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Abstract: We present a novel analysis of gas damping in capacitive MEMS transducers that is based
on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain
an estimate for the geometry dependent gas diffusion time. This combination provides results with
minimal computational expense and through freely available software, as well as insight into how
the gas damping depends on the transducer geometry in the molecular flow regime. The results can
be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental
results for both air and helium atmospheres and matches these data to within 15% over a wide range
of pressures.

Keywords: capacitance transducers; free molecular flow; gas damping; Monte Carlo methods;
Q measurement

1. Introduction

Accurate prediction of the gas damping in microelectromechanical systems (MEMS)
structures is of vital importance for the design of various types of microsensors. For in-
stance, the accuracy and resolution of MEMS gyroscopes is closely linked to the quality
factor of the vibrating sensing elements, and the Brownian noise level in MEMS accelerom-
eters is often dominated by squeezed-film damping in the narrow gaps in its capacitive
transducers. To obtain sufficiently high quality factors, these devices are usually encap-
sulated in a package at reduced pressures. Because of the typically small feature sizes in
these microsensors, the mean free path of the gas molecules inside these packages is often
significantly larger than the relevant dimensions of the sensor, and the gas damping is fully
determined by individual gas–wall collisions.

Generally speaking, there are two classes of models for gas damping in this free
molecular flow regime, both with their own challenges. On the one hand, there are integral
equation models based on the collisionless Boltzmann equation. Closed-form solutions are
hard to obtain for anything but the most simple of geometries [1]. Bao et al. [2] attempted
to incorporate the increased damping caused nearby stationary walls, but these results
underestimate this squeezed-film damping as observed in experiments. Several limiting
assumptions were subsequently removed by Frangi et al. [3], resulting in a deterministic 3D
model for damping in the rarefied gas regime assuming fully diffuse gas–wall interactions.
An overview of this approach in context to related work can be found in [4].

On the other hand, there is an approach that uses Monte-Carlo methods to infer the
behavior of the total system from the simulated trajectories of a large number of typical
test particles. Efficient simulation methods for rarefied gases were developed by Bird [5].
Typical studies use a numerical implementation of the molecular dynamics to track the
energy transfer of many individual molecules to moving bodies [6,7]. Both of these classes
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of approaches prove to give accurate results, but they require developing custom simulation
tools and provide little insight into how the damping changes with geometry.

Here, we present an analysis that is based on relatively simple analytical models for
both kinetic gas damping [8] and squeezed-film damping [9] in the free molecular flow
regime. The latter is assisted by straightforward Monte-Carlo simulation of the 3D geometry
under consideration in Molflow+, a freely available simulation tool which can include
the effect of incomplete momentum and thermal accommodation. The resulting estimate
for the total gas damping matches experimental results over a wide range of pressures
and capacitive transducer gaps. These results provide insight into the dependence of
squeezed-film damping on the geometry of capacitive transducers that can be helpful
in designs where the trade-off between gas damping and electrical performance of the
capacitive transducers is critical.

2. Materials and Methods
2.1. Damping Contributions

In a gas, the average distance travelled by individual molecules before colliding with
another molecule is given by the mean free path,

λ f ree =
kBT√

2πpd2
mol

, (1)

where kB represents the Boltzmann constant, T is the absolute temperature, dmol is the
kinetic diameter of the individual gas molecules and p denotes the pressure. The Knudsen
number is defined as the ratio Kn ≡ λ f ree/Lc, with Lc the characteristic length of the flow
problem at hand. Situations with Kn > 10 are said to be in the molecular flow regime,
a situation commonly encountered in MEMS devices even at moderate vacuum levels
because of the typically small characteristic lengths [10]. In the molecular flow regime,
interactions between gas molecules can be neglected. When modeling the drag force on a
body moving through a rarefied gas, we can therefore focus on individual collisions with
the body’s surfaces.

