the words with maximum likelihood, which are then input into Google ’s Natural
Language Processing (NLP) sentiment analysis to obtain emotional scores and magnitudes.
The sentiment is quantified and normalized, classified as positive, negative, or neutral,
with a threshold of ±0.25.

3. Human-Robot Interaction Model

Service robots exist to aid humans and improve their quality of life. Accordingly, an
HRI model establishes the communication necessary to assist. The interaction between
robots and humans is carried out using Google Dialogflow as the core, so that the system
can undertake a broader range of actions to understand the needs of an individual. Thus,
HRI includes conversation, navigation, and object-tracking modules. The architecture of
the HRI model with Google Dialogflow is shown in Figure 5. The flow chart of the related
conversation is shown in Figure 6.
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2.3. Visual Servoing

Visual-servo control is a way of using image information to drive a robot. The differ-
ence between the desired and current feature points generates a velocity command to move
a robot to the desired position. The greater the error, the greater the velocity; conversely, as
the error decreases, so does the velocity. The error decreases to within a tolerable range
as an exponential function. Because hybrid, model-based tracking only uses an object’s
geometry for tracking, it cannot recognize what the object is. Therefore, YOLOv4 is used to
confirm whether an object is the intended target before tracking.

1. YOLOv4

YOLOv4 obtains an object’s centroid position, the bounding box’s length and width,
and the probability of a match. The obtained ID has a corresponding category, confirming
whether an object is the one to be tracked.

2. Hybrid Model-based Tracking (HMBT)

Hybrid model-based tracking is employed to achieve more robust tracking by tracking
the edges of the model, keypoint features, and depth surfaces. In this scheme, moving
edges and the color camera handle the depth sensor’s keypoint and normal depth features,
as shown in Figure 7. The architecture of the proposed hybrid model-based tracking is
shown in Figure 8.
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3. Virtual Visual Servoing (VVS)

The pose estimation of object coordinates is an intermediate step that uses the image
for control. Pose computation is obtained through 3D-coordinate points (or other geometric
features, such as lines, circles) and their 2D projections onto the image plane. Virtual visual
servoing (VVS), similar to 2D visual servoing [40], is a numerical method for full-scale,
nonlinear optimization. The approach estimates the object pose by minimizing the error ∆
between the desired state s* and the current state s, with the error e decreasing exponentially,
as shown in the following:

e = (s(r)− s∗) (4)
.
e = −λe (5)

where r is the estimated pose, and λ is the positive scalar.
The interaction matrix is then used to link the error change

.
e and the virtual camera

velocity v as follows:
.
e = Lsv (6)

where Ls is the interaction matrix that depends on the value of image features s and their
corresponding depth Z in the scene. From Equations (4) and (5), Equation (6) is obtained,
and the virtual-camera velocity v is obtained by comparing the features of the desired state
s* with those of the current state s at each iteration:

v = −λL+
s(s(r)− s∗) (7)
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where L+
s is the pseudoinverse of Ls ∈ R2n×6, v ∈ R6×1, s(r)− s∗ ∈ R2n×1, and n is the

number of the feature points.
Therefore, the pose of the kth iteration can be updated by Equation (7). ∆T is the

transformation between the kth and (k + 1)th iterations, in which a six-dimensional vector
is changed into a four-dimensional matrix through the ∧ operation, and an exponential
map is created as in the following:

c(k+1)To = ∆T−1ck To (8)

∆T = ck Tc(k+1)
= exp(v∧) (9)

where v =



vx
vy
vz


wx

wy
wz



 =

[
ρ3×1
φ3×1

]
; v∧ =

[
φ∧ ρ

01×3 01×1

]
; φ∧ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



∆T ∈ R4×4, v ∈ R6×1, v∧ ∈ R4×4.
At each iteration, virtual velocity v updates the transformation matrix T until the error

between the current and desired features is less than the threshold. Thus, the correct pose
between the camera and the object can finally be obtained. The pseudocode and flowchart
are shown in Algorithm 1 and Figure 9, respectively.
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Figure 9. Algorithm of the VVS method.
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Algorithm 1 Pseudocode of the VVS algorithm.

Initialize(); // get camera’s model parameters K and initial pose T
Get the desired features s∗;
While (true) {

Transform the model from object frame to camera frame by T;
Project the model to image plane by K;
Extract the feature s;
ε = s− s∗; // get the error between the current and desired feature
if (norm(ε) < threshold ) {

break;
}
else {

Calculate the interaction matrix L;
v = −λL+ε; // get the virtual velocity
T = c(k+1) To = exp (v̂)−1 · ck To; // update T

}
}
T∗ = T;

The mobile-robot system is divided into non-platform and platform parts. The non-
platform part has two arms as two end-effectors, which use six variables to represent the
position and orientation of each end-effector, and eighteen joints as active frames, as shown
in Equations (10a) and (10b). The other is the mobile platform, a non-holonomic constraint
created in Equations (11a) and (11b).

pa =
[ .
p1

.
p2
]T ∈ R12×1, qa =

[ .
q1

.
q2 · · ·

.
q18
]T ∈ R18×1 (10a)

.
pa = Ja

.
qa ⇒

[ .
p1.
p2

]
=

[
0
0

JaR
0

0
JaL

]
.
q1.
q2
...

