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Abstract: Liver transplantation is the only curative treatment option in patients diagnosed with
end-stage liver disease. The low availability of organs demands an accurate selection procedure
based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried
out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine
learning and artificial vision are continuously being developed for the analysis of medical images of
different typologies. Accordingly, in this work, we develop a computer vision-based application for
the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver
section slides stained with Sudan stain. For this purpose, digital microscopy images were used to
obtain thousands of feature vectors based on the RGB and CIE L*a*b* pixel values. These vectors,
under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers
based on different algorithms were trained, accordingly. The results obtained showed an overall high
accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity
>0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially
faster than other classification algorithms. Sudan stain is a convenient technique for evaluating
ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate
quantification through the machine learning algorithms tested.

Keywords: liver transplantation; sudan stain; machine learning; computer vision; macrovesicular
steatosis

1. Introduction

Liver transplantation is the unique curative option for those patients with end-stage
liver disease and acute liver failure. The progressive demand for transplants and the
limited number of available organs have led to modification of the scoring systems used
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to assess post-transplant complications, in order to include livers excluded according to
the older systems—such as organs from cardiac death (CDC), and HIV- and/or hepatitis
C-infected patients—into the donor pool [1]. However, this fact also implies that the
analytic procedures to evaluate the suitability of the grafts must also be more accurate.
Therefore, histological analysis to assess the quality of the allografts is crucial to prevent
graft dysfunction or secondary rejection.

As there is a strong relationship between the ischemia time—defined as the time from
graft clamping to pre-implant reperfusion—and the risk of graft failure [2], this analysis
must be assessed as soon as possible, in order to prevent severe liver damage. Thus, the use
of hematoxylin and eosin (H & E) stained sections from frozen representative graft samples,
instead of routine-processed ones, is a time effective alternative for this determination,
as it allows for a rapid histological examination [3]. During histological analysis, several
parameters should be assessed. One such parameter is the presence of big intracytoplasmic
lipid droplets—macrovesicular steatosis (ME)—a feature which has shown predictive value
for graft dysfunction [4]. Thus, livers