2.1.1. Damping of a Body in an Infinite Rarefied Gas

Assuming the velocities of the gas molecules follow a Maxwell–Boltzmann distribu-
tion, the force on a unit area dA of a body moving through a rarefied gas can be calculated
from integrating the momentum transferred by molecules colliding with this surface. A
study by Martin et al. [11] suggests that these gas–wall collisions in microstructures in the
free molecular flow regime are mostly diffuse (i.e., the outgoing velocity vector of a gas
molecule is uncorrelated to its incoming velocity vector). Given that the velocity of the
moving body, ẏ, is much smaller than the typical velocity of the gas molecules, the force on
dA can then be calculated to be [8]

〈dF⊥〉 = −p dA

(
1 + ẏ⊥

√
2m0

πkBT

(
1 +

π

4

))
, (2)

where dF⊥ denotes the force normal to the surface dA, m0 is the mass of a gas molecule
and ẏ⊥ is the component of body’s velocity normal to the surface dA. The first term is
just the force resulting from the average pressure on the unit area, but the second term is
proportional to the body’s velocity and thus corresponds to a viscous drag force. Similarly,
a drag force also results from the momentum transfer parallel to the unit area [8]〈

dF‖
〉
= −p dAẏ‖

√
m0

2πkBT
(3)

where ẏ‖ denotes the component of the body’s velocity parallel to the unit area.
The net force on a moving body can be found by integrating the contributions in

Equations (2) and (3) over its entire surface area. In the simple case in which all the surfaces
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are oriented either parallel or perpendicular to the direction of motion, the net force on the
moving body can be found by adding the right contribution (perpendicular or parallel)
for all its different surfaces. If we define Ax as the total area of all surfaces that have their
normal n̂ aligned with the positive x-axis (x̂ · n̂ = 1) and define Ay and Az similarly, the
net force on a body moving along the y-axis is given by

〈Fnet〉 = −ẏ
8p
πv̄

(
Az + Ax

2
+ Ay

(
1 +

π

4

))
≡ −ẏγkin,

with v̄ =

√
8kBT
πm0

,
(4)

where a factor 2 was added to account for all the matching surfaces that have their normals
aligned with the negative axes. The contribution from the first term in Equation (2) cancels,
because it is equal but oppositely oriented between the upwind and downwind surfaces.
The resulting force is both proportional to and in antiphase with the body’s velocity and
therefore corresponds to a viscous drag force. This drag effect is referred to as kinetic
damping.

2.1.2. Squeezed-Film Damping in a Rarefied Gas

In a typical MEMS device, moving structures are often surrounded by narrow gaps,
especially if some form of capacitive readout is employed. The proximity of stationary
structures close to a moving body contributes additional drag forces. In fact, this so-called
squeezed-film damping often dominates the total gas damping. In the free molecular flow
regime, the squeezed-film drag forces arise because of the time it takes an average molecule
to diffuse out of the volume between a stationary and a moving surface. This makes it so
that the body’s motion effectively modulates the local pressure inside these volumes. To
quantify this effect, we can use a model proposed by Suijlen et al. [9] that considers the
density of molecules in a volume between a stationary and a moving wall,

n =
N
V

=
N

A(d0 − y)
, (5)

where N represents the total number of molecules present in a gap of total volume V, y
denotes the wall displacement and d0 and A are the equilibrium separation and the area of
the gap walls, respectively. Because in general the gap is open, the total number of particles
is not conserved, and a change in molecular density can generally be written as

∆n =
∂n
∂N

∆N +
∂n
∂V

∆V =
∆N
Ad0

+
n0

d0
y, (6)

where n0 is the equilibrium density of molecules inside the gap. If such a fluctuation in
molecule density exists, particles will diffuse into or out of the gap. Defining τ to be the
average time it takes for a molecule to diffuse out of the gap, the net number of particles
leaving the gap per second is given by

d
dt

(∆N) = −∆N
τ

. (7)

Using this result together with the ideal gas law p = nkBT, we can take the time
derivative of Equation (6) to write a differential equation for the pressure fluctuation inside
the gap ∆p

d
dt

(∆p) = −∆p
τ

+
p0

d0

dy
dt

, (8)

with p0 the equilibrium pressure. This equation is readily solved in the Laplace domain
and gives an expression for the force on the moving wall as
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∆F(s) = −A∆P(s) = − p0 A
d0

sτ

1 + sτ
Y(s)

≈ − p0 Aτ

d0
(sY(s)) for sτ � 1,

(9)

where s denotes the Laplace variable. This approximation is justified for typical MEMS
mode frequencies, as we show below that, for a typical MEMS geometry, τ is of the order
of a microsecond.

