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Abstract: As stated by the European Academy of Wind Energy (EAWE), the wind industry has
identified main bearing failures as a critical issue in terms of increasing wind turbine reliability
and availability. This is owing to major repairs with high replacement costs and long downtime
periods associated with main bearing failures. Thus, the main bearing fault prognosis has become an
economically relevant topic and is a technical challenge. In this work, a data-based methodology
for fault prognosis is presented. The main contributions of this work are as follows: (i) Prognosis is
achieved by using only supervisory control and data acquisition (SCADA) data, which is already
available in all industrial-sized wind turbines; thus, no extra sensors that are designed for a specific
purpose need to be installed. (ii) The proposed method only requires healthy data to be collected; thus,
it can be applied to any wind farm even when no faulty data has been recorded. (iii) The proposed
algorithm works under different and varying operating and environmental conditions. (iv) The
validity and performance of the established methodology is demonstrated on a real underproduction
wind farm consisting of 12 wind turbines. The obtained results show that advanced prognostic
systems based solely on SCADA data can predict failures several months prior to their occurrence
and allow wind turbine operators to plan their operations.

Keywords: fault prognosis; wind turbine; main bearing; normality model; real SCADA data

1. Introduction

Energy is a key pillar of human evolution. Currently, the challenge of obtaining energy
while minimizing costs, and pollution is a matter of concern owing to climate change and
global warming, as well as the need to democratize the extraction of energy worldwide. In
this regard, renewable energy, i.e., energy collected from renewable resources, is an excellent
option, as they are clean and exist over a wide geographical area, unlike fossil-fuel energy
sources, which are air pollutants and are concentrated in a limited number of countries.
Among renewable energy sources, the wind-energy sector has grown significantly in
the last two decades. In 2019, wind energy generated enough electricity to meet 15% of
Europe’s electricity demand [1] and was the leading source of new capacity in Europe, the
U.S., and Canada, as well as the second largest in China. However, unleashing the massive
potential of wind energy is crucial for reducing the levelized cost of electricity (LCOE) [2].
Increasing the size of wind turbines (WTs) and moving offshore, where steadier and higher
wind speeds are available, are the two key factors in decreasing the LCOE. However, these
two factors have accelerated the need for better condition monitoring strategies.

Sensors 2021, 21, 2228. https:/ /doi.org/10.3390/s21062228

https://www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6259-8464
https://orcid.org/0000-0002-2194-6853
https://orcid.org/0000-0001-6322-4608
https://orcid.org/0000-0003-4964-6948
https://doi.org/10.3390/s21062228
https://doi.org/10.3390/s21062228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062228
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062228?type=check_update&version=1

Sensors 2021, 21, 2228

2 0f 22

Condition monitoring is the process of monitoring a signal indicating the condition of
machinery (vibration, temperature, etc.) to identify a deviation from the normal operation
behavior, which is indicative of a developing fault. Condition monitoring is the crux of
the matter to move from time-based preventive maintenance, which is still the current
mainstream practice for WTs, to predictive maintenance, as it relies on the actual condition
of the equipment rather than the average or expected life statistics. Because a failure is a
process rather than an event, the earlier the process is detected, the more the flexibility that
exists to manage it. Fault detection strategies usually warn about the appearance of a fault
too late, and the fault is already mature when it is detected, which prevents proper planning
of the maintenance operation [3-5]. Meanwhile, prognosis strategies provide a predictive
maintenance option that gives the decision-maker the flexibility to decide whether and
when to act before the subsystem or turbine fails. Thus, WT downtime is minimized, and
the component lifetime is maximized. A significant amount of research on fault prognosis
for WTs exists, some of which are reviewed in Reference [6]; the main subsystems that
the majority of the research focus on include: blades (e.g., References [7,8]), gearboxes
(e.g., References [9,10]), and bearings (e.g., References [11-13]). These aforementioned
studies use data from specific and costly condition monitoring sensors, as they are mainly
based on high-frequency vibration analysis, acoustic emission signals, or oil analysis
sensors. In contrast, in this work, the proposed predictive maintenance strategy is achieved
without needing to invest in additional hardware; it only requires the already available
supervisory control and data acquisition (SCADA) data.

Although SCADA data have not been developed specifically for the purpose of
condition monitoring, being able to extract relevant information from it could result in
rapid deployment and modest set-up costs. SCADA data have been collected for long, but
owing to the lack of appropriate data interpretation tools, they have not been considered for
condition monitoring purposes. SCADA data are highly variable owing to the constantly
changing operational conditions caused by the fluctuation of environmental conditions
(such as wind speed and direction, turbulence intensity, ambient temperature, etc.), which
are affected by seasonality. Furthermore, these parameters have a lower sampling rate
(usually once every 10 min) compared to the kHz frequency of traditional condition
monitoring strategies, they are rarely standardized, and the description of work orders
is generally not clear. Thus, it is challenging for researchers to contextualize SCADA
data for fault prognosis [14]. However, recent research has focused on this approach, and
there are some success stories about using only SCADA data from real WTs for condition
monitoring. It is important to note that using just SCADA data means that no extra sensors
are used; however, some information from the SCADA alarm logs might be used but with
limited fault detection and diagnosis, and no prognosis or functionality. Additionally,
work orders could also be used for data labeling. For example, in Reference [15], the
diagnosis and prediction of WT faults from SCADA data were accomplished using support
vector machines (SVM), and, in Reference [16], a fault prognosis procedure was proposed
using an a priori knowledge-based adaptive neuro-fuzzy inference system. By using a
priori knowledge about faults (the data of six known WT pitch faults are used to train the
system), the proposed system improves fault diagnosis. In Reference [17], a framework
for automatically identifying periods of faulty operation using rules applied to the turbine
alarm system are presented and applied to perform fault classification.

The aforementioned studies used SCADA data and validated their approach on real
WTs; however, all of them required faulty data (historical fault data). Historical SCADA
data must be accurately labeled with the periods when the turbines are down due to a
fault, as well as with the cause of the fault. However, this is time-consuming, error-prone,
and likely to result in a set of labeled vectors with an unbalanced number of classes. In
contrast, in this work, there is no need for historical fault data; thus, the proposed strategy
can be applied to any wind farm, even when no faulty data have been recorded. In this
work, a normal behavior model is proposed, i.e., the model is built using normal (healthy)
operation data. Heretofore, this introduction has focused on wind turbine fault diagnosis
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related references, but it is also important to note that analogous concepts to the ones
proposed in this work are used in other areas of application. For example, error estimation
and accuracy of machine learning methodologies have been performed on real datasets
in different applications, e.g., Reference [18] (vessels). Likewise, the use of solely healthy
data to diagnose non-previously occurred failures is used for cross-domain fault diagnosis
problems in rotating machines, e.g., Reference [19].

This work deals with the main WT bearing faults. There are two main reasons for
this selection. First, as stated by the European Academy of Wind Energy (EAWE) [20], the
wind industry has identified main bearing failures as a critical issue in terms of increasing
WT reliability and availability, as they lead to major repairs with high replacement costs
and long downtime periods. Second, the authors had access to two years of SCADA data
from a real underproduction wind farm (composed of 12 WTs), where main bearing failure
occurred in one of the WTs; thus, it could be used to verify the performance of the proposed
strategy in a real-life situation.

