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Abstract: Evanescent acoustic waves are characterized by purely imaginary or complex wavenum-
bers. Earlier, in 2019 by using a three dimensional (3D) finite element method (FEM) the possibility
of the excitation and registration of such waves in the piezoelectric plates was theoretically shown.
In this paper the set of the acoustically isolated interdigital transducers (IDTs) with the different
spatial periods for excitation and registration of the evanescent acoustic wave in Y-cut X-propagation
direction of lithium niobate (LiNbO3) plate was specifically calculated and produced. As a result,
the possibility to excite and register the evanescent acoustic wave in the piezoelectric plates was
experimentally proved for the first time. The evanescent nature of the registered wave has been
established. The theoretical results turned out to be in a good agreement with the experimental ones.
The influence of an infinitely thin layer with arbitrary conductivity placed on a plate surface was also
investigated. It has been shown that the frequency region of an evanescent acoustic wave existence is
very sensitive to the changes of the electrical boundary conditions. The results obtained may be used
for the development of the method of the analysis of thin films electric properties based on the study
of evanescent waves.

Keywords: evanescent waves; backward waves; lithium niobate plates; interdigital transducers; zero
group velocity point

1. Introduction

Recently, the interest of researchers has been attracted to the so-called evanescent
acoustic waves that exist in confined media. These waves, in contrast to acoustic Lamb
waves and waves with shear horizontal polarization, are characterized by a purely imagi-
nary or complex wave number [1–3]. In the case of a purely imaginary wavenumber or
with a significant excess of the imaginary part relative to the real part, the evanescent mode
corresponds to vibration near the source of the external force, which decays exponentially
with the distance from the source and does not transfer energy [1–4]. The theoretical
studies of the dispersion dependences of such waves propagated in isotropic plates [1–4],
piezoelectric plates of cubic symmetry [5], functionally graded piezoelectric-piezomagnetic
plates [6], phononic crystals [7] were carried out earlier. These studies were carried out for
non-dissipative media with zero viscosity. The evanescent waves have also been investi-
gated in viscoelastic anisotropic plates [8,9], cylinders [10], multilayer structures [11,12],
and spherically curved plates [13]. It has been shown that waveguide modes with real and
complex wave numbers in plates, tubes, cylindrical shells become coupled when immersed
in a liquid [11,12,14–17]. In recent years, studies have been actively carried out on the
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waves characterized by a complex wave number in various acoustic metamaterials [18,19]
and corrugated waveguides [20]. Recently, the possibility of the existence of acoustic spin
was theoretically shown [21] and experimentally confirmed [22]. The existence of the
transverse spin in evanescent waves with orthogonal real and imaginary parts of the wave
number was theoretically demonstrated in [23].

It should be noted that the problem of excitation of the evanescent acoustic waves is
interesting from both a fundamental and a practical point of view. Earlier it has been shown
that when Lamb waves are reflected from the edge of the plate, not only propagating waves
are excited, but also evanescent waves that exist only near the edge of the plate [1,24–30].
The existence of evanescent Lamb waves has been experimentally proven at free-edge
boundaries [31,32], in phononic crystals [7,19], elastic metamaterial [18] and the possibility
of their using for non-destructive control has been confirmed in [33–36]. These waves
also could be used for development of a planar acoustic transducer for near field acoustic
communication [37], passive pressure sensors for harsh-environment applications [38],
new air-coupled ultrasonic for non-destructive techniques [39] and in acoustofluidic chips
for microscale manipulation [40]. Despite these studies, there is still a need to develop
methods for the excitation and registration of these waves. Recently for the excitation and
registration of backward acoustic waves in piezoelectric plates a method based on the use
of a set of interdigital transducers (IDTs) with different periods was proposed in [41]. Later
the possibility of using this method for excitation and registration of evanescent acoustic
waves in lithium niobate and potassium niobate plates was theoretically shown in [42].
However, for realization of real nondestructive analysis technique it is necessary to confirm
experimentally the reliability of the method proposed earlier. Another possible field of
application of these waves is the development of controlled acoustoelectronic devices.
One of the control methods is the arrangement of a heterostructure with a conductivity
variable by an applied electric field on the surface of the plate [43,44]. Similar studies
were carried out earlier for forward and backward acoustic waves in various piezoelectric
materials [45–49]. As for evanescent acoustic waves in piezoelectric plates, such works are
currently absent.

So, in this paper the possibility of registration of the evanescent acoustic waves in a
piezoelectric plate by using a system of the acoustically isolated IDTs with different spatial
periods was firstly experimentally shown. The experiments confirmed the existence of
an evanescent backward wave in Y-X LiNbO3 plate. As well the influence of an infinitely
thin layer with arbitrary surface conductivity has been firstly investigated. It has been
shown that the frequency region of an evanescent acoustic wave existence is very sensitive
to the changes in the electrical boundary conditions. The calculations have shown that an
increase in the layer conductance can reduce the attenuation of an evanescent wave down
to zero and thereby transform this wave into a propagating one.

2. Materials and Methods
2.1. Theoretical Methods
2.1.1. Boundary Transfer Matrix Method

Earlier it has been found that a backward antisymmetric acoustic wave of the 1st order
(A1) exists in Y-cut of lithium niobate (LiNbO3) plate for X-propagation direction [41]. Later
it has been theoretically shown that in the region near a zero group velocity (ZGV) point of
the aforementioned A1 wave the evanescent backward acoustic wave also exists [42].

