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Abstract: Classical lossless compression algorithm highly relies on artificially designed encoding
and quantification strategies for general purposes. With the rapid development of deep learning,
data-driven methods based on the neural network can learn features and show better performance
on specific data domains. We propose an efficient deep lossless compression algorithm, which uses
arithmetic coding to quantify the network output. This scheme compares the training effects of
Bi-directional Long Short-Term Memory (Bi-LSTM) and Transformers on minute-level power data
that are not sparse in the time-frequency domain. The model can automatically extract features and
adapt to the quantification of the probability distribution. The results of minute-level power data
show that the average compression ratio (CR) is 4.06, which has a higher compression ratio than the
classical entropy coding method.

Keywords: Long Short-Term Memory; transformer; data compression; smart grid; arithmetic coding

1. Introduction

The power grid system collects huge power consumption data, which brings huge re-
source consumption to the communication in the transmission network. Strengthening the
management and detection of the smart grid will further improve its work efficiency. Isaías
González [1] proposed a multi-layer architecture with six functional layers as a new attempt at
a smart grid monitoring system. The encryption of private files in any system [2,3] can further
improve its supervision ability. Maik plenz [4] built a privacy framework for smart meters and
increased management of smart grid security. The security of privacy files is guaranteed by the
perturbation method of Gaussian distribution, and proposed two methods to encode power
distribution datasets.

Different from industrial power data, household power data is collected in minutes.
Tightiz and Yang [5] analyzed the characteristics and performance of the Internet of things
protocol in the smart grid, which will provide a reference for the subsequent analysis of the
smart grid. Huang [6] proposed an algorithm based on a depth automatic encoder, which
realizes the classification and compression of power load data by extracting hierarchical
features. This is helpful for further analysis of smart grid. In addition, the scheme in [7–9]
utilized compression methods to smart grid load data. K-means singular value decomposi-
tion (K-SCD) [10] sparse representation technology is used to compress the load data of
intelligent instruments.

Many data compression methods have been developed, such as the classic linear
predictive coding method [11] and the discrete cosine transform (DCT) [12]. For data com-
pression in power systems, a phasor measurement unit (PMU) data compression method
based on wavelet transform is proposed in [13], and Das [14] introduced a power system
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data compression method based on principal component analysis (PCA). Mehra [15] pro-
posed a compression scheme based on PCA. However, these methods did not significantly
improve the compression of minute-level power data.

In addition, the calculation capacity of electricity meters in residential areas is weak.
To ensure transmission efficiency, it is selected to transmit the power consumption data
of multiple users per minute. This makes the data not sparse in the time domain and
frequency domain. Traditional sampling methods [12–14] are difficult to obtain good
compression results. How to efficiently compress and store these power data has become
a key social problem. It is desirable to design an efficient compression algorithm to reduce
the communication cost and storage overhead.

Our contributions are summarized below:

• We propose a deep lossless compression algorithm for minute level power data to
compress household power data of a smart grid;

• We analyze the learning effect of networks on power data. The performance evaluation
experiments of compression ratio and entropy show that deep learning will improve
the coding efficiency.

We introduce the related work in Section 2. Section 3 shows the background of the
deep learning network and our method is introduced in Section 4. Section 5 shows the
experimental results to evaluate the performance of the scheme over power data. Finally,
the conclusion and future research direction of this method are summarized in Section 6.

2. Related Work

Lossless compression algorithms [16,17] have been widely used. Although the com-
pression performance is poor, and the compression speed is very superior, they do not
particularly consider the nature of the power data. Power data has the characteristics of
repetitiveness and slow change. The emergence of entropy coding provides a new method
for lossless compression. Shannon [18] proved that the limit of compression rate is the
entropy rate. Huffman coding [19] can build a tree based on the probability distribution,
and the symbols with a large number of occurrences should be ahead as far as possible,
but Huffman coding can not reach the entropy limit. Arithmetic coding [20] can repre-
sent a group of characters as floating-point numbers in intervals [0,1] through probability
distribution, which is closest to the entropy limit.

Ringwelski [21] proposed the Huffman coding method for smart meter data compression.
Das [22] proposed four arithmetic coding schemes for compressing power data. Sarkar [23,24]
developed two compression algorithms based on Huffman and basic arithmetic coding for
compressing combined data arrays. However, the performance of these traditional entropy
coding algorithms should be improved.