Most models in literature use simulated SCADA (e.g., Reference [21]) or experimental
data but rarely real data. Furthermore, when dealing with real data, only one or two WTs
are tested. For example, in Reference [22], an ensemble approach was proposed to detect
anomalies and diagnose faults; however, it was only tested on two WTs and the warning
was only given less than a week before failure, thus not leaving adequate time to plan the
operation and maintenance action. In Reference [23], data from one WT in the South-East
of Ireland were used to validate the proposed strategy; fault and alarm data were filtered
and analyzed in conjunction with the power curve to identify periods of nominal and
faulty operation. In contrast, this study used a wind farm composed of 12 WTs to test the
proposed strategy.

The remainder of this paper is organized as follows: A brief description of the wind
farm is provided in Section 2. The main bearing types and their faults are reviewed in
Section 3. A description of the SCADA data is provided in Section 4. The proposed fault
prognosis methodology is described in Section 5. The obtained results are presented and
discussed in Section 6. Finally, the conclusions and future work are presented in Section 7.

2. Brief Wind Farm Description

The wind farm is located in Spain and was commissioned in 2006. The WTs can
generate 1500 kW of power and have a diameter of 77 m. Figure 1 shows the major
components of these WTs. These are pitch-controlled WTs that not only use the pitch
mechanism to brake, but also have an independent fail-safe piston accumulator on the
blades. Additionally, they were equipped with a mechanical brake on a high-speed shaft.
These turbines can also brake electromechanically using a generator to stop the rotation.
Power production starts at a wind speed of 3.5 m/s. At 25 m/s, an automatic stopping
occurs. The optimal performance can be achieved at a comparatively low wind speed
of 11.1 m/s. This plant was certified according to IEC Ila. A summary of the technical
specifications of the WTs is given in Table 1.

It is noteworthy that these WTs use a double-spherical main roller bearing. These
types of bearings are suitable for large radial loads and low to medium speeds, thus
compensating for misalignment. Spherical roller bearings have two rows of symmetrical
rollers, a common spherical outer ring raceway and two spherical inner ring raceways
inclined at an angle toward the bearing axis. The center point of the sphere in the outer
ring raceway is at the bearing axis. Figure 2 shows a spherical roller main bearing used in
the WTs. As the main bearing is the component of interest in this work, a brief review on
the main bearing types and their faults is given in the next section.
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Figure 1. Main components of the wind turbine (WT) [24].

Table 1. Technical specifications of the WTs in the park.

Number of blades 3
Nominal power 1500 kW
Rotor diameter 77 m
Wind class IEC Ila
Swept area 4657 m?
Nominal rotation speed 18.3 rpm
Cut-in wind speed 3.5m/s
Cut-out wind speed 25m/s
Bearings Double spherical roller bearings
Power regulation Independent pitch (variable speed)
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Figure 2. Spherical roller main bearing used in WTs. Courtesy of SKF.

3. Main Bearing Faults
The main bearing is a large component inside a WT, and it can be damaged in a variety

of ways. In this section, the main parts of this component and their different and various
failure modes are discussed. The objective of this section is to show that there is no single
pattern to predict a fault in this component, but rather a large number of possible patterns.
This supports the idea of using unsupervised normality-based methods to predict the main
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bearing faults owing to the inability of supervised methods to predict failures outside their
training dataset. However, should a supervised method be chosen, it would require a great
variety of faulty data covering all failure types. Rolling bearings are composed of machine
elements that permit the rotary motion of shafts for a wide range of applications, such
as electric motors, aircraft gas turbines, gyroscopes, power transmissions, and WTs [25].
A typical rolling bearing consists of four elements: an inner race, an outer race, rolling
elements that are in contact under heavy dynamic loads and relatively high speeds, and a
cage around these rolling elements, as shown in Figure 2. Any of these parts are at risk of
failure [26].

The SKF company classified the different failure modes of bearings by considering
the ISO 15243 standard. This classification introduces the following failure modes [27]:
(i) fatigue, (ii) wear, (iii) corrosion, (iv) electrical erosion, (v) plastic deformation, and
(vi) fracture and cracking. These modes have different causes and behaviors, causing
stress, deformation, micro-geometry destruction, cracking or spalling, shallow depressions,
greyish-black patches, craters, and fractures. The objective of this work is to predict
failures several months in advance, and, because all these failures develop progressively
(i.e., develop through slow degradation), each one is briefly explained.

First, there are two types of fatigue: subsurface-initiated fatigue and surface-initiated
fatigue. Subsurface-initiated fatigue occurs beneath the contact surfaces of the raceways
and rolling elements (see Figure 3, left). In contrast, surface-initiated fatigue occurs due to
damage to the rolling contact surface asperities, which is generally caused by inadequate
lubrication (see Figure 3, right).

Figure 3. Fatigue failure. Subsurface-initiated (left) and surface-initiated (right) [27]. Courtesy
of SKE.

Second, wear failure can be divided into two types: abrasive wear and adhesive
wear. Abrasive wear is a degenerative process with the progressive removal of material, as
shown in Figure 4 (left). In contrast, adhesive wear is a type of lubricant-related damage
that occurs between two mating surfaces sliding relative to each other. It is characterized
by the transfer of material from one surface to the other (called smearing). It is typically
accompanied by frictional heat, which can sometimes temper or reharden the mating
surfaces (see Figure 4, right).

Figure 4. Wear failure. Abrasive wear (left) and adhesive wear (right) [27]. Courtesy of SKF.

Third, corrosion failures are divided into moisture corrosion, fretting corrosion, and
false brinelling. Moisture corrosion occurs when a machine bearing is exposed to the
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ingress of water and other liquids as part of the operational process, resulting in greyish-
black patches coinciding with the rolling element pitch, as shown in Figure 5 (left). Fretting
corrosion occurs when there is relative movement between a bearing ring and its seat on a
shaft or in a housing (see Figure 5, middle). Finally, false brinelling occurs in the contact
area owing to the micromovements and/or resilience of the elastic contact under cyclic
vibrations. The root cause is vibration during standstill (see Figure 5, right).

Figure 5. Corrosion failures. Moisture (left), fretting (middle), and brinelling (right) [27]. Courtesy
of SKF.

Fourth, there are two types of electrical erosion: excessive current erosion and current
leakage erosion. Excessive current erosion occurs when an electric current flows from
one ring to the other via the rolling elements, causing damage. At the contact surfaces,
the process is similar to that of electric arc welding (high current density over a small
contact surface). The material is heated to temperatures ranging from tempering to melting
levels, as shown in Figure 6 (left). However, in the initial stage of current-leakage erosion
damage, the surface is typically damaged by shallow craters that are closely positioned and
smaller in diameter compared to those from the damage from excessive current erosion
(see Figure 6, right).

Figure 6. Electrical erosion failures. Excessive current (left) and current leakage (right) [27]. Courtesy
of SKF.

Fifth, plastic deformation can occur due to an overload or indentations from debris.
Overload deformation can be caused by static overloading, shock loads, or improper
handling, as shown in Figure 7 (left). In the case of indentations from the debris failure
type, solid contaminants are introduced into a bearing via the seals or lubricant. They
can also be the result of wear or damage to an adjacent component, such as a gear (see
Figure 7, right).