For the first step of this study the phase velocity, mechanical displacements and
electrical potential distribution of an A1 wave in YX LiNbO3 plate with the thickness
of 490 µm were calculated by using the matrix method [50]. This method allows one to
consider the wave propagation far from source of excitation.
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The geometry of the problem is presented in Figure 1. Standard motion equation and
Laplace’s Equation (1), and constitutive equations for piezoelectric medium (2) were used
for calculation [51,52].

ρ∂2Ui/∂t2 = ∂Tij/∂xj, ∂Dj/∂xj = 0, (1)

Tij = Cijkl∂Ul/∂xk + ekij∂Φ/∂xk, Dj = −ε jk∂Φ/∂xk + ejlk∂Ul/∂xk. (2)

Figure 1. Geometry of the problem.

Here, Ei and Ui are the components of the electric field intensity and mechanical
particle displacement. t and xj are the time and coordinate. Tij is the component of
mechanical stress tensor. Dj is the component of electric displacement. Φ and ρ are the
electric potential and density. Cijkl, eikl and εjk are the elastic, piezoelectric and dielectric
constants of a piezoelectric material, respectively. We also used the Laplace’s Equation (3)
for vacuum [51,52]:

∂Dv1
j /∂xj = 0,∂Dv2

j /∂xj = 0, (3)

where Dv1
j = −ε0∂Φv1 /∂xj and Dv2

j = ε0∂Φv2 /∂xj. Here, indices v1 and v2 denote quan-
tities relating to vacuum in the planes x3 = 0 and x3 = h, respectively, ε0 is the dielectric
constant of vacuum.

As boundary conditions we used the continuity of the potential and normal compo-
nent of electrical displacement, as well equality to zero of the normal components of the
mechanical stress tensor for the interfaces vacuum/plate (x3 = 0 and x3 = h) [51,52].

T3j = 0, Φv1 = Φ, Φv2 = Φ, Dv1
3 = D3, Dv2

3 = D3. (4)

For the study of the influence of an infinitely thin layer with arbitrary conductivity
placed in the plane x3 = 0 on the properties of an evanescent wave the next electrical
boundary conditions were used [46]:

Φv1 = Φ; Dv1
3 − D3 = δ. (5)

Here, δ is the surface charge density that is related to the density of surface current [46].

δ = jσSΦv1 ω/V2
ph (6)

Here, σS is the surface conductance of the layer, j is the imaginary unit, ω = 2πf is the
angular frequency, Vph and f are the complex phase velocity and frequency of an acoustic
wave, respectively.

This problem was solved by the method described in detail in [41,42]. The material
constants for LiNbO3 were taken from [53].

In order to determine the spatial period of the IDTs or wavelength (λ) needed for
an experiment the auxiliary lines Re(Vph) = λf = (λ/h)(hf) for different values of λ were
calculated and plotted. Re(Vph) means the real part of the acoustic wave phase velocity
that has a complex nature in common case. In this case the next formula was used for
calculation [1]:

Vph = (Re(Vph)2 + Im(Vph)2)/Re(Vph) (7)
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2.1.2. FEM Simulation

The theoretical analysis described above did not take into account the problem of the
excitation of the acoustic waves by an IDT. So, the experimental situation was modeled
by using the FEM commercial software COMSOL 5.3. The approach used is described in
detail in [41,42]. An image of the resonator model used in the calculations, the location of
the perfectly matching layers (PML) and the corresponding mesh are shown in Figure 2.
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Figure 2. 3D Model of the resonator used in the finite element method (FEM) calculation including: (a) aluminum electrodes
on the surface of the resonator, (b) perfectly matching layers, (c) meshes used in modeling.

The PML layer, located on the lateral edges of the plate, prevents the re-reflection of
excited waves from the boundaries of the resonator. This leads to the disappearance of
false peaks in the simulated resonance curve. In the implementation of these absorbing
layers, quadratic damping functions were used. In the region of the plate free of the IDTs,
we used mechanical boundary conditions corresponding to the free boundaries, i.e., the
mechanical stresses were considered to be equal to zero. In the area of the contact of
the IDT’s fingers with the plate, the continuity of mechanical displacements and stresses
between the IDT’s fingers and the plate was used as the mechanical boundary conditions.
The normal component of the electrical displacement on the plate surface was assumed to
be zero. Excitation of an acoustic wave was simulated by periodically changing an electric
potential in the contact area of the IDT fingers and a piezoelectric plate. An alternating
electric potential was applied to the odd-numbered IDT fingers. The even numbered
fingers had zero potential. The metal electrodes were considered as the mass loading.

The mesh was generated manually during the model compiling. Two types of the
meshes (i) for the region of a plate under the electrodes, (ii) for the area of perfectly matching
layers were used in the model. In the case (i) for the electrodes and the inter-electrode
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space the meshes were represented by parallelepipeds. The linear dimensions of the mesh
elements in this case correspond to 40 elements per wavelength along the X, Y and Z-axes.

For the case (ii), an automatically generated tetrahedral mesh was used. The meshing
in finite element analysis is an important modeling step. The quality of the generated
meshes can be assessed using a special tool of the Multiphysics simulation platform.