Equation (9) tells us that the squeezed-film damping force acting on the wall due to
the modulated pressure inside the gap is both proportional to and in antiphase with the
wall velocity sY(s), and therefore corresponds to a viscous damping effect with a coefficient

γsq =
p0 Aτ

d0
. (10)

Typically, all areas in a MEMS sensor and their corresponding gap widths are known
from the lithographic mask design. What is left to get an estimate for γsq is to find an
accurate estimate for τ.

2.2. Molflow+ Simulations

Estimating the diffusion time τ analytically for complex geometries is impractical,
but, since in the molecular flow regime all interactions between different gas molecules
can be neglected, the task is well suited for Monte-Carlo simulation. A Monte-Carlo
simulator tool developed at CERN called Molflow+ (v2.7.7) [12] was used to obtain the
results presented here. This tool was originally developed for analyzing the vacuum
system of particle accelerators [13], but it can also be used to simulate particle trajectories
in arbitrary geometries [14].

2.2.1. Geometry

Since in general the diffusion time τ will depend on the geometry of the gaps under
consideration, a specific geometry needs to be chosen for simulation. The geometries
that are considered here are part of the MEMS accelerometer shown in Figure 1a. The
accelerometer is manufactured from a single silicon-on-insulator wafer and features a
12.7 mg proof mass suspended by a set of springs in each of its corners. The proof mass is
surrounded by capacitive transducers for both position sensing and feedback actuation.
All structures visible in Figure 1a are etched into the 50 µm thick top silicon layer, but most
of the mass is actually contributed by silicon in the bottom layer suspended below it, as
can be seen in Figure 1c. The main novelty of this accelerometer is its suspension spring
system that can be used to significantly boost the sensitivity to acceleration. However, that
feature is not relevant to the discussion about gas damping here, and the reader is referred
elsewhere for more information [15].

With the proof mass moving along the y-direction, there are two regions in this device
where significant squeezed-film damping occurs: (A) the narrow parallel plate capacitor
gaps in the top silicon layer; and (B) the gap between the proof mass and the sensor’s
frame in the bottom silicon layer. Monte-Carlo simulations were set up for both geometries.
In the bottom silicon layer, there is only one 52 µm wide gap on either side of the proof
mass, and, as shown in Figure 1b, the capacitors consist of many sets of parallel plates,
representing a much larger total surface area. There are 410 of these sets of plates on either
side of the proof mass for a total of 820 sets. They are positioned such that half of them are
separated by a gap d1 + y and the other half by d1 − y, so that a displacement y induces a
differential capacitance change that can be measured to monitor the proof mass motion.
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Figure 1. (a) Photograph of the MEMS accelerometer for which the gas damping is modeled. The central 12.7 mg proof
mass can move along the y-direction as indicated by the arrow. (b) An electron microscope zoom-in of part of the MEMS
sensing capacitors indicated by the boxed area in (a) along with the nominal etched dimensions. The edge of the proof
mass is visible at the top of the image and can move along the indicated y-direction. (c) Schematic cross-section of the
accelerometer. Significant squeezed-film damping occurs both in the capacitor structures in the top silicon layer (A) and in
the bottom silicon layer (B).