The technology based on wavelet transformation has gradually matured. Khan [25]
proposed a technology based on embedded zerotree wavelets (EZWT) to achieve smart grid
data denoising and compression. Khan [26] developed a smart grid data denoising and
compression algorithm based on Wavelet Packet Decomposition (WPD), which expanded
the Wavelet Decomposition (WD) tree into a complete binary tree. Ji [27] improved the
existing wavelet transform and then proposed a general data compression method for dif-
ferent types of signals in the power system. Cheng [28] proposed a method for compressing
oscillation wide-area measurement data based on wavelet transform, which selects the
wavelet function and decomposition scale according to the oscillation frequency of the
power system in the wide-area measurement system. Prathibha [29] proposed a dual-tree
complex wavelet transform method for power quality monitoring and combined with
run-length coding technology to compress the disturbing data. Ruiz [30] used a six-level
biorthogonal wavelet transform method to improve the compression rate of compressed
power quality signals. However, the above methods are only suitable for sinusoidal signals,
and most algorithms compress the phasor measurement unit (PMU) signal measured by
the power plant.
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In recent years, some new compression algorithms have been proposed. Gontijo [31]
compresses power quality data with disturbances through segmentation, transformation,
quantization, and entropy coding. He [32] combines cross-entropy and singular value
decomposition to compress PMU signals. Karthika [33] proposed a data compression algo-
rithm for an intelligent power distribution system based on singular value decomposition,
which reduces the mean square error (MSE) after compression. Differential binary encoding
algorithm (DBEA) [34] proposed a differential binary coding method with low computa-
tional load and high compression ratio. Sarkar [35] expanded the data input range on this
basis, but sacrificed compression performance. Then, Sarkar [36] analyzed the performance
of different types of DBEA algorithms, but DBEA can maximize performance only when
there are many repetitive elements, and the effect is very poor in actual phase current and
power data. Abuadbba [37] and Tripathi [38] used Gaussian approximation to improve
the traditional encoding method to compress smart meter data. Experiments showed that
the compression performance of the improved encoding method is significantly improved.
Howeever, the algorithms of the DBEA series are suitable for having a good effect in the
case of repeated data, and the effect is not good on uneven data.

Recurrent neural network (RNN) and transformer are very effective in learning time
series data. They can be developed into machine translation and language modeling.
Both models can learn the characteristics of data, input one character, and output the
prediction probability of the next character. Arithmetic coding can be coded according to
the prediction probability. The more accurate the predicted next character is, the better the
compression performance of arithmetic coding.

The neural network can learn complex data. Stanford [39] combined a cyclic neural
network with arithmetic coding to allocate a large probability for the possible next word and
improve the performance of lossless compression. Liu [40] introduced cyclic connections
for the network, retained the end of the hidden state, improved the ability of the model
to capture long-term dependencies, and then used arithmetic coding to improve the com-
pression performance. Wang [41] compressed human DNA sequences using this lossless
compression method. These methods can be used for reference in power data compression.

3. Background

Using the measurement matrix to compress the original vector is the mainstream algo-
rithm in the field of image compression. Although the data reconstructed by convolution
neural network may have certain deviations, the success of this method is mainly due to
the characteristics of human vision. However, we found that for small power consumption
data, a small deviation will affect the economic benefits of the household power grid. We
chose other networks to build lossless compression algorithms.

3.1. Bi-LSTM

RNN shows satisfying performance in natural language processing and is proved to
be feasible in data compression [39]. As an improved branch of primitive RNN. Bi-LSTM
has a better training effect than RNN. It controls the output of neurons through some
gates, to solve the problems of gradient disappearance and gradient explosion in RNN. Its
calculation formula is:

It = σ(Wi · [ht−1, xt] + bi),
ft = σ

(
W f · [ht−1, xt] + b f

)
,

Ct = ft · Ct−1 + It · tanh(Wc · [ht−1, xt] + bc),
Ot = σ(Wo · [ht−1, xt] + bo),
ht = Ot · tanh(Ct)

(1)

where t represents the time, W is the weight matrix, and It, ft, ct, ot, ht are input gate, forget
gate, cell state, output gate, and hidden state, respectively.
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3.2. Transformer

Transformer, as a recently proposed network, can get the same training effect and has
different advantages from LSTM in some aspects. It uses the multi-head self-attention mech-
anism, which will have a better effect when the training interval is long. The calculation
formula is:

MultiHead(Q, K, V) = Concat(H1, H2)WO (2)

where H1 and H2 are the two self-attention modules of multi-head attention, and WO is the
weight. The calculation formula for self-attention is:

Hi = Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (3)

where Q is query matrix, K is the content that you want to pay attention to, QKT is the dot
product operation. The purpose is to calculate the attention weight of Q on V,

√
dk is the

scale of the dot product. Finally, the linear transformation layer and softmax layer of the
decoder is output to obtain the predicted probability.