Figure 2c shows an image of the mesh, where each mesh element is colored from
red to green. The color of the elements indicates their quality. On the right, the graph
shows the relative scale of the quality of the elements. The more elements on such graph
are closer to 1 in quality (green), the more adequately the model will simulate the real
situation. The average quality of the mesh elements is 0.86, which indicates a high accuracy
of the simulation results. To avoid erroneous conclusions due to insufficient accuracy and
suboptimal mesh selection, the quality of the model was also assessed by a simple iterative
method, by successively reducing the size of the mesh elements. In the analysis, the number
of elements varied from 4 to 60 per wavelength. It was found that at 20 elements per
wavelength, the size of the grid element ceases to affect the form of resonance dependences.
In this regard, it was concluded that 40 grid elements that fit along the wavelength are
enough to simulate a real experimental situation.

2.2. Experimental Study

For the experimental study of an evanescent acoustic wave, we used the experimental
setup shown in Figure 3. The base was a LiNbO3 plate (1) with a thickness of 0.49 mm,
on which a set of four IDTs (2) with spatial periods of 1.4, 1.42, 1.44 and 1.46 mm were
deposited using photolithography. The width of the each strip in IDT and distance between
them was equal to λ/4. The normal to the plate and the direction of propagation of the
excited waves were oriented along the Y and X axes, respectively. To prevent reflections
of the excited waves from the edges of the plate and ensure the conditions for a traveling
wave, the region around the transducers was covered with a layer of absorbing varnish
(3) 0.2 mm thick [41]. The lithium niobate plate was fixed in a special support (4) made
of textolite. A guide shaft (5) with two movable dielectric holders (6) with flat contact
legs (7) was also located on the support. On the one hand, the contact legs provided a
reliable connection with the impedance analyzer (8) E4990A (Keysight), and on the other
hand, they were connected to the IDT contact areas by means of the gold wires (9) of 25 µm
in diameter. These wires were glued in advance to the each contact area of the IDT with
conductive glue “Silver Print”. On the other hand, they were soldered to the contact legs
using a micro soldering iron.

Figure 3. Scheme of the experimental set up: (1) YX LiNbO3 plate; (2) system of IDTs; (3) layer
of absorbing varnish; (4) support made of textolite; (5) guide shaft; (6) movable dielectric holders;
(7) flat contact legs; (8) impedance analyzer; (9) gold wires.

The measurement technique was as follows. Movable holders with legs were located
near the selected IDT, and pre-glued gold wires were soldered to the contact legs. Then the
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frequency dependences of the real and imaginary parts of the electrical impedance of the
selected IDT were measured. Then, gold wires of another transducer were soldered to the
contact legs and the measurements were repeated. As a result, the frequency dependences
of the real and imaginary parts of the electrical impedance of all four IDTs were obtained.

3. Results and Discussion
3.1. Theoretical Results

As the result of the calculations, carried out by using the approach described in item
2.1.1 the dependencies of the real and imaginary parts of the complex phase velocity Vph
on parameter hf (h is the plate thickness, f is the wave frequency) were plotted (Figure 4a).
Three branches A1

f, A1
b and A1

e are corresponded to the forward (black), backward (red),
and evanescent (blue) wave, respectively. For calculation of the group velocity (Vgr) of the
forward and backward waves we used well known formulae by using dispersion curves
presented in Figure 4a:

Vgr = dω/dk, (8)

where k is the real part of the wave number that is much higher than its imaginary part for
forward and backward branches. The calculated dependencies Vgr versus parameter hf for
these branches are presented in Figure 4b.

Figure 4. Dependencies of the (a) real (Re) and imaginary (Im) parts of the complex phase velocities
Vph and (b) the group velocities Vgr on parameter hf for the forward (black), backward (red), and
evanescent (blue) waves in YX LiNbO3 plate. The grey lines are the auxiliary lines for different values
of λ: 1.46 mm (1), 1.44 mm (2), 1.42 mm (3), and 1.40 mm (4).

The evanescent wave is characterized by the complex wave number k = Rek + jImk
and complex phase velocity Vph [42,54] (Figure 4a). By using Vph(hf ) dependence we can
numerically find the derivative dVph/d(hf ) as follows:

dV(n)
ph

d(h f )n =
Vn+1

ph − Vn
ph

h f n+1 − h f n . (9)

where the indices n and n + 1 relate to the values of Vph and hf corresponded to the n and
n + 1 steps of calculation. Then the group velocity at the n step can be expressed as follows.

V(n)
gr_cmplx =

(
h f (n+1) − h f n

)(
Vn

ph

)2

Vn
phh f n+1 − Vn+1

ph h f n
. (10)

The final value of Vgr was used in the following form:

Vgr =
(ReVgr_cmplx)

2 + (ImVgr_cmplx)
2

ReVgr_cmplx
. (11)
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As mentioned above, the wave number for evanescent waves is complex. In this
regard, to calculate the dependence of the real and imaginary parts of the wave number,
the following formulas were used:

k =
ω

ReVph + jImVph
=

ω(ReVph − jImVph)

(ReVph)
2 + (ImVph)

2 =
ωReVph

(ReVph)
2 + (ImVph)

2 − j
ωImVph

(ReVph)
2 + (ImVph)

2 (12)

From here:

Rek =
ωReVph

(ReVph)
2 + (ImVph)

2 ; Imk = −j
ωImVph

(ReVph)
2 + (ImVph)

2 (13)

The auxiliary lines Re(Vph) = λf = (λ/h)(hf) for different values of λ needed for an
experiment are presented in Figure 4a by the grey lines.