Finally, a bearing can be affected by forced fracture, fatigue fracture, or thermal
cracking. A forced fracture occurs when the stress concentration exceeds the tensile
strength of the material (see Figure 8, left). In contrast, a fatigue fracture starts when the
fatigue strength of a material is exceeded under cyclic bending, as shown in Figure 8 (right).
Finally, a thermal crack can occur when two surfaces slide against each other and generate
frictional heat.
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Figure 7. Plastic deformation failure. Overload (left) and indentation (right) [27]. Courtesy of SKF.

Figure 8. Fracture failure. Forced (left) and fatigue (right) [27]. Courtesy of SKE.

4. Real SCADA Data Description

The SCADA data used in this work were obtained from 12 operational WTs that can
generate 1.5 MW. The continuous operational data were collected from the beginning of
February 2017 till the end of November 2018. The wind farm SCADA datasets contain
different variables that can be broadly grouped into environmental, electrical, component
temperature, hydraulic, and control variables (see Tables 2—-6). The mean, maximum,
minimum, and standard deviation of the 10 min averaging period of 1 Hz sampled values
are available for these variables.

Table 2 shows all the environmental related variables of the SCADA data, for example,
ambient temperature, which affects the temperatures of all subsystems (the temperature
of bearings changes significantly between winter and summer). It should be pointed out
that the wind speed, which defines the different operating regions of the WT, is the most
important exogenous variable related to the WT owing to its direct effect on the operation
of the WT [28].

Table 2. Environmental variables.

Variable Description Units
TempAmb Ambient temperature °C
TempGond Nacelle temperature °C
VelViento Wind speed m/s
IndTurbul Turbulence index -

Table 3 shows the electrical related variables, such as the active power, which is sensi-
tive to wind variations. The electrical energy is measured before it enters the distribution
network to consider the consumption of the WT; therefore, it is considered as power de-
livered to the network. Electrical network frequency measurements and phase voltage
measurements are also obtained to monitor possible fluctuations. Measurements of the
power factor and reactive power are also collected to make adjustments, using capacitors,
in the electrical system.
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Table 3. Electrical variables.

Variable Description Units
Pot Active power kW
TensRed Phase voltage \%
CosPhi Power factor -
TotPotReact Reactive power kW
FrecRed Electric network frequency Hz

Table 4 shows the temperature related variables. As stated previously, this work
focuses on the main bearing fault. Thus, it is important to note the low-speed shaft temper-
ature, as this component is close to the main bearing, as well as the bearing temperatures at
the coupling and non-coupling sides. In addition, note the variables related to the gearbox;
the temperature readings were taken from the upper and lower gearbox radiators, and
the lubrication of the gearbox was monitored using the hydraulic group oil temperature.
Additionally, the generator temperature is another relevant variable.

Table 4. Component temperature variables.

Variable Description Units
TempAceiteGH Hydraulic group oil temperature °C
TempAceiteMultip Gearbox oil temperature °C
TempRodamMultip Gearbox bearing temperature °C
TempGen Generator temperature °C
TempRodamTrasero Rear bearing temperature °C
TempCojLA Bearing coupling side temperature °C
TempCojLOA Bearing non-coupling side temperature °C
TempRadSup Upper gearbox radiator temperature °C
TempRadInf Lower gearbox radiator temperature °C
TempEjeLento_1 Low-speed shaft temperature °C
TempTrafol Transformer 1 temperature °C
TempTrafo2 Transformer 2 temperature °C
TempTrafo3 Transformer 3 temperature °C

The hydraulic variables obtained from the SCADA system are listed in Table 5. They
include the pressure measurement of the general accumulator, the hydraulic group pres-
sure, brake pressure, and general accumulated pressure of the blades. Each blade has an
independent actuator with an accumulator to position the blade according to the mode

of operation.

Table 5. Hydraulic variables.

Variable Description Units
AcumGralPalal General accumulator blade 1 bar
AcumGralPala2 General accumulator blade 2 bar
AcumGralPala3 General accumulator blade 3 bar
PresAcumGral Accumulated general pressure bar

PresFreno Brake pressure bar

PresGH Hydraulic group pressure bar

Table 6 shows the control related variables. The WTs are equipped with blade pitch
control, which adjusts the blade’s angle of inclination to control the rotor speed and can
execute the rotor brake in the feathered position. Another important control system is the
yaw controller, which ensures that the nacelle is oriented correctly. Additionally, the rotor
and generator speeds are crucial variables to control the WT operation.
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Table 6. Control variables.

Variable Description Units
Pitchl Blade pitch angle 1 °C
Pitch2 Blade pitch angle 2 °C
Pitch3 Blade pitch angle 3 °C

Yaw Yaw angle °C

VelRotor Rotor speed rpm

VelGen Generator speed rpm
SPPitch Pitch system parameter -
ContEnerActiva Active energy counter -

NivOscil Oscillation level Hz

NivVibra Vibration level Hz
date_time Date and time of the sample -
1d_id Wind turbine ID -

Note that, apart from the SCADA data, information regarding maintenance and repair
actions (work orders) were also available. This data provided information on the failures
that occurred when they occurred, when the work was carried out, and information about
the subsystem that was repaired or replaced. From this information, WT number 2 in the
wind farm (WT2, from now on) had a main bearing fault on 21 May 2018. This information
was used in this work to test whether the proposed methodology is capable of predicting
the appearance of this fault months in advance.

5. Fault Prognosis Methodology

In this section, the proposed methodology is comprehensively described. First, the
data preprocessing, which is performed to deal with real data that contains outliers and
missing data, is thoroughly explained in Section 5.1. Second, the data split into training
and test sets is given in Section 5.2. In this section, emphasis is placed on why the usual
strategy of data shuffle must never be used in the context of time-series data. It will also
explain how it is ensured that the anomalies detected are not just a change in seasonality.
Furthermore, it is urged that almost one whole year of data is used for the training set.
Then, in Section 5.3, the normality model for each WT is constructed based on an ANN.
The ANN was trained to obtain a model that, from the input variables (at different time
steps), can estimate the value of the main shaft temperature (at a specific time step), as a
virtual sensor, when healthy data are provided. Fourth, in Section 5.4, the specific details
of the ANN architecture are provided. Fifth, in Section 5.5, the application of Bayesian
regularization, where the weights are regularized to improves the generalization without
requiring a validation set, is discussed. Sixth, Section 5.6 discusses how to ensure that the
data used to construct the normality model are healthy. Finally, a fault prognosis indicator
is introduced in Section 5.7 to minimize the number of false positives (false alarms).

5.1. Data Preprocess

In Section 3, the diverse main bearing failure modes are described, stating that, in
many cases, they lead to an increase in temperature. For this reason, to build the normality
model, the temperatures of the components located close to the main bearing are selected
together with the ambient temperature, as it affects the temperatures of all subsystems.
Additionally, the generated power and rotor speed provide information about the region
of operation of the WT. The selected variables are shown in Figure 9 and are detailed in
Table 7. Note that these variables are filtered through a range of realistic values for each
sensor. Table 7 lists the specific ranges used for each sensor.
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Figure 9. Plot example of the selected supervisory control and data acquisition (SCADA) variables used to develop the
normality model. All of them are related to the mean value over a 10-min period.

Table 7. Selected SCADA variables used to develop the normality model, its description, range of
possible values, and units. All of them are related to the mean value over a 10-min period.