.
q18

,
.
pa ∈ R12×1,

.
qa ∈ R18×1, Ja ∈ R12×18 (10b)

pm = [x y θz]
T ∈ R3×1, qm = [s θz]

T ∈ R2×1 (11a)

.
pm = Jm

.
qm ⇒



.
x
.
y
.
z
.
θx.
θy.
θz


=



cos(θ)
sin(θ)

0
0
0
0

0
0
0
0
0
1


[

v
w

]
,

.
pm ∈ R6×1,

.
qm ∈ R2×1, Jm ∈ R6×2 (11b)

4. Mobile Platform Motion Strategy

When a robot is in a state far from the target object, the motion of the robot is driven by the
error between the desired position of the robot base and its current position. Odometry is utilized
to obtain the current pose of the robot base to determine the robot’s location in this environment.
Hybrid, model-based tracking and coordinate transformation can be used to calculate the desired
position of the robot base. Once the target object is calculated to be within grasping distance, the
robot tracks the object until m and m* coincide in Figure 10 so that it stays inside the workspace of the
arms. Thus, s is defined as the difference between the desired and the current positions of the mobile
platform, based on task requirements.

s =
(

m∗ tm, θu
)

, s∗ = (0, 0) (12)
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The velocity of the mobile platform m
mV
(
∈ R6×1) = [ .

x
.
y

.
z

.
θx

.
θy

.
θz

]T
is given as

m
mV6×1 = −λLe

+e(t) (13a)

Le =

[m∗Rm 0
0 Lθu

]
(13b)

e(t) = s− s∗ =
(

m∗ tm, θu
)

(13c)

where λ is a positive scalar. Inverse kinematics is used to calculate the linear and angular velocities
of the mobile platform obtained by

.
qm =

(
v
w

)
=



cos θ

sin θ

0
0
0
0

0
0
0
0
0
1



−1

.
x
.
y
.
z
.
θx.
θy.
θz


= −λJm

+Le
+e(t). (14)

Moreover, tracking weight, which is added to adjust the tracking speed in the six-dimensional
pose, is determined by

.
qm =

(
v
w

)
=



cos θ

sin θ

0
0
0
0

0
0
0
0
0
1



−1

w1
0
0
0
0
0

0
w2
0
0
0
0

0
0

w3
0
0
0

0
0
0

w4
0
0

0
0
0
0

w5
0

0
0
0
0
0

w6





.
x
.
y
.
z
.
θx.
θy.
θz


= −λJm

+WmLe
+e(t) (15)

The pseudocode of the visual-servo control is shown in Algorithm 2.
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Algorithm 2 Pseudocode of the visual-servo control of the mobile platform

While (true) {
Calculate s =

(m∗ tm, θu
)
, s∗ = (0, 0);

Calculate e = s− s∗ =
(m∗ tm, θu

)
;

if (|e(0)| < 0.005 && |e(1)| < 0.005 ) {
if (|e(5)| < 0.01 ) {

break;
}
else {

e(5) = s(5)− s∗(5);(
v
w

)
= −λJm

+WmLe
+e;

Cmd(v, w);
}

}
else {

e(5) = RzMobi − tan−1(e(1)/e(0));(
v
w

)
= −λJm

+WmLe
+e

Cmd(v, w);
}

}

5. Arm Motion Strategy

When the robot is inside its workspace, its main task is to accurately grasp the target object. In
this step, the robot tracks the target object until h and h* coincide, as shown in Figure 10, so that the
end-effector can grasp it. Thus, s is defined as the difference between the desired and the current
poses of the end-effector, based on task requirements.

s =
(

h∗ th, θu
)

, s∗ = (0, 0) (16)

The velocity of the mobile platform h
hV
(
∈ R6×1) = [ .

x
.
y

.
z

.
θx

.
θy

.
θz

]T
is given as

h
hV6×1 = −λLe

+e(t) (17a)

Lh =

[h∗Rh 0
0 Lθu

]
(17b)

e(t) = s− s∗ =
(

h∗ th, θu
)

(17c)

The velocity of the end-effector
.
qa can be obtained by

.
q = Ja

+h
hV = −λJa

+Le
+e(t) (18)

Inverse kinematics is used to calculate the angular velocity of the motors

.
q = Ja

+



w1
0
0
0
0
0

0
w2
0
0
0
0

0
0

w3
0
0
0

0
0
0

w4
0
0

0
0
0
0

w5
0

0
0
0
0
0

w6





.
x
.
y
.
z
.
θx.
θy.
θz


= −λJa

+WaLe
+e(t) (19)

where W = diag(w1 w2 w3 w4 w5 w6).
Moreover, tracking weight is added to adjust the tracking speed in the six-dimensional pose,

as shown in Equation (19). Figure 11 shows the block diagram of the visual-servo control for the
dual arms, and the pseudocode of the visual-servo control applied on the dual arms is shown in
Algorithm 3.