The dispersion curves calculated by using the dependencies presented in Figure 4a
are shown in Figure 5.

Figure 5. Dispersion curves for real (Re) and imaginary (Im) parts of wave numbers k of the forward
(black), backward (red), and evanescent waves (blue) in YX LiNbO3 plate.

The dependencies of the electric potential value Φ normalized to the surface value
Φx3=0 and mechanical displacements U1, U2, and U3 normalized to the surface value U1

x3=0

belonging to the waves under study in the regions near (hf = 3286.04 m/s for all branches)
and far (hf = 3307, 3307 and 3273 m/s for forward, backward and evanescent branches,
respectively) from the zero group velocity (ZGV) point are presented in Figure 6.

Figure 6. Dependencies of the normalized electric potential value Φ and mechanical displacements U1, U2, and U3 belonging
to the forward (a), backward (b), and evanescent (c) waves on the structure thickness x3/h in the regions near (thick lines)
and far (thin lines) from ZGV point.

One can see that, in contrast to the forward and backward waves, the structure of the
evanescent wave does not depend on the frequency region of its existence.



Sensors 2021, 21, 2238 8 of 14

The dependencies of the real part of the complex phase velocities (Figure 7a) and
attenuation per wavelength (Figure 7b) on sheet conductivity for waves under study in the
regions near (thick lines) and far (thin lines) from ZGV point are presented in Figure 7.

Figure 7. Dependencies of (a) the real parts of the phase velocities Vph and (b) attenuation per wavelength on the sheet
conductivity of the infinitely thin layer placed in plane x3 = 0 for the forward (black), backward (red), and evanescent (blue)
waves in Y-X LiNbO3 plate in the regions near (thick lines) and far (thin lines) from ZGV point.

These figures show that near the ZGV point for a forward wave, as expected, an
increase in the conductivity of the layer on the surface of the plate leads to a decrease in its
velocity. At the same time, the attenuation increases, reaches a maximum, and decreases.
With a rise of the distance from the ZGV point, the dependence of the parameters of the
forward wave on the surface conductivity practically disappears. This is associated with a
decrease in the coefficient of an electromechanical coupling of this wave with an increase
in the parameter hf.

For a backward wave, the above dependencies behave in the opposite way, and the
attenuation is a negative value. This is due to the opposite direction of the phase and group
velocity vectors.

As for the evanescent wave, one can see that near the ZGV point its phase velocity
decreases with increasing conductivity, similarly to the forward wave. It can be concluded
that the coefficient of an electromechanical coupling of the evanescent wave near the ZGV
point is close to the value corresponding to the forward wave. In this case, the attenuation
of the evanescent wave decreases with increasing conductivity to zero near the ZGV point.
Analysis of the behavior of this wave far from the ZGV point shows that at a certain value
of surface conductivity (about 3 × 10−6 S/m) this wave disappears. At the same time, its
attenuation with increasing conductivity first decreases, reaches a minimum, and then
increases.

For a more detailed analysis the dependencies of the real and imaginary parts of the
complex phase velocity Vph of forward, backward and evanescent waves on the parameter
hf for various values of surface conductivity 10−7 S/m, 5 × 10−7 S/m, 10−6 S/m, and
10−5 S/m are shown in Figure 8.
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and evanescent (blue) waves in Y-X LiNbO3 plate on parameter hf for various values of sheet conductivity σs of the infinitely
thin layer placed in plane x3 = 0: (a)—10−7 S/m, (b)—5 × 10−7 S/m, (c)—10−6 S/m, and (d)—10−5 S/m. The grey lines are
the auxiliary lines for different values of λ: 1.46 mm (1) and 1.4 mm (2). A1

e+ and A1
e− correspond to the evanescent wave

branches with the positive and negative values of an imaginary part of the complex wave number k, respectively.

Figure 8 clearly shows the appearance of repulsion of the dispersion curves in the
ZGV region. As a result, there exist two solutions, corresponding to two evanescent waves,
in which the imaginary parts of the wave number have opposite signs. The size of the
appearing gap increases with an increase in the layer conductivity and, at large values,
leads to the transformation of an evanescent wave with a positive imaginary part of the
wave number (A1

e+) into a forward wave. At the same time, the second evanescent mode
with a negative imaginary part of the wave number (A1

e−) is retained.
The similar situation has been demonstrated earlier when the liquid loading on the

aluminum plate results in the hybridization of the real and the complex branches with the
splitting of the previously continuous curve into two separate complex branches [15].

Figure 8 also shows the auxiliary lines Re(Vph) = λf for λ = 1.46 mm and λ = 1.4 mm.
It can be seen that by changing the conductivity of the surface layer, it is possible to achieve
the appearance or disappearance of the corresponding acoustic signal in a given frequency
range. This is of practical interest in the development of physical sensors and signal
processing devices.