Next to the parallel plate capacitors that change their gap upon proof mass motion, the
accelerometer shown in Figure 1a also contains capacitor fingers that change their overlap.
Both the modulation of the volume between the static and moving parts and their surface
areas along the direction of motion are significantly smaller than those of the parallel plate
capacitor structures discussed above. Because of this, the expected squeezed-film damping
from these comb finger structures is�1% of the total damping and was therefore neglected.
These comb finger structures, however, do add kinetic damping that was accounted for by
making sure to incorporate all contributing surfaces in the values for Ax, Ay and Az. Note
that the walls of capacitive MEMS structures can generally exhibit significant scalloping as
a result of the deep reactive ion etching process typically used to produce them. For the
particular sensor in Figure 1a considered here, the impact of additional kinetic damping
from the scallops on the total damping was estimated to be on the order of 1% and was not
included. However, depending on the depth of the scallops and the total surface area of
different geometries, it may be necessary to include the additional surface area created by
these scallops in Az to get accurate results.

2.2.2. Monte-Carlo Simulation Setup

A schematic top view of the simulated sensing capacitor geometry is shown in Figure 2,
where particles are emitted from one of the plates (blue dots). The molecules are traced
along their random walk bouncing from all the different surfaces (green dots) until they
leave the cavity (red dots). A particle is considered to have left the gap if it either moved out
of the gap from the top or moved around or underneath the capacitor plate. In practice, this
can be achieved by setting all these exit surfaces to absorb particles with 100 % probability,
terminating the particle’s flight once it hits one of them.



Sensors 2021, 21, 2566 6 of 13

d0

250 µm

18 µm

d0
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(a) (b)

Figure 2. (a) Top view of typical 3D simulation result of a single set of capacitor plates (d0 = 30 µm).
Particles spawn at one of the plates (blue dots) and are tracked through their reflections (green dots)
until they leave the cavity (red dots). (b) Cross-section view SS’.

All surfaces were set to reflect diffusely with full thermal accommodation, meaning
that, at every collision, the rebound velocity is determined from a Maxwell–Boltzmann
distribution based on the surface temperature, and its direction is picked at random
following a cosine distribution. In reality, a small fraction of all gas-surface interactions will
be elastic. The tangential momentum accommodation coefficient (TMAC) that determines
the fraction of all collisions that are diffuse depends on both the surface and the gas
properties but is generally close to unity [16], justifying the assumption of fully diffuse
interactions in the following simulations. A detailed study of the effects of the different
accommodation coefficients on the total gas damping is beyond the scope of this study.

2.3. Quality Factor Measurements

To validate the Monte-Carlo assisted model, the resulting damping estimates are to
be compared to quality factor measurements on the MEMS accelerometer in Figure 1. To
avoid spurious excitation of the device’s main resonance mode during the measurements,
the accelerometer was placed on a vibration isolation platform inside a large vacuum
vessel [17]. Down to 10−4 mbar, the pressure inside the vessel was measured with capacitive
membrane gauges (CMR261 and CMR365) to minimize the gas species dependence of the
measurement. Below 10−4 mbar, a cold cathode gauge was used (IKR251).

To measure the motion of the accelerometer’s proof mass, the sensor was interfaced
to the capacitive half-bridge readout, as shown in Figure 3. This readout system drives
the capacitor bridge in the accelerometer with a differential signal at 100 kHz and collects
any mismatch current through a charge-amplifier that is electrically connected to the proof
mass through its suspension springs. Synchronous demodulation with a lock-in amplifier
results in a signal Verr that is proportional to the proof mass displacement from equilibrium,
as long as the displacement is kept sufficiently small to avoid significant non-linearities
being introduced by the capacitor bridge.

Next to reading its position, a force can be exerted on the proof mass by applying a
voltage to a separate set of capacitive transducers. Using this setup, the device’s quality
factor can be determined by electronically exciting the main resonance mode, turning off
the excitation source and recording the subsequent exponential decay.
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Figure 3. Schematic overview of the electronic system used to read the MEMS proof mass position. A transformer converts
externally generated 100 kHz sine with amplitude Vd to a balanced signal driving the MEMS capacitor bridge. The residual
bridge current is integrated by a charge-amplifier, and its output voltage is buffered and sent to an external lock-in amplifier
for synchronous demodulation. The circuit produces a low-frequency signal Verr proportional to ∆C. The signals at different
parts of the circuit are indicated.