Variable Description Range Units

Pot Generated real power [0, 2000] kW
TempAmb ambient temperature [—5, 40] °C
TempCojLA Bearing coupling side temperature [0, 120] °C
TempCojLOA Bearing non-coupling side temperature [0, 120] °C
TempEjeLento Low-speed shaft temperature [0, 120] °C
TempGen generator temperature [0, 175] °C
TempRodamMultip Gearbox temperature [0, 120] °C
VelRotor Rotor speed [0, 50] rpm

Data cleaning is an important step prior to the application of data analysis because
noisy data is removed that could cause interference in the study. Furthermore, when the
study is based on real data, missing data and outliers are unavoidable (unlike when the
work is based on simulated/synthetic data). In this work, extreme values (outliers) are
not systematically removed because, as stated in Reference [29], it could lead to loss of
information related to fault prediction. Conversely, the use of manually defined ranges
based on realistic values that can be obtained by different sensors could be a better strategy.
In this work, out-of-range values are first set as a missing value and then filled using the
same strategy as that used for the original missing values. Figure 10 shows an example of
the values outside the range for the low-speed shaft temperature.

As out-of-range values are removed, the number of missing values is increased;
thus, there is a need for a data imputation strategy. Imputations with mean, median,
and mode are simple techniques; however, this can introduce a bias in the mean and
deviation [30]. In this work, a single imputation, while avoiding complex mathematical
calculations, is proposed by using the piecewise cubic Hermite interpolating polynomial
(pchip) [31]. This polynomial works for the given data points with specified slopes at
the interpolation points. A meaningful property of this strategy is that the obtained
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polynomial preserves the shape of the data and respects monotonicity, and guarantees that
at least the first derivative is continuous. This interpolation strategy has been used in a
variety of applications, such as calculating the signal-to-noise ratio in scanning electron
microscopy (SEM) images [32], sampling smoothly predefined kinematic grids in high-
energy particle collision problems [33], and decomposing nonlinear and non-stationary
electromagnetic interference signals [34]. Figure 11 shows the original and imputed data,
where the polynomial is computed and traced between the data points, considering the
shape and continuity of the curve. Note that, for missing values that are at the beginning
or at the end of the dataset, the closest value after or before the missing values is used.

NNt ey it S
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-50 *
-100 x x
-150
-200
-250 x

-300

x
x % x
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Figure 10. Out-of-range values are detected as outliers (red crosses) and assigned as missing values
from the raw signal.
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Figure 11. Cont.
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Figure 11. Low-speed shaft temperature raw data (without outliers) versus imputed data (top) and
zoom in of the imputed data (bottom).

Finally, data from selected variables have different sources; therefore, the values have
different orders of magnitude. Thus, it is highly recommended to scale the data prior to
use in any machine learning approach. In this work, max-min scaling is selected to scale
the data. Considering that the Bayesian regularization algorithm is used (see Section 5.5),
the best results are obtained if the training data are first mapped into the range [—1, 1]
(or some similar region) [35]. Thus, max-min normalization was selected instead of the
standard Z-score. Max-min normalization guarantees the data into the range [0, 1]. Itis
a simple technique, and its only disadvantage is coping with outliers, which has already
been solved by using range filtering of the data.

5.2. Data Split: Train and Test Sets

The basic steps in all neural network based models are: (1) divide the data into training
and test datasets, (2) use the training dataset to train the neural network, and (3) evaluate
the model using the test dataset to determine how well it predicts (generalizes). In this
section, we focus on the first step.

How available data are split into training and test sets plays a fundamental role in the
construction of ANNSs and has a significant impact on the obtained model. In this work,
a fault prognosis methodology that is insensitive to both operating and environmental
conditions is sought; therefore, the training and test datasets must have data from all the
working conditions.

It is noteworthy that, in this work, the training and test datasets have not been shuffled,
as this can cause data leakage owing to the presence of strong time-series effects in the
data [36]. Consequently, the training and test datasets were split in such a way that each
set had one year of data. This approach ensures that the detected anomalies are not due to
seasonality [37], and the model can cope with various operating and environmental condi-
tions. Therefore, the available SCADA data were divided as follows: data corresponding
to 2017 (47,232 samples) were used for training, and data from 2018 (43,920 samples) were
used for testing. This data split was carried out for the entire wind farm. For example,
Figure 12 shows the training and test data associated with WT2 (which had a main bearing
fault on 21 May 2018).
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| Train data (2017) | Test data (2018)
| | | >

February 06,2017 January 01,2018 Failure on May 21 November 31,2018

5 months to failure

Figure 12. WT2 (WT number 2 in the wind farm) data for training and test.

As can be seen, in this work, there is no validation set because Bayesian regularization
is used to train the ANN, as shown in Section 5.5.

5.3. Normality Model Based on an Artificial Neural Network (ANN)

The ANN model structure is proposed in this section and is based on the eight selected
variables shown in Table 7. The output of the ANN is considered to be the temperature of
the low-speed shaft (variable of interest) at time ¢, and the inputs are the remaining seven
variables shown in Table 7 at time ¢ — 1 and t. Thus, referring to the structure of the ANN,
there are 14 inputs and 1 output with a hidden layer comprising 72 neurons. Figure 13
shows the ANN structure.

Pot(-1)

TempCojLA(-1)

TempEjeLento(r)

Output Layer

VelRotor(7) M

Input Layer
(14)
Hidden Layer
(72)

Figure 13. ANN model with 14 inputs, 72 neurons in the hidden layer, and 1 output.

The next sections provide a detailed explanation of the optimization method, the
regularization method, and the selection of the number of neurons in the hidden layer.

5.4. Setup of the Proposed ANN

To provide a comprehensive reasoning of the hyper-parameter setup of the proposed
ANN, a brief review of the Levenberg-Marquardt (LM) optimization method is given here
to introduce the notation used.

First, note that the problem to be solved is

: 1¢ 7 2
arg;an(ﬁ) = Z(Ti - Ti(ﬁ)) ,
i=1
where B is the vector of parameters (in this work, it includes the weights and biases of the
ANN, i.e., B = (w,b)), n is the total number of samples in the training dataset, T; is the

temperature value of the low-speed shaft given by the SCADA data for sample i, and T;
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is its estimation given by the output of the ANN. In other words, the problem consists of
minimizing the mean squared error, which can be rewritten as

argmin F(B) =
p

S|

émwﬂ

where 7;(B) = T; — T;(B) are the residuals. Numerical optimization algorithms are usually
used to address this problem. They are iterative procedures that update the parameters at
each iteration as follows:

Br+1 = Bk + Ok,

where k is related to the kth iteration of the algorithm, and Jj is the increment to be
determined by the specifically selected algorithm. The gradient descent (GD) algorithm
adopted the following increment:

6P = —uJ"r(Bx),

where yi is the learning rate, JT is the Jacobian matrix transpose of the objective function F,
and r is a column vector containing the residuals at each sample, thatis, r = (1,72, -, rn)T.
In contrast, the Gaussian Newton (GN) algorithm uses as an increment:

5N = —HTr(By),

where H is the Hessian matrix of the objective function F. Alternatively, the LM algorithm
applies an increment:

5M = —(H+uD) ' T"r(By),

where [ is the identity matrix, and y is a nonnegative scalar parameter, usually called the
damping parameter. Note that, when y = 0, the Gauss-Newton method is obtained, and,
when y is large, the method resembles gradient descent [38,39]. The fundamental idea
behind the LM algorithm is to accomplish a performance similar to gradient descent when
far away from the optimum, and to attain a performance similar to the Gauss-Newton
method when close to the optimal value (to achieve fast convergence when being at the
minimum neighborhood). To obtain this behavior, the damping parameter y is adjusted at
each iteration of the algorithm. In this work, it is raised by a factor of 10 if the current step
fails to reduce the objective function, and it is decreased by a factor of 0.1 otherwise. The
assigned initial value was y = 0.005. In this work, the LM algorithm terminates when at
least one of the following conditions are met:

¢ A maximum number of 1000 epochs (using mini batches of size 128) is reached.

e The magnitude of the gradient, ]77(B), drops below the threshold e = 10~7.