The frequency dependencies of the real Re and imaginary Im parts of the electrical
impedance Z of the IDTs with spatial periods of 1.4, 1.42, 1.44 and 1.46 mm, obtained as a
result of 3D FEM modeling are presented on Figure 9. Here the frequency is normalized by
the plate thickness h = 0.49 mm. It can be seen that, the resonant frequency of the forward
A1

f wave decreases with increasing period of the IDT. At that the resonant frequency of the
evanescent wave A1

e increases with increasing period of the IDT and the resonances of
A1

e and A1
f waves merge near the ZGV point. It should also be noted that the value of the
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electrical impedance corresponding to the evanescent wave A1
e is much less than that for

the forward wave A1
f. This indicates the presence of an additional mechanism of energy

dissipation and can serve as evidence of the vanishing nature of this wave.

Figure 9. The dependencies of the real Re (left columns) and imaginary Im (right columns) parts of
the electrical impedance Z of IDTs with the spatial periods λ of (a) 1.4 mm, (b) 1.42 mm, (c) 1.44 mm,
(d) 1.46 mm on the parameter hf obtained by 3D FEM modeling A1

e and A1
f show the positions of

the peaks of the corresponding evanescent and forward waves, respectively.

3.2. Experimental Results

Based on the lines presented in Figure 4a and the performed 3D FEM modeling the
values of λ = 1.4 mm, 1.42 mm, 1.44 mm, and 1.46 mm were chosen for the experimental
confirmation of the evanescent wave existence.

The experimentally measured frequency dependencies of the real Re (a) and imaginary
Im (b) parts of the electrical impedance Z of the IDTs with the spatial periods λ of 1.4, 1.42,
1.44 and 1.46 mm are presented in Figure 10. The variation of the wafer thickness in range
of 0.489–0.493 µm was taken into account at normalization.
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Figure 10. The experimental dependencies of the real Re (left columns) and imaginary Im (right
columns) parts of the electrical impedance Z of the IDTs with the spatial periods λ of (a) 1.4 mm;
(b) 1.42 mm; (c) 1.44 mm; (d) 1.46 mm on the parameter hf. A1

e and A1
f show the positions of the

peaks of the corresponding evanescent and forward waves, respectively.

The theoretical and experimental values of normalized resonant frequencies hf of the
IDTs with different spatial periods corresponding to A1

e and A1
f waves are presented in

Table 1.
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Table 1. The theoretical and experimental values of normalized resonant frequencies of the isolated
interdigital transducers (IDTs) with different spatial period λ.

λ, mm
Theory Experiment

hf(A1
f), km/s hf(A1

e), km/s hf(A1
f), km/s hf(A1

e), km/s

1.40 3.295 3.275 3.293 3.267
1.42 3.290 3.277 3.290 3.272
1.44 3.288 3.279 3.288 3.274
1.46 3.285 3.283 3.285 3.277

It can be seen that, as predicted in theory, the resonant frequency of the forward wave
A1

f decreases with an increase in the IDT period. At that the resonant frequency of the
evanescent wave A1

e increases with increasing period of the IDT and the resonances of A1
e

and A1
f waves merge near the ZGV point. The graphs presented in Figures 9 and 10 show

good quantitative and qualitative agreement between the theoretical and experimental
results.

The obtained experimental results confirm our earlier assumption [42] about the
possibility of excitation and registration of the so-called evanescent waves. As a result of
the work performed, it was found that the frequency region of existence of these waves is
limited to the region near the ZGV point. Judging by the results obtained, these waves are
an integral part of dispersion curves, which have a branch of backward waves.

4. Conclusions

A system of the acoustically isolated IDTs with the different spatial period suggested
earlier was used for the experimental registration of the evanescent acoustic wave in
piezoelectric plate in the first time. The spatial periods of the IDTs corresponding to
the dispersion curve of the antisymmetric Lamb wave of the 1st order (A1

f) as well as
evanescent acoustic wave (A1

e) near the ZGV point in YX LiNbO3 plate were calculated by
using 2D ordinary differential equations. The experiments confirmed the existence of the
evanescent backward wave in the considered crystallographic orientation. The obtained
experimental results were compared with the results of modeling performed by using
the 3D FEM commercial software COMSOL 5.3. The experimental results turned out to
be in a good agreement with the theoretical ones. Due to proximity of evanescent waves
to a ZGV point its properties should be extremely sensitive to the change in the quality
of the piezoelectric plate and contacting object. The obtained results have significance
for the development of the nondestructive waveguide analysis based on the evanescent
waves. The influence of an infinitely thin layer with arbitrary conductivity placed on a
plate surface was also investigated. It has been shown that the frequency region of an
evanescent acoustic wave existence is very sensitive to the changes in electrical boundary
conditions. The performed calculations have shown that an increase in a layer conductance
can reduce the attenuation of an evanescent wave down to zero and thereby transform
this wave into a propagating one. Thus, it becomes possible to detect a hidden defect in a
piezoelectric plate. If a traveling wave propagates in such a plate and interacts with the
defect, various types of evanescent waves are generated. If a layer is placed on the surface
of the plate under investigation, the conductivity of which can be changed, for example,
by an electric field [43,44], then at certain conductivity an additional traveling wave will
appear, indicating the presence of a defect. It is obvious that the implementation of this
method requires additional calculations and experiments.

Author Contributions: Formal analysis, I.K. and A.S.; funding acquisition, I.K. and B.Z.; investiga-
tion, A.S. and A.T.; methodology, A.S., Z.-h.Q., B.W. and E.G.; supervision, A.S. and I.K.; validation,
B.Z. and I.K.; writing—original draft, A.S. and B.Z.; writing—review and editing, I.K., I.N., B.Z. and
A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Government task from the Russian Ministry of Science
and High Education and Russian Foundation of Basic Research grants #19-07-00070-a, 19-07-00145-a.