3. Results
3.1. Simulation Results

A histogram of the flight time of all particles in the Monte-Carlo simulation is recorded,
from which the average diffusion time τ can readily be calculated. Simulations were
performed for a range of plate separations d0, for both the capacitor structures and the gap
at the faces of the proof mass, indicated as A and B in Figure 1c, respectively. To study the
effect of different gas species, all geometries were considered both in air (m0 = 28.97 u) and
in helium (m0 = 4.00 u) at 300 K, and the results are summarized in Figure 4. Each data
point was obtained from a Monte-Carlo simulation with O(106–107) simulated particles.
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Figure 4. Molflow+ simulation results for the diffusion time τ as a function of plate separation d0

for air and helium particles at 300 K, escaping from regions A and B as indicated in Figure 1c. The
dashed curve corresponds to particles escaping from region A, but with a 100 µm thick silicon layer.

Since the expected path a gas molecule takes does not depend on the gas species,
the average flight distance for all particles is the same. The diffusion times for air and
helium are therefore expected to differ only due to their difference in average particle
velocity v̄ as defined in Equation (4). The ratio of these average velocities is simply given
by
√

mair/mHe ≈ 2.69, and indeed the results shown in Figure 4 for helium and air differ
by this factor to well within 1 %.

3.2. Experimental Verification
3.2.1. Pressure Dependence of the Quality Factor

All relevant surface areas of the MEMS accelerometer for calculating the damping
contributions are listed in Table 1. Using these parameters together with the estimates for τ
obtained through Monte-Carlo simulation, the total expected gas damping as a function of
pressure can be calculated through Equations (4) and (10). The relative contributions of both
kinetic damping and squeezed-film damping from distinct regions in the accelerometer are
listed in Table 2, as well as the corresponding damping coefficient at a reference pressure
of 0.1 mbar. Squeezed-film damping from region B is relatively small, since the gap is both
wider and the contributing surface area is significantly smaller as compared to region A.
Note that the kinetic damping constitutes 28 % of the total gas damping. This contribution
is often assumed to be negligible with respect to squeezed-film damping, but, especially for
bodies with a relatively large surface area such as the proof mass considered here, this is
not always justified. For comparison with experimental results, the damping contributions
are converted to quality factors as

Q =
2πm f0

γtot
, (11)

where f0 denotes the accelerometer’s natural frequency and m is its proof mass. Figure 5
shows the quality factors expected from the model as a dotted curve along with quality
factor measurements as a function of pressure. The solid curve represents the model
prediction when the effect of the non-gaseous limit of Q = 2.3× 105 is included. The
experimental results were obtained from measuring free exponential decays in both air
and helium atmospheres at different pressures.
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Table 1. Relevant areas in the accelerometer in Figure 1a.

Value Description

Ax 6.42× 10−6 m2 Total area with normal along +x̂
Ay 1.26× 10−5 m2 Total area with normal along +ŷ
Az 2.50× 10−5 m2 Total area with normal along +ẑ
A8 9.51× 10−6 m2 Total area facing 8 µm gap (A)
A20 9.51× 10−6 m2 Total area facing 20 µm gap (A)
AB 1.23× 10−6 m2 Total area facing 52 µm gap (B)

Table 2. Damping contributions in air (300 K, 0.1 mbar).

Value Description

γkin 2.08× 10−6 kg/s (28%) Kinetic damping
γsq,8 3.57× 10−6 kg/s (49%) Squeezed-film A, 8 µm gap
γsq,20 1.44× 10−6 kg/s (20%) Squeezed-film A, 20 µm gap
γsq,B 0.25× 10−6 kg/s (3%) Squeezed-film B

γtot 7.34× 10−6 kg/s (100%) Total gas damping

10−5 10−4 10−3 10−2 10−1 100 101 102 103100

101

102

103

104

105

106

Non-gaseous limit:

Q = 2.3× 105

Kn > 10 Kn < 10

Molecular flow

Viscous flow

Pressure (mbar)

Q
-f

ac
to

r
(-

)

Measured Q air
Measured Q helium
Gas damping model
Including 2.3× 105 limit

Figure 5. Q factor measurements for a MEMS accelerometer with a natural frequency of 183.3 Hz
in air and helium atmospheres at different pressures. The dotted curves represent the expected Q
from the total modeled gas damping γtot as a function of pressure. The model is valid for Kn > 10.
The pressure was measured with two capacitive gauges, a CMR261 (10−1 mbar to 103 mbar) and a
CMR365 (10−4 mbar to 10−1 mbar), and a cold cathode gauge, IKR251 (<10−4 mbar).

At atmospheric pressure, we have Kn� 10 and the molecular flow assumption used
to construct the viscous damping model is invalid. Lowering the pressure to below about
1 mbar, we have Kn > 10, and the measured Q values converge to the ones predicted from
gas damping to within about 15%. Note that the characteristic length Lc differs between
different regions in the MEMS device, so they all have their own slightly different Kn.
The Kn = 10 limits in Figure 5 are calculated for Lc = 8 µm as that gap contributes the
largest part of the damping. Below a pressure of 10−3 mbar, gas damping is no longer
dominant and Q converges to 2.3× 105, a value set by a combination of internal friction in
the suspension system and other unmodeled losses.
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3.2.2. Dependence on Plate Separation

Next to a dependence on pressure, the squeezed-film damping as modeled in Equation (9)
shows a direct dependence on the equilibrium wall separation d0. Since the proof mass in
the MEMS accelerometer has a movement range of ±5 µm, by virtue of its relatively low
natural frequency, d0 can be modulated by this amount by simply tilting the accelerometer
with respect to gravity by an angle θ. The static proof mass displacement y can then directly
be obtained from y = g sin (θ)/(2π f0)

2, with θ = 0 indicating the orientation in which the
accelerometer’s sensitive y-axis is oriented orthogonal to local gravity g.

Figure 6 shows three series of quality factor measurements as a function of proof mass
displacement for different vacuum levels, for which Figure 5 tells us that the damping is
dominated by gaseous effects in the free molecular flow regime. Additionally, the expected
quality factor values from the total modeled gas damping, γkin and γsq, are plotted as
a function of the proof mass displacement y. The model curve for Q was obtained by
replacing d0 with d0 ± y for the relevant gaps. The geometry dependence of τ from the
simulations in Figure 4 is taken into account when plotting the model, and the resulting
curve agrees with the measured data to within 5% over the entire measured range.

−4 −2 0 2 4
103

104

105

Proof mass displacement y (µm)

Q
fa

ct
or

(-
)

p0 = 4.2× 10−3 mbar
p0 = 1.1× 10−2 mbar
p0 = 5.5× 10−2 mbar
Gas damping model

Figure 6. Q factors in air as a function of proof mass displacement for a MEMS accelerometer with
f0 = 164.0 Hz.

4. Discussion

The simple analytical model that leads to the estimate for squeezed-film damping
in Equation (10) is quite powerful. It reduces all the geometry dependencies that cannot
be easily included analytically to a single parameter τ, which lends itself to be accurately
estimated by Monte-Carlo simulation. This approach has some benefits over the more
commonly adapted Monte-Carlo method that monitors the momentum transferred during
individual wall-molecule collisions [7]. Firstly, for estimating τ, there is no need to consider
the motion of the geometry under consideration, whereas getting an estimate for the
damping through tracking the momentum transferred in individual collisions requires
doing so through multiple oscillation periods. This comes at a significant additional
computational expense. Secondly, since there is no need to monitor the momentum transfer
to the wall that is typically moving slow in comparison to the gas molecules, this method
does not suffer from the statistical noise that is typically encountered in Monte-Carlo
methods that simulate gas damping [3]. Moreover, estimating τ can be done with e.g.,
Molflow+, which is openly available, thus requiring no custom algorithm development.
The match between the measured quality factors and the modeled damping obtained in
this way is better than 15% for all measured parameter combinations within the range
where the model is valid. This level of accuracy is comparable to that of other simplified
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damping models, for example that of Fedeli et al. [18] that had its accuracy benchmarked
against data from an extensive experimental campaign [19].