®  The damping parameter, y, exceeds its maximum possible value that has been set to
1010,

Note that the network used rectified linear unit (ReLU) activation functions, and
initialization was performed using the Xavier initializer. Finally, to prevent overfitting,
L2 regularization was introduced into the neural network using Bayesian regularization.
Details are provided in the next section.

5.5. Bayesian Regularization

In this study, Bayesian regularization was employed to train the ANN [35]. This
regularization can be applied to multi-layer feed forward ANNSs that are used for nonlinear
regression, which is the case at hand. MacKay [40] comprehensively contributed to the
utilization of Bayes’ rule for NN training and regularization. First, in the Bayesian scheme,
the ANN weights are considered as random variables, and their density functions are



Sensors 2021, 21, 2228

15 of 22

updated according to Bayes’ rule. Second, the training aims to minimize the objective
function. Recall that, in this study, the mean squared error is minimized:

1 n

= (T T(w, b))
n; i=1
where w and b are the parameters (weights and biases, respectively) of the ANN. When
L2-regularization is used, an additional term is added to the objective function [41].

where m is the total number of weights in the ANN. Thus, the objective function F becomes:
F(w,b) = aE(w,b) + AEg(w),

where o and A are parameters whose relative values rule the priority for training and/or
regularization, respectively. For instance, when & >> A, the training optimization algo-
rithm minimizes errors on the training dataset, but it may lead to overfitting. However,
when & << A, the training optimization algorithm will give priority to weight size curtail-
ment (in exchange for some errors in the training dataset), thereby generating a smoother
model. The main challenge in adding regularization is to set proper values for these
parameters. To handle this problem, Bayesian regularization considers the application of
Bayes’ rule to optimize their values at each iteration of the numerical optimization [35].
A disadvantage is that this optimization requires the computation of the Hessian matrix
of the objective function F. However, this can be approximated using the Gauss-Newton
approximation, which, as noted in Reference [35], is readily available when the LM op-
timization algorithm is used [42] for training. A brief review of this method is given in
Section 5.4 to introduce the notation used and thoroughly describe the hyper-parameter
setup of the proposed ANN.

One benefit of Bayesian regularization is that it provides the so-called effective number
of parameters, 7y, which is a measure of how many network parameters (weights and biases)
are effectively used to reduce the objective function [35,40]. If the final effective number
of parameters is very close to the actual total number of parameters in the network, then
the neural network may not be sufficiently large. In this case, more hidden layer neurons
should be added and retrained; however, if the larger network has the same final vy value,
then the smaller network is sufficiently large. Otherwise, more hidden layer neurons may
need to be added. Finally, when a sufficiently large network has been trained for a sufficient
number of iterations to ensure convergence, y remains approximately the same, regardless
of the total number of parameters in the network. That is, if an even larger network
was tried, the network response would never overfit the data. This greatly simplifies the
hyper-parameter tuning required to determine the optimum network size. In this study,
as shown in greater detail in Section 6, a value of y = 1058 was obtained from a total of
1153 parameters in the proposed network (number of weights and biases).

For the sake of completeness, note that the formulas to compute at each iteration, k,
the effective number of parameters, 7y, and the objective function parameters « and A are as
follows [35]:

—1 n— Y41 Yk+1
Yk+1 =1 — Z“ktr(H) , Xk+1 = mr A1 = m,

where tr(-) stands for the trace operator.

Finally, note that Bayesian regularization regularizes the weights and improves the
generalization of the neural network; thus, a validation set is not required (as its main
purpose is to accomplish regularization and generalization of the model).
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In summary, in this work, the LM optimization algorithm was used for training
optimization, and Bayesian regularization was introduced to regularize the weights and
improve the generalization of the constructed model without requiring a validation set.

5.6. Discussion on How to Ensure That Data Used to Construct Normality Model Is Healthy

On the one hand, the proposed normal behavior model relies on the fact that healthy
data are used to train it. From a pure definition point of view, this model is not completely
unsupervised but is semi-supervised, as it is required to ensure that the training data
are healthy. On the other hand, having complete assurance that the data used to train is
healthy is not an easy task, as the absence of work orders does not guarantee that the data
is completely healthy.

At the studied wind farm, there is an extra wind turbine, WT13, which is not included
in the results of our methodology as it had a fault during 2017 (year used for training).
Thus, it is not possible to construct a normality (healthy) model for a WT, as there are faulty
data during the period decided to be used as training. However, in this section, we show
the training error output when a model is built using this WT. The result is a huge training
error of 30.4969, which is clearly inadmissible. Table 8 shows the training error for the rest
of the WTs in the park that have healthy data during the training period (2017).

Table 8. Mean squared error (MSE) of the trained models for each WT. In all cases, the training time
is close to 25 min (30 s) on a 3.2 GHz 6-Core Intel Core i7 processor.

WT Train Error (MSE)
WT1 0.6984
WT2 1.3104
WT3 6.1074
WT4 0.7227
WT5 5.9989
WT6 5.2275
WT7 0.9214
WTS8 1.8503
WT9 0.7373

WT10 3.8815
WT11 4.6074
WT12 4.0173

In summary, the final train mean square error provides an estimate of the validity of
the model. That is, when a WT model is harder to obtain (a much higher train mean square
error is obtained), this could be a signal that the data has some anomalous behavior (it is
not healthy) even if no work orders are reported. In this case, it is highly recommended to
double check whether this turbine had issues during the year used as training.

5.7. Fault Prognosis Indicator

Typically, fault-detection indicators are defined using residuals and establishing a
detection threshold. When a sample has a residual higher than the detection threshold,
an alarm is triggered. However, in this case, if the residual, [T — T|, was used directly to
establish a threshold above which it is decided to give the alarm signal, this would lead to
a non-assumable number of false positives (false alarms) that would render the method
useless. This fact is further explained in the results section. However, in this section, an
indicator to overcome this problem is introduced.

As already mentioned, if the indicator is based on the residual of a single sample,
there would be an excessive number of false alarms. Thus, it is important to define an
indicator that considers the persistence of consecutive samples above a specified threshold.
In particular, a threshold was first defined based only on the training data residuals. The
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mean # and standard deviation ¢ of the residuals over all training data are computed.
Then, the threshold is defined as follows:

threshold = u + 60. 1)

Next, for each week in the test dataset, the number of samples that had a residual
value greater than the threshold was counted and denoted as ny.r. It is desired that the
indicator has a range between 0 and 1. Thus, a minimum function is used to define the
indicator in such a way that its value is 0 when no sample exceeds the threshold in that
week, and a value of 1 when 504 samples (remembering that a week has 1008 samples) or
more exceed the threshold in that week. Thus, the implemented weekly indicator is given
as follows:

indicator = min (1, ’;‘JSZ ) )

6. Results on a Real Wind Farm

The results of the proposed fault prognosis methodology for the entire wind farm is
presented and discussed in this section.