Sensors 2021, 21, 2238 13 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Auld, B.A. Acoustic Fields and Waves in Solids; John Wiley & Sons: New York, NY, USA, 1973; Volume 2, p. 83.
2. Lyon, R.H. Response of an elastic plate to localized driving forces. J. Acoust. Soc. Am. 1955, 27, 259–265. [CrossRef]
3. Pagneux, V.; Maurel, A. Determination of Lamb mode eigenvalues. J. Acoust. Soc. Am. 2001, 110, 1307–1314. [CrossRef] [PubMed]
4. Mindlin, R.D.; Yang, J. An Introduction to the Mathematical Theory of Vibrations of Elastic Plates; World Scientific Publishing:

New York, NY, USA, 2006; p. 190.
5. Chen, H.; Wang, ·.J.; Du, ·.J.; Yang, ·.J. Propagation of shear-horizontal waves in piezoelectric plates of cubic crystals. Arch. Appl.

Mech. 2016, 86, 517–528. [CrossRef]
6. Zhang, X.; Li, Z.; Yu, J. The Computation of Complex Dispersion and Properties of Evanescent Lamb Wave in Functionally

Graded Piezoelectric-Piezomagnetic Plates. Materials 2018, 11, 1186. [CrossRef]
7. Romero-García, V.; Sánchez-Pérez, J.V.; Castiñeira-Ibáñez, S.; Garcia-Raffi, L.M. Evidences of evanescent Bloch waves in phononic

crystals. Appl. Phys. Lett. 2010, 96, 124102. [CrossRef]
8. Quintanilla, F.H.; Lowe, M.J.S.; Craster, R.V. Full 3D dispersion curve solutions for guided waves in generally anisotropic media.

J. Sound Vib. 2016, 363, 545–559. [CrossRef]
9. Simonetti, F.; Lowe, M.J.S. On the meaning of Lamb mode evanescent branches. J. Acoust. Soc. Am. 2005, 118, 186–192. [CrossRef]
10. Philippe, F.D.; Clorennec, D.; Ces, M.; Anankine, R.; Prada, C. Analysis of backward waves and quasi-resonance of shells with the

invariants of the time reversal operator. Proc. Meet. Acoust. ICA 2013, 19, 055022.
11. Fay, R.D.; Fortier, O.V. Transmission of sound through steel plates immersed in water. J. Acoust. Soc. Am. 1951, 23, 339–346.

[CrossRef]
12. Rokhlin, S.I.; Chimenti, D.E.; Nayfeh, A.H. On the topology of the complex wave spectrum in a fluid-coupled elastic layer. J.

Acoust. Soc. Am. 1989, 85, 1074–1080. [CrossRef]
13. Zhang, X.; Li, Z.; Yu, J.; ·Ming, P. Guided evanescent waves in spherically curved plates composed of fiber reinforced composites.

Acta Mech. 2019, 230, 1219–1231. [CrossRef]
14. Kaduchak, G.; Hughes, D.H.; Marston, P.L. Enhancement of the backscattering of high frequency tone bursts by thin spherical

shells associated with a backwards wave: Observations and ray approximation. J. Acoust. Soc. Am. 1994, 96, 3704–3714. [CrossRef]
15. Nedospasov, I.A.; Mozhaev, V.G.; Kuznetsova, I.E. Unusual energy properties of leaky backward Lamb waves in a submerged

plate. Ultrasonics 2017, 77, 95–99. [CrossRef]
16. Song, X.; Chen, T.; Zhu, J.; Ding, W.; Liang, Q.; Wang, X. Broadband and broad-angle asymmetric acoustic transmission by

unbalanced excitation of surface evanescent waves based on single-layer metasurface. Phys. Lett. A 2020, 384, 126419. [CrossRef]
17. Wang, Y.-F.; Zhang, S.-Y.; Wang, Y.-S.; Laude, V. Hybridization of resonant modes and Bloch waves in acoustoelastic phononic

crystals. Phys. Rev. 2020, B102, 144303. [CrossRef]
18. Miranda, E.J.P., Jr.; Nobrega, E.D.; Rodrigues, S.F.; Aranas, C., Jr.; Dos Santos, J.M.C. Wave attenuation in elastic metamaterial

thick plates: Analytical, numerical and experimental investigations. Int. J. Sol. Struct. 2020, 204–205, 138–152. [CrossRef]
19. Wang, T.-T.; Wang, Y.-F.; Wang, Y.-S.; Laude, V. Evanescent-wave tuning of a locally resonant sonic crystal. Appl. Phys. Lett. 2018,

113, 231901. [CrossRef]
20. Tavaf, V.; Banerjee, S. Generalized analytical dispersion equations for guided Rayleigh-Lamb (RL) waves and shear horizontal

(SH) waves in corrugated waveguides. Int. J. Sol. Struct. 2020, 202, 75–86. [CrossRef]
21. Long, Y.; Ren, J.; Chen, H. Intrinsic spin of elastic waves. Proc. Natl. Acad. Sci. USA 2018, 115, 9951–9955. [CrossRef]
22. Shi, C.; Zhao, R.; Long, Y.; Yang, S.; Wang, Y.; Chen, H.; Ren, J.; Zhang, X. Observation of acoustic spin. Nat. Sci. Rev. 2019, 6,

707–712. [CrossRef]
23. Bliokh, K.Y.; Nori, F. Transverse spin and surface waves in acoustic metamaterials. Phys. Rev. 2019, B99, 020301. [CrossRef]
24. Torvik, P.J. Reflection of wave trains in semi-infinite plates. J. Acoust. Soc. Am. 1967, 41, 346–353. [CrossRef]
25. Cho, Y.; Rose, J. A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J. Acoust. Soc.