These two models can obtain similar results in the training sequence data. Although
their structures are different, we can use any of them in the design of depth algorithm. Our
compression algorithm is scalable and can be inserted into other training models to capture
potential power features.

4. Proposed Method

Before building the model, we need to construct the data model. First, we cut the data,
and the length of each segment can be 100, which depends on the setting of the smart grid
equipment. For the power data with length n, we can model it as:

X = {x1, x2, ..., xn} (4)

where xi represents the electricity consumption data generated at the i-th moment.
In our proposed algorithm, the Bi-LSTM mode is used, which has significant ad-

vantages in time transmission. In the optional model, we analyzed and compared their
performance. As shown in Figure 1, the algorithm framework we designed consists of
two parts: model training and coding compression. The model includes bidirectional
neurons, full connection layer (FC), and softmax layer. The compression part consists of
arithmetic coding and bit coding. xi is displayed at the top of the figure as input. After pro-
cessing the input with the Bi-LSTM model, the softmax layer calculates and outputs the
prediction probability. Then, the prediction probability is compressed into floating-point
data by arithmetic coding and finally converted into the binary stream by bit coding. We
express the calculation formula of output prediction probability of the softmax layer as:

p(xi) = so f tmax(Wxi + b) (5)

where p(xi) represents the prediction probability of xi+1, W is the weight matrix, and b
represents the deviation.

In the power data, the extraction of two-way spatial features can better capture the
front and back dependencies, thereby increasing the accuracy of the prediction accuracy.
In the training process, our loss function uses cross-entropy:

L = − 1
N

N

∑
i=1

M

∑
j=1

y(xij) log(p(xij)) (6)

where y(xij) represents the true probability distribution, p(xij) represents the predicted
probability distribution, M represents the length of the sequence, and N is the number of
training batch samples.
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Figure 1. Proposed deep lossless compression algorithm framework. The upper part of the figure is
the bilstm model, which includes bidirectional neurons, FC layer, and softmax layer. The lower part
is Arithmetic Coding and Bit Coding.

The compression process of arithmetic coding [18] in our framework is shown in
Figure 2. Arithmetic coding compresses the output of the model, expressing the data in the
interval of [0, 1], and the output are converted to floating-point type. This entropy coding
is very efficient. The output probability of the model is context-adaptive, the prediction
probability is closer to the source probability, the total entropy obtained is smaller, the value
range of the final coding interval is wider, and the compression effect will be better than
static arithmetic coding.

0.36450.364

0.36

0.3

0 1

0.4

0.37

0.366

0.3 0.4

0.36 0.37

0.364 0.366

0.3648

1.064

0.395

1.061

0.704

Figure 2. Encoding a set of data [1.064, 0.395, 1.061, 0.704] with arithmetic coding.

As shown in Figure 3. In the last output probability interval, the left and right boundaries
are converted to binary, and the final compression result is intercepted in the interval, which we
call Bit encoding. The decoder is responsible for restoring the compression result to the original
data. It needs the first character of the original data and the compression result as input, and it
also uses iteration to restore the original data. Among them, the distribution of probability
determines the entropy, increases the utilization efficiency of the interception section, and plays
a role in determining the compression performance. Adaptive arithmetic coding can obtain
a coding interval closer to perfect.
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Figure 3. Bit coding.

We use the compression ratio given in Equation (7) as an evaluation criterion to
compare the performance of our method with other methods:

CR =
originaldata(inbytes)
encodedata(inbytes)

(7)

Entropy, like the compression ratio, is also an important parameter of the compression
algorithm, which is the expected value of the information contained in each message.
In some cases, it can reflect the compression performance of the algorithm [36] for the cut-
ting segment X containing different N characters. We use entropy as another performance
metric, and the calculation formula is:

P(X) = −
N

∑
i=1

p(xi)logb p(xi) (8)

where p(xi) is the prediction probability, N is the number of different characters, xi is the
selected data, and and the base number b = 2.

5. Experimental Results

In this section, to better test the impact of the model on compression performance,
we use a private dataset, which contains user electricity data collected by a power supply
company in different stations. When training the data, our environment is deployed
in GeForce GTX 1080 Ti, and we adjust the parameters of the model to find a suitable
threshold between model accuracy and size, making the algorithm more suitable for the
real scene. We set the hidden layer feature to 32, and finally extract 16 features in the fully
connected layer. This also achieve the simplification of the model, so that the algorithm can
be deployed in the central processing unit (CPU) environment and ensure that the accuracy
of the model is guaranteed. In the real scenario, the collection meter is deployed in the
living area of users, and there is not too high a configuration. Therefore, a lightweight
model is required.