First, Figure 14 (left) shows the minimization of the MSE, E(w, b), during training for
WTT1. The best performance was 0.6984, and it is reached at the last epoch (1000). Recall
that the target value is the low-speed shaft temperature; thus, the MSE has a direct physical
interpretation in degrees Celsius. In addition, Figure 14 (right) shows a histogram (with
20 bins) of the final training error over all training samples for WT1. Note that the four bins
with more counts have an error smaller than or equal to one degree Celsius. Furthermore,
Figure 15 shows the parameter values related to the LM optimization algorithm and
Bayesian regularization for WT1 training. Note that at epoch 1000, the following values
were obtained: The gradients were J77(B1000) = 0.0421, the damping parameter was
u = 0.5, and the final number of effective parameters used by the ANN was ¢ = 1058.
A larger network with an increased number of neurons in the hidden layer led to the
same number for the parameter <, thus proving that the size of the presented ANN (with
72 neurons in the hidden layer) was large enough.
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Figure 14. Minimization of the MSE, E(w, b), during training of WT1 (left). Error histogram with 20 bins of final training

error over all training samples for WT1 (right).

Next, recall that Table 8 in Section 5.6 shows the final training error for each WT in
the park. There is some variability among the different wind turbines, with minimum and
maximum values of 0.6984 and 6.1074, respectively. These are acceptable values, related
to the real-life variability among WTs due to, for example, different locations in the park.
However, it is important to note that, when the values of the training error are much higher,
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then it should be considered that the training data might not be completely healthy. Most
likely, if the ANN was not capable of significantly reducing the MSE for that specific WT, it
is because the training data have some kind of anomaly. Recall that our main purpose is
to construct a normality (healthy) model; thus, it is essential to have at disposal normal
(healthy) training data.

JTr(B) ]

10° ]

0 rr Iy N
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Y 500 /———f’/ l
0 200 400 600 800 1000
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Figure 15. Values at each training epoch iteration for the gradient, J7(B), damping parameter, y,
and effective number of parameters, -y, for WT1.

Figure 16a,b show the ANN predicted value (T) and target (T) value for WT1 over the
train and test dataset, respectively. Recall that this WT is healthy in both the training and
test datasets. The prediction is close to the target in both figures, and only some samples
on the test dataset have disparate values. This performance is shown in Figure 16¢,d,
where the absolute difference value between prediction and estimation, | T — T|, also called
residual, is shown for WT1 over the training and test datasets, respectively. This residual
has similar values over the training and test sets, and only a few samples have peak
values. As already mentioned in Section 5.6, if the residual, |T — T|, was used directly
to establish a threshold above which it is decided to give the alarm signal, this would
lead to a non-assumable amount of false positives. Thus, the importance of defining an
indicator, see Section 5.7, which considers the persistence of consecutive samples above a
specified threshold.

In contrast, Figure 16e,f present the ANN predicted values (T) and target (T) values
for WT2 over the training and test datasets, respectively. Recall that this WT had a main
bearing fault on 21 May 2018. These figures show that the prediction over the test set has an
overall performance that is different from that over the training set. Note that Figure 16gh,
which represent the residuals on the training and test datasets, also contribute to observing
this change in performance over the two sets. It is noteworthy that after the failure (on
21 May 2018), the residual is no longer affected and has a similar performance to the one
on the train set, with only a few isolated peaks.

Finally, the results obtained with the indicator proposed in Section 5.7 are shown in
Figure 17 for the test dataset (2018) over the entire wind park. An alarm is triggered only
when the indicator reaches a value greater than 0.5. The first WT with a triggered alarm
was WT2, which is a true positive. The alarm was activated on 4 February; thus, three
and a half months in advance of the actual breakdown reported on 21 May, where the
low-speed shaft had to be replaced with a new one. The alarm stayed until 12 February
and was then set off. This is because the possible heat created from an initial failure mode
is detected by the fault prognosis methodology, but its appearance is not continuous over
time until the final breakdown. In contrast, when the failure mode advances, for example,
when a crack propagates, the generated heat appears. When the crack remains still, no
further heat is generated; thus, the alarm is set off. However, cracks are already present
and can advance at any time, leading to the possible failure of the component. Thus, in
this methodology, whenever the alarm is on (even when it is set off after a few weeks), it is
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highly recommended to check the specific WT. The second WT with a triggered alarm was
the WT8. This WT has no main bearing damage, but the work orders show that the gearbox
was broken and replaced from 22 March to 11 April. The proposed indicator triggered an
alarm on 1 April. Thus, the method detects this maintenance operation on the gearbox
as an anomaly. In a real situation, the wind park manager knows that this WT is already
under maintenance. Thus, it was not a false positive. The final WT with a triggered alarm
was WTO. This is a false positive of the method, as this WT had no important work orders
during the year 2018. The rest of the WTs in the park were correctly classified as healthy
over all the test datasets. To summarize, the results lead to a precision of 50% and a recall
of 100% in the wind farm under study.

50 Train dataset WT'1 50 Test dataset WT1 (healthy)
~ o v'm‘r‘v
0 T 0 —T
T —T
) Apr 2017 Jul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018 Oct 2018
(a) (b)
50 Train dataset WT1 50 Test dataset WT1 (healthy)
—|r-T
—|T-T
RO e e bttt ki bl g Jn T N
Apr 2017 Jul 2017 Oct 2017 Jan 2018 Apr2018 Jul 2018 Oct 2018
(c) (d)
Train dataset WT2 Test dataset WT2 (faulty)

—T
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- : : : -50" : : :
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Figure 16. (a) ANN predicted value (T) and target (T) value for WT1 over the train dataset. (b) ANN predicted value (T)
and target (T) value for WT1 over the test dataset. (c) Absolute difference value between the prediction and estimation,
|T — T|, for WT1 over the train dataset. (d) Absolute difference value between the prediction and estimation, |T — T/, for
WT1 over the test dataset. (e) ANN predicted value (T) and target (T) value for WT2 over the train dataset. (f) ANN
predicted value (T) and target (T) value for WT2 over the test dataset. (g) Absolute difference value between the prediction
and estimation, |T — T|, for WT2 over the train dataset. (h) Absolute difference value between the prediction and estimation,
|T — T), for WT2 over the test dataset.

Finally, the obtained results are compared to other approaches in the literature coping
with the same proposed problem. The methodologies stated in References [15,17,23]
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Indicator Indicator Indicator

Indicator

achieved promising results for the diagnosis and prediction of WT faults from SCADA
data. However, the obtained results in this present work surpass the ones given in the
aforementioned references for two main reasons: (i) the prognosis is accomplished months
in advance instead of only hours in advance of the fault, and (ii) as the proposed approach
is unsupervised it does not need previous faulty data to be trained neither has to deal with
the problem of the highly imbalanced nature of fault data (with the no-fault class having
an overwhelming majority of samples).
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Figure 17. ANN indicator values (blue line) for test data, and threshold (red line).