Am. 1996, 99, 2097–2109. [CrossRef]
26. Gregory, R.D.; Gladwell, I. The reflection of a symmetric Rayleigh-Lamb wave at the fixed or free edge of a plate. J. Elast. 1983, 13,

185–206. [CrossRef]
27. Clezio, E.L.; Predoi, M.; Castaings, M.; Hosten, B.; Rousseau, M. Numerical predictions and experiments on the free-plate edge

mode. Ultrasonics 2003, 41, 25–40. [CrossRef]
28. Santhanam, S.; Demirli, R. Reflection of Lamb waves obliquely incident on the free edge of a plate. Ultrasonics 2013, 53, 271–282.

[CrossRef]
29. Ratassepp, M.; Klauson, A.; Chati, F. Application of orthogonality-relation for the separation of Lamb modes at a plate edge:

Numerical and experimental predictions. Ultrasonics 2015, 57, 90–95. [CrossRef]

http://doi.org/10.1121/1.1907510
http://doi.org/10.1121/1.1391248
http://www.ncbi.nlm.nih.gov/pubmed/11572341
http://doi.org/10.1007/s00419-015-1047-y
http://doi.org/10.3390/ma11071186
http://doi.org/10.1063/1.3367739
http://doi.org/10.1016/j.jsv.2015.10.017
http://doi.org/10.1121/1.1938528
http://doi.org/10.1121/1.1906769
http://doi.org/10.1121/1.397490
http://doi.org/10.1007/s00707-017-2031-0
http://doi.org/10.1121/1.410560
http://doi.org/10.1016/j.ultras.2017.01.025
http://doi.org/10.1016/j.physleta.2020.126419
http://doi.org/10.1103/PhysRevB.102.144303
http://doi.org/10.1016/j.ijsolstr.2020.08.002
http://doi.org/10.1063/1.5066058
http://doi.org/10.1016/j.ijsolstr.2020.05.026
http://doi.org/10.1073/pnas.1808534115
http://doi.org/10.1093/nsr/nwz059
http://doi.org/10.1103/PhysRevB.99.020301
http://doi.org/10.1121/1.1910344
http://doi.org/10.1121/1.415396
http://doi.org/10.1007/BF00041235
http://doi.org/10.1016/S0041-624X(02)00391-8
http://doi.org/10.1016/j.ultras.2012.06.011
http://doi.org/10.1016/j.ultras.2014.10.022


Sensors 2021, 21, 2238 14 of 14

30. Yan, X.; Yuan, F.G. A semi-analytical approach for SH guided wave mode conversion from evanescent into propagating.
Ultrasonics 2018, 84, 430–437. [CrossRef]

31. Diligent, O.; Lowe, M.J.S.; Clezio, E.L.; Castaings, M.; Hosten, B. Prediction and measurement of evanescent Lamb modes at the
free end of a plate when the fundamental antisymmetric mode A0 is incident. J. Acoust. Soc. Am. 2003, 113, 3032–3042. [CrossRef]

32. Cès, M.; Clorennec, D.; Royer, D.; Prada, C. Edge resonance and zero group velocity Lamb modes in a free elastic plate. J. Acoust.
Soc. Am. 2011, 130, 689–694. [CrossRef] [PubMed]

33. An, Y.K.; Sohn, H. Visualization of non-propagating Lamb wave modes for fatigue crack evaluation. J Appl. Phys. 2015, 117,
114904. [CrossRef]

34. Cawley, P.; Alleyne, D. The use of Lamb waves for the long range inspection of large structures. Ultrasonics 1996, 34, 287–290.
[CrossRef]

35. Kee, S.-H.; Lee, J.-W.; Candelaria, M.D. Evaluation of delamination in concrete by IE testing using multi-channel elastic data.
Sensors 2020, 20, 201. [CrossRef] [PubMed]

36. Lee, C.; Kee, S.-H.; Kang, J.-W.; Choi, B.-J.; Lee, J.-W. Interpretation of impact-echo testing data from a fire-damaged reinforced
concrete slab using a discrete layered concrete damage model. Sensors 2020, 20, 5838. [CrossRef] [PubMed]

37. Fujii, A.; Wakatsuki, N.; Mizutani, K. A planar acoustic transducer for near field acoustic communication using evanescent wave.
Jpn. J. App. Phys. 2014, 53, 07KB07. [CrossRef]

38. Cheng, H.; Shao, G.; Ebadi, S.; Ren, X.; Harris, K.; Liu, J.; Xu, C.; An, L.; Gong, X. Evanescent-mode-resonator-based and
antenna-integrated wireless passive pressure sensors for harsh-environment applications. Sens. Actuators A 2014, 220, 22–33.
[CrossRef]