We improve the calculation speed of the model by controlling the parameters of the
hidden layer. It takes about 2 h to train on a single graphics processing unit (GPU). In the
real scene test, we can achieve the average time of a single call to the model less than 0.1 s
on the CPU; unfortunately, however, as the length of compressed data increases, the overall
time consumed is still very long.

In the Bi-LSTM model, we use one-hot to encode the character sequence into a K-
dimensional vector sequence and use it as the input of the network. The mode output
is the probability distribution of the next character. We use the cross-entropy function
to minimize loss. The state of the neural unit is retained across batches, and the Adam
optimizer is used to solve the gradient explosion problem in the model. The Bi-LSTM
model settings are shown in Table 1.
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Table 1. In the model setting, the input length is set to 50, the output length is 7820, and the batch is
set to 128.

Layers Process Output Size

Layer 1 Embedding [128, 50, 50]
Layer 2 Bi-LSTM [128, 50, 32]
Layer 3 Bi-LSTM [128, 32]
Layer 4 FC [128, 16]
Layer 5 FC [128, 7820]

Figure 4 shows the experimental effect of our proposed method on power data. Our
data is the actual power consumption value of users. The data is provided by a power
supply company. The data is collected in String format. The experiment tests the power
consumption data of 200 users in the same minute. The abscissa is the user and the ordinate
is the value.

Figure 4. Original data and reconstructed data.

Most of the traditional compression algorithms do not learn the complex characteristics
of the data and are not good at modeling the actual electricity consumption data. As shown
in Table 2, we have tested two models to model the character dataset. Among them,
the effect of the Bi-LSTM model is slightly better than that of the Transformer. The self-
attention of the Transformer usually has a larger weight on the data at a short distance and
a smaller weight at a long distance. At this time, the effect of relying solely on attention to
establish a dependency relationship is not as good as that of the Bi-LSTM. It has the same
situation with static arithmetic coding and Huffman. The more different elements the data
has, the higher the accuracy of the output probability, resulting in a higher compression
rate of the final calculation. The compression ratio of current and voltage is significantly
higher than that of voltage.

Table 2. Compare the CR results of using Bi-LSTM and Transformer.

Model
Bi-LSTM Transformer

Voltage Current Power Voltage Current Power

Original size(in bytes) 922 888 1007 922 888 1007
Compressed size(in bytes) 174 276 304 167 296 317

CR 5.30 3.22 3.31 5.52 3.00 3.18
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Considering that the user’s actual electricity consumption data is non-sinusoidal,
the wavelet transform fails here. We use traditional lossless compression methods to
compare with our algorithm. Table 3 shows our comparison results with other methods.
The experimental results show that our model performance is better than static arithmetic
coding and the Huffman algorithm. The output of the model is closer to the true value,
which can effectively save the accuracy of probability. It shows that our predicted data is
close to the actual results, and the predicted probability distribution is more suitable for
compression, which further proves the superiority of the algorithm.

Table 3. Comparison of different compression algorithms (avg).

Algorithm Ours AC [24] Huffman [23]

CR 4.06 3.31 1.98

As shown in Table 4, we show the entropy before and after compression in different
algorithms in the test. The implementation shows a set of 200-min test results, and the
entropy before compression is higher than that after compression. When the length of the
output string is large and the repetition is not high, the larger the entropy after compression
will be. This means that the greater the difference between them, the better the compression
effect. The results show that the entropy of our proposed algorithm after compression
is lower than that of the classical algorithm. We analyzed the positive effect of the deep
learning model on entropy. The output probability of traditional coding is fixed, while the
prediction probability of Bi-LSTM and Transformer models will change adaptively after
training. The output is closer to the real value, which will save memory for subsequent
encoding and compression. The training results of the Bi-LSTM model are slightly better
than that of Transformer. We concluded that the probability of adaptive change will
improve the CR and entropy, which confirms that the training of the deep learning model
will have a positive impact on them.

Table 4. Test the entropy of a group of 200-min current data before and after compression in
different algorithms.

Algorithm AC [24] Huffman [23] Ours (Bi-LSTM) Ours (Transformer)

Entropy before compression 3.23 3.23 3.23 3.23
Entropy after compression 2.73 3.14 2.17 2.24

6. Conclusions

In this paper, we use a deep neural network with arithmetic coding to learn the charac-
teristics of power data. The proposed scheme realizes efficient deep lossless compression of
power data and compares the improvement of arithmetic coding compression performance
of two different deep learning model training power datasets. After adjusting the model
parameters, our algorithm still achieves better results. In our future work, we will improve
the model and further improve the compression performance and speed.
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