7. Conclusions

In this work, an advanced prognostic system was proposed and proven to predict
the main bearing failure before it occurs and let turbine operators plan their operations.
In particular, a fault prognosis methodology that uses solely SCADA data requires only
healthy data to be deployed. Furthermore, the stated strategy works under different
operating and environmental conditions to which WTs are subject. Finally, the validity and
performance of the established methodology were demonstrated on a real underproduction
wind farm composed of 12 WTs. The results show that the time that the early prognosis
can be generated is several months in advance, thus giving time to the plant operator to
schedule maintenance. However, the studied wind farm has only one case with a failure of
interest, which is not sufficient for statistical analysis. To set the expected predictive time
and its confidence level is a future work that can be assessed when more cases appear in
this wind farm, or data from other wind farms with more cases related to this fault are
available. Furthermore, note that the work orders available to the authors of this work
only contain those related to important systems substitutions, such as gearbox, generator,
or main bearing replacement. Thus, preventive maintenance work orders, or minor work
orders are not available. As future work, it would be interesting to check whether values of
the indicator lower than the threshold but close to it are related to some minor work orders.
Finally, other neural networks, such as long short-term memory (LSTM), recurrent neural
network (RNN), or one dimension convolutional neural network (1D-CNN), should be
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studied, as they have interesting properties that, initially, make them appropriate for the
problem under consideration.

Author Contributions: Conceptualization, Y.V.; Data curation, A.E.-D. and B.P; Formal analysis,
C.T.; Funding acquisition, Y.V.; Investigation, AE.-D.,B.P,BP and Y.V, Methodology, B.P. and Y.V.;
Project administration, Y.V.; Software, AE-D.and BP; Supervision, B.P. and Y.V.; Validation, AE.-D.
and B.P; Writing—original draft, AE.-D. BP,B.P and Y.V, Writing—review & editing, Y.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially funded by the Spanish Agencia Estatal de Investigacién
(AEI)—Ministerio de Economia, Industria y Competitividad (MINECO), and the Fondo Europeo
de Desarrollo Regional (FEDER) through the research project DPI2017-82930-C2-1-R; and by the
Generalitat de Catalunya through the research project 2017 SGR 388.

Acknowledgments: The authors express their gratitude and appreciation to the Smartive com-
pany (http://smartive.eu/, accessed on 22 March 2021), as this work would not have been possible
without their support and ceded wind farm data.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data required to reproduce these findings cannot be shared at this
time as it is proprietary.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of the data; in the writing of
the manuscript; and in the decision to publish the results.

References

1. Europe, W. Wind Energy in Europe in 2019—Trends and Statistics; Wind Europe: Brussels, Belgium, 2020.

2. Shen, W,; Chen, X,; Qiu, J.; Hayward, ].A.; Sayeef, S.; Osman, P; Meng, K.; Dong, Z.Y. A comprehensive review of variable
renewable energy levelized cost of electricity. Renew. Sustain. Energy Rev. 2020, 133, 110301. [CrossRef]

3. Tang, M.; Zhao, Q.; Ding, S.X.; Wu, H; Li, L.; Long, W.; Huang, B. An Improved LightGBM Algorithm for Online Fault Detection
of Wind Turbine Gearboxes. Energies 2020, 13, 807. [CrossRef]

4. Ruiz, M,; Mujica, L.E.; Alferez, S.; Acho, L.; Tutiven, C.; Vidal, Y.; Rodellar, J.; Pozo, F. Wind turbine fault detection and
classification by means of image texture analysis. Mech. Syst. Signal Process. 2018, 107, 149-167. [CrossRef]

5. Pozo, F; Vidal, Y.; Serrahima, .M. On real-time fault detection in wind turbines: Sensor selection algorithm and detection time
reduction analysis. Energies 2016, 9, 520. [CrossRef]

6. Hossain, M.L.; Abu-Siada, A.; Muyeen, S. Methods for advanced wind turbine condition monitoring and early diagnosis: A
literature review. Energies 2018, 11, 1309. [CrossRef]

7. Florian, M,; Serensen, ].D. Wind turbine blade life-time assessment model for preventive planning of operation and maintenance.
J. Mar. Sci. Eng. 2015, 3, 1027-1040. [CrossRef]

8. Tang, J.; Soua, S.; Mares, C.; Gan, T.H. An experimental study of acoustic emission methodology for in service condition
monitoring of wind turbine blades. Renew. Energy 2016, 99, 170-179. [CrossRef]

9.  Cheng, F; Qu, L.; Qiao, W. Fault prognosis and remaining useful life prediction of wind turbine gearboxes using current signal
analysis. IEEE Trans. Sustain. Energy 2017, 9, 157-167. [CrossRef]

10. Dupuis, R. Application of oil debris monitoring for wind turbine gearbox prognostics and health management. In Proceedings of
the Annual Conference of the Prognostics and Health Management Society, Portland, OR, USA, 10-16 October 2010; pp. 10-16.

11. Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.K,; Saif, M. An integrated feature-based failure prognosis method for
wind turbine bearings. IEEE/ASME Trans. Mechatron. 2020, 25, 1468-1478. [CrossRef]

12.  Motahari-Nezhad, M.; Jafari, .M. ANFIS system for prognosis of dynamometer high-speed ball bearing based on frequency
domain acoustic emission signals. Measurement 2020, 166, 108154. [CrossRef]

13. Elasha, F; Greaves, M.; Mba, D.; Fang, D. A comparative study of the effectiveness of vibration and acoustic emission in
diagnosing a defective bearing in a planetry gearbox. Appl. Acoust. 2017, 115, 181-195. [CrossRef]

14. Leahy, K,; Gallagher, C.; O'Donovan, P.; O’Sullivan, D.T. Issues with data quality for wind turbine condition monitoring and
reliability analyses. Energies 2019, 12, 201. [CrossRef]

15. Leahy, K.; Hu, R.L.; Konstantakopoulos, I.C.; Spanos, C.J.; Agogino, A.M.; O’Sullivan, D.T. Diagnosing and predicting wind
turbine faults from SCADA data using support vector machines. Int. J. Progn. Health Manag. 2018, 9, 1-11.

16. Chen, B.; Matthews, P.C; Tavner, P.J. Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS. Expert Syst.

Appl. 2013, 40, 6863-6876. [CrossRef]


http://smartive.eu/
http://doi.org/10.1016/j.rser.2020.110301
http://dx.doi.org/10.3390/en13040807
http://dx.doi.org/10.1016/j.ymssp.2017.12.035
http://dx.doi.org/10.3390/en9070520
http://dx.doi.org/10.3390/en11051309
http://dx.doi.org/10.3390/jmse3031027
http://dx.doi.org/10.1016/j.renene.2016.06.048
http://dx.doi.org/10.1109/TSTE.2017.2719626
http://dx.doi.org/10.1109/TMECH.2020.2978136
http://dx.doi.org/10.1016/j.measurement.2020.108154
http://dx.doi.org/10.1016/j.apacoust.2016.07.026
http://dx.doi.org/10.3390/en12020201
http://dx.doi.org/10.1016/j.eswa.2013.06.018

Sensors 2021, 21, 2228 22 of 22

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.
34.

35.

36.

37.

38.

39.

40.
41.

42.