39. Kazys, R.J.; Vilpisauskas, A. Air-coupled reception of a slow ultrasonic A0 mode wave propagating in thin plastic film. Sensors
2020, 20, 516. [CrossRef] [PubMed]

40. Aubert, V.; Wunenburger, R.; Valier-Brasier, T.; Rabaud, D.; Kleman, J.-P.; Poulan, C. A simple acoustofluidic chip for microscale
manipulation using evanescent Scholte waves. Lab Chip 2016, 16, 2532–2539. [CrossRef]

41. Zaitsev, B.; Kuznetsova, I.; Nedospasov, I.; Smirnov, A.; Semyonov, A. New approach to detection of guided waves with negative
group velocity: Modeling and experiment. J. Sound Vib. 2019, 442, 155–166. [CrossRef]

42. Kuznetsova, I.; Nedospasov, I.; Smirnov, A.; Qian, Z.; Wang, B.; Dai, X. Excitation and detection of evanescent acoustic waves in
piezoelectric plates: Theoretical and 2D FEM modeling. Ultrasonics 2019, 99, 105961. [CrossRef]

43. Rotter, M.; Ruile, V.; Wixforth, A.; Kotthaus, J.P. Voltage controlled SAW velocity in GaAs/LiNbO3-hybrids. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 1999, 46, 120–125. [CrossRef]

44. Pedros, J.; Calle, F.; Cuerdo, R.; Grajal, J.; Bougrioua, Z. Voltage tunable surface acoustic wave phase shifter on AlGaN/GaN//.
Appl. Phys. Lett. 2010, 96, 123505.

45. Zaitsev, B.D.; Joshi, S.G.; Kuznetsova, I.E.; Borodina, I.A. Influence of conducting layer and conducting electrode on acoustic
waves propagating in potassium niobateplates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 624–626. [CrossRef]

46. Kuznetsova, I.E.; Nedospasov, I.A.; Kolesov, V.V.; Qian, Z.; Wang, B.; Zhu, F. Influence of electrical boundary conditions on
profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates. Ultrasonics 2018, 86,
6–13. [CrossRef]

47. Zhu, F.; Wang, B.; Qian, Z.; Kuznetsova, I.; Ma, T. Influence of surface conductivity on dispersion curves, mode shapes, stress and
potential for Lamb waves propagating in piezoelectric plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 855–862.
[CrossRef]

48. Jakubik, W.; Wrotniak, J.; Powrozhnik, P. Theoretical analysis of a surface acoustic wave gas sensor mechanism using electrical
conductive bi-layer nanostructures. Sens. Actuators B 2018, 262, 947–952. [CrossRef]

49. Drichko, I.L.; Diakonov, A.M.; Lebedeva, E.V.; Smirnov, I.Y.; Mironov, O.A.; Kummer, M.; von Kaenel, H. Acoustoelectric effects
in very high-mobility p-SiGe/Ge/SiGeheterostructure. J. Appl. Phys. 2009, 106, 094305. [CrossRef]

50. Adler, E.L. SAW and pseudo-SAW properties using matrix-methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1994, 41,
876–882. [CrossRef]

51. Royer, D.; Dieulesaint, E. Elastic Waves in Solids; John Wiley & Sons: New York, NY, USA, 1980; Volume 1, p. 216.
52. Kuznetsova, I.E.; Zaitsev, B.D.; Teplykh, A.A.; Joshi, S.G.; Kuznetsova, A.S. The power flow angle of acoustic waves in thin

piezoelectric plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1984–1991. [CrossRef]
53. Available online: http://www.bostonpiezooptics.com/lithium-niobate (accessed on 16 December 2020).
54. Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014, 5, 3300.

[CrossRef]

http://doi.org/10.1016/j.ultras.2017.12.006
http://doi.org/10.1121/1.1568758
http://doi.org/10.1121/1.3607417
http://www.ncbi.nlm.nih.gov/pubmed/21877783
http://doi.org/10.1063/1.4906499
http://doi.org/10.1016/0041-624X(96)00024-8
http://doi.org/10.3390/s20010201
http://www.ncbi.nlm.nih.gov/pubmed/31905886
http://doi.org/10.3390/s20205838
http://www.ncbi.nlm.nih.gov/pubmed/33076533
http://doi.org/10.7567/JJAP.53.07KB07
http://doi.org/10.1016/j.sna.2014.09.010
http://doi.org/10.3390/s20020516
http://www.ncbi.nlm.nih.gov/pubmed/31963343
http://doi.org/10.1039/C6LC00534A
http://doi.org/10.1016/j.jsv.2018.10.056
http://doi.org/10.1016/j.ultras.2019.105961
http://doi.org/10.1109/58.741522
http://doi.org/10.1109/58.911747
http://doi.org/10.1016/j.ultras.2018.01.010
http://doi.org/10.1109/TUFFC.2019.2954745
http://doi.org/10.1016/j.snb.2018.02.106
http://doi.org/10.1063/1.3251568
http://doi.org/10.1109/58.330269
http://doi.org/10.1109/TUFFC.889
http://www.bostonpiezooptics.com/lithium-niobate
http://doi.org/10.1038/ncomms4300

	Introduction 
	Materials and Methods 
	Theoretical Methods 
	Boundary Transfer Matrix Method 
	FEM Simulation 

	Experimental Study 

	Results and Discussion 
	Theoretical Results 
	Experimental Results 

	Conclusions 
	References