Sensors 2022, 22, 9545 14 of 19

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20 
 

 

The velocity of the mobile platform  6 1 Th
h x y zx y z        V       is given 

as 

 6 1
h
h eV e t 

   L  (17a)

*

0

0

h
h

h



 
 
  u

L
L

R  (17b)

   ** ,  h
he t s s t    u  (17c)

The velocity of the end-effector a
q  can be obtained by 

 h
a h a e e t    V Lq J J  (18)

Inverse kinematics is used to calculate the angular velocity of the motors  

 

1

2

3

4

5

6

00 0 0 0

00 0 0 0

00 0 0 0

00 0 0 0

00 0 0 0

0 0 0 0 0

a a a e

x

y

z

xw

yw

zw
e t

w

w

w






  

  
  
  
  

    
  
  
        

L














q J J W

 

(19)

where 1 2 3 4 5 6( )diag w w w w w wW . 
Moreover, tracking weight is added to adjust the tracking speed in the six-dimen-

sional pose, as shown in Equation (19). Figure 11 shows the block diagram of the visual-
servo control for the dual arms, and the pseudocode of the visual-servo control applied 
on the dual arms is shown in Table 4.  

 
Figure 11. Block diagram of the visual-servo control for the arms. 

  

Figure 11. Block diagram of the visual-servo control for the arms.

Algorithm 3 Pseudocode of the visual-servo control of the robotic arms

While (true) {

Calculate s =
(

h∗ th, θu
)

, s∗ = (0, 0);

Calculate e = s− s∗ =
(

h∗ th, θu
)

;

if (|e(3)| < 0.02 && |e(4)| < 0.02 && |e(5)| < 0.02 ) {
if (|e(0)| < 0.01 && |e(1)| < 0.01 && |e(2)| < 0.01 ) {

break;
}
else {(

v
w

)
= −λJa

+WaLe
+e

p′ = p +

(
v
w

)
q = IK(p′)
Cmd(q)

}
}
else {(

v
w

)
= −λJa

+WaLe
+e

p′ = p +

(
v
w

)
Cmd(q);

}
}

3. Simulation and Experiment Results
The laboratory developed a mobile robot named Mobi, shown in Figure 12. The robot system

mainly consists of three computers—Win10 computer, NVIDIA Jetson AGX Xavier, and Linux
industrial personal computer. We run most of the programs in an Intel Core i7-9700k desktop
computer with NVIDIA GeForce GTX 1650 GPU and 32Gb RAM, which controls dual arms and
hands, and communicates with other computers. The two RealSense D435i cameras are connected to
the Win10 computer; due to the different positions, they are used to identify the user’s expression and
observe the grasping situation. NVIDIA Jetson AGX Xavier is famous for its robust GPU computation
for deep learning. Therefore, it is used to process real-time predictions from raw images. Linux
industrial personal computer controls robot movement and navigation based on the robot operating
system (ROS). The software structure developed by our laboratory for the robot is shown in Figure 13.
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Figure 13. Soft architecture.

The hardware architecture of Mobi is demonstrated in Figure 14. The intention is that Mobi will
be able to understand elderly users using hand-gesture recognition, the engagement and intention
models, and the conversation system. A dual-arm system and HMBT with YOLOv4 will be used to
grab the required objects to demonstrate the wide range of effective care a robot can provide.
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Figure 15 shows the experimental scenario, and the snapshots in Figure 16 show the transitions
in Mobi’s behavior from patrol to a conversation, and finally, to identify an object to be tracked. First,
OpenPose is used to extract skeleton information of the human body. The human individual’s hand
gesture then initiates hand-gesture recognition (c), which triggers HRI. Subsequently, a conversation
system (d) composed of Google APIs is used to chat with the user to ascertain the exact needs of
the human subject. Finally, YOLO is used to identify the required object using bounding boxes.
Subsequently, Mobi is able to use the hybrid, model-based tracking method to track and transport
the target object. Figure 17 shows the dual arms grasping an object.
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Figure 16. Snapshots from patrol to a conversation, then identifying the object to be tracked. (a,b) Pa-
trol. (c) Recognition of a trigger gesture for human-robot interaction. (d) Deployment of engagement
and intention model. (e,f) Identification of the object to be tracked.
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4. Conclusions 
The visual-perception system of a dual-arm mobile robot for human-robot interac-
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