Leahy, K.; Gallagher, C.; O’Donovan, P; Bruton, K.; O’Sullivan, D.T. A robust prescriptive framework and performance metric
for diagnosing and predicting wind turbine faults based on SCADA and alarms data with case study. Energies 2018, 11, 1738.
[CrossRef]

Theodoropoulos, P.; Spandonidis, C.C.; Themelis, N.; Giordamlis, C.; Fassois, S. Evaluation of Different Deep-Learning Models
for the Prediction of a Ship’s Propulsion Power. J. Mar. Sci. Eng. 2021, 9, 116. [CrossRef]

Chen, J.; Wang, J.; Zhu, J.; Lee, T.H.; De Silva, C.C. Unsupervised Cross-domain Fault Diagnosis Using Feature Representation
Alignment Networks for Rotating Machinery. IEEE/ASME Trans. Mechatron. 2020. [CrossRef]

Hart, E.; Clarke, B.; Nicholas, G.; Kazemi Amiri, A,; Stirling, J.; Carroll, J.; Dwyer-Joyce, R.; McDonald, A.; Long, H. A review of
wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection. Wind. Energy Sci. 2020,
5, 105-124. [CrossRef]

Vidal, Y.; Pozo, F; Tutivén, C. Wind turbine multi-fault detection and classification based on SCADA data. Energies 2018, 11, 3018.
[CrossRef]

Jin, X.; Xu, Z.; Qiao, W. Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis. IEEE Trans. Sustain.
Energy 2020, 12, 202-210. [CrossRef]

Leahy, K.; Hu, R.L.; Konstantakopoulos, 1.C.; Spanos, C.J.; Agogino, A.M. Diagnosing wind turbine faults using machine learning
techniques applied to operational data. In Proceedings of the 2016 IEEE International Conference on Prognostics and Health
Management (ICPHM), Ottawa, ON, Canada, 20-22 June 2016; pp. 1-8.

Jiang, Z.; Hu, W.; Dong, W.; Gao, Z.; Ren, Z. Structural reliability analysis of wind turbines: A review. Energies 2017, 10, 2099.
[CrossRef]

Srinivasan, V. Analysis of dynamic load characteristics on hydrostatic bearing with variable viscosity and temperature using
simulation technique. Indian J. Sci. Technol. 2013, 6, 4797-4803.

Hamadache, M.; Lee, D. Wind turbine main bearing fault detection via shaft speed signal analysis under constant load.
In Proceedings of the 2016 16th International Conference on Control, Automation and Systems (ICCAS), Gyeongju, Korea,
16-19 October 2016; pp. 1579-1584.

Bearing Damage and Failure Analysis. Available online: https://www.skf.com/binaries/pub12/Images/0901d1968064c148
-Bearing-failures---14219_2-EN_tcm_12-297619.pdf (accessed on 24 January 2021).

Tavner, P.; Edwards, C.; Brinkman, A.; Spinato, F. Influence of wind speed on wind turbine reliability. Wind Eng. 2006, 30, 55-72.
[CrossRef]

Marti-Puig, P; Blanco-M, A.; Cardenas, J.J.; Cusidé, J.; Solé-Casals, J. Effects of the pre-processing algorithms in fault diagnosis of
wind turbines. Environ. Model. Softw. 2018, 110, 119-128. [CrossRef]

Zhang, Z. Missing data imputation: Focusing on single imputation. Ann. Transl. Med. 2016, 4, 9. [CrossRef]

Lu, S;; Wang, Y.; Wu, Y. Novel High-Precision Simulation Technology for High-Dynamics Signal Simulators Based on Piecewise
Hermite Cubic Interpolation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2304-2317. [CrossRef]

Sim, K.S.; Yeap, Z.X.; Ting, E; Tso, C. The performance of adaptive tuning piecewise cubic hermite interpolation model for
signal-to-noise ratio estimation. Int. J. Innov. Comput. Inf. Control. 2018, 14, 1787-1804. [CrossRef]

Ilten, P. CIMBA: Fast Monte Carlo generation using cubic interpolation. Comput. Phys. Commun. 2021, 258, 107622. [CrossRef]
Li, H,; Li, L.; zhao, D. An improved EMD method with modified envelope algorithm based on C2 piecewise rational cubic spline
interpolation for EMI signal decomposition. Appl. Math. Comput. 2018, 335, 112-123. [CrossRef]

Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian learning. In Proceedings of the International Conference
on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; Volume 3, pp. 1930-1935.

Leahy, K.; Gallagher, C.V.; Bruton, K.; O’'Donovan, P.; O’Sullivan, D.T. Automatically identifying and predicting unplanned
wind turbine stoppages using scada and alarms system data: Case study and results. In Journal of Physics: Conference Series; IOP
Publishing: Bristol, UK, 2017; pp. 1-14.

McKinnon, C.; Turnbull, A.; Koukoura, S.; Carroll, J.; McDonald, A. Effect of time history on normal behaviour modelling using
SCADA data to predict wind turbine failures. Energies 2020, 13, 4745. [CrossRef]

Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164-168.
[CrossRef]

Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. |. Soc. Ind. Appl. Math. 1963, 11, 431-441.
[CrossRef]

MacKay, D.J. Bayesian interpolation. Neural Comput. 1992, 4, 415-447. [CrossRef]

Shi, G.; Zhang, J.; Li, H.; Wang, C. Enhance the performance of deep neural networks via L2 regularization on the input of
activations. Neural Process. Lett. 2019, 50, 57-75. [CrossRef]

Hagen, M.; Menhaj, M. Training multilayer networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989-993.
[CrossRef]


http://dx.doi.org/10.3390/en11071738
http://dx.doi.org/10.3390/jmse9020116
http://dx.doi.org/10.1109/TMECH.2020.3046277
http://dx.doi.org/10.5194/wes-5-105-2020
http://dx.doi.org/10.3390/en11113018
http://dx.doi.org/10.1109/TSTE.2020.2989220
http://dx.doi.org/10.3390/en10122099
https://www.skf.com/binaries/pub12/Images/0901d1968064c148-Bearing-failures---14219_2-EN_tcm_12-297619.pdf
https://www.skf.com/binaries/pub12/Images/0901d1968064c148-Bearing-failures---14219_2-EN_tcm_12-297619.pdf
http://dx.doi.org/10.1260/030952406777641441
http://dx.doi.org/10.1016/j.envsoft.2018.05.002
http://dx.doi.org/10.3978/j.issn.2305-5839.2015.12.38
http://dx.doi.org/10.1109/TAES.2018.2814278
http://dx.doi.org/10.24507/ijicic.14.05.1787
http://dx.doi.org/10.1016/j.cpc.2020.107622
http://dx.doi.org/10.1016/j.amc.2018.04.008
http://dx.doi.org/10.3390/en13184745
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1162/neco.1992.4.3.415
http://dx.doi.org/10.1007/s11063-018-9883-8
http://dx.doi.org/10.1109/72.329697

	Introduction
	Brief Wind Farm Description
	Main Bearing Faults
	Real SCADA Data Description
	Fault Prognosis Methodology
	Data Preprocess 
	Data Split: Train and Test Sets
	Normality Model Based on an Artificial Neural Network (ANN)
	Setup of the Proposed ANN
	Bayesian Regularization
	Discussion on How to Ensure That Data Used to Construct Normality Model Is Healthy
	Fault Prognosis Indicator

	Results on a Real Wind Farm
	Conclusions
	References