The estimates for the diffusion time τ, as shown in Figure 4, were determined under
the assumption that the walls of the simulated geometry are smooth. In reality, however,
the etched surfaces of a capacitive transducers will exhibit some amount of roughness
and scalloping. Several analyses [20,21] suggest that these surface properties can slightly
increase τ. When the scalloping profile that results from the fabrication process is known,
it can be added to the simulation geometry to improve the accuracy of the estimates for τ
at the cost of added model complexity.

While Figure 4 shows simulation results for both air and helium atmospheres, it is
really only necessary to consider one of them as the results only differ by their mass ratio
as
√

mair/mHe. This means that τ can be estimated through Monte-Carlo simulations for
a single arbitrary gas species, and the results can be scaled to accurately predict the gas
damping of any mix of different gases, as long as the composition is known. This can be
useful for MEMS devices that have been encapsulated in a vacuum with a getter material,
as the atmosphere inside those cavities usually does not resemble air and has a high noble
gas content against which the getter material is not effective [22].

In an accelerometer such as the one considered here, the Brownian noise floor is
determined by the total gas damping, of which the largest part consists of squeezed-film
damping in the capacitor structures. The geometry of these capacitors is usually dictated
by electrical requirements, but it is insightful to look at how it affects the Brownian noise
level as well. The results in Figure 6 show that Equation (10) accurately describes the
dependence of the squeezed-film damping on the wall separation as 1/d0. This happens to
be the same scaling as for the capacitance of parallel plates C = ε0 A/d0. Normalizing by
C, the squeezed-film damping per unit of capacitance is

γsq

C
=

p0 Aτ

d0

d0

ε0 A
=

p0

ε0
τ. (12)

This quantity depends on the capacitor geometry only through τ, meaning that, for a
given capacitance, the capacitor geometry can be optimized for electrical performance with
minimal impact on Brownian noise as long as τ remains constant. The curves in Figure 4
show that, in the considered capacitor geometry, τ changes by less than 10% for values of
d0 ranging from 4 µm to 30 µm. Using any value for d0 in this range will provide virtually
the same Brownian noise level for a given sensing capacitance.

Although there are benefits to using a thicker silicon device layer, the result in Equation (12)
also exposes one of the disadvantages of doing so. The simulations in Figure 4 show that
the values for τ are 2.0 to 2.6 times larger for a 100 µm thick device layer than for a 50 µm
thick one, meaning that, for the same sensing capacitance, the former will have roughly
twice as much squeezed-film damping.

5. Conclusions

An analytical model for gas damping in the free molecular flow regime of both kinetic
and squeezed-film origin was used to predict the quality factor of a MEMS accelerometer
in both air and helium atmospheres. This prediction matches the experimental results
to within 15% in the pressure range where the model is valid (i.e., Kn > 10). The model
for squeezed-film damping conveniently reduces the unknown geometry dependence to
a single parameter τ that can accurately be estimated through Monte-Carlo simulation.
As long as the gas composition is known, a single simulated result for τ can be scaled to
predict the damping from arbitrary gas mixtures.

The dependence of the squeezed-film damping on the wall separation as predicted by
the analytical model was verified experimentally. The model matches the experimental
results to within 5% over the entire range of wall separations that was tested at three
different pressures.
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The gas damping that ultimately leads to Brownian noise in the MEMS accelerometer
considered here is dominated by squeezed-film damping in the capacitor structures. For
a given capacitor plate height, this squeezed-film damping is inversely proportional to
the plate separation d0 over a wide range, which is the same scaling as for the capacitance
itself. This implies that, for a given transducer capacitance, its geometry can be optimized
for the best electrical performance without ramifications for the sensor’s Brownian noise
performance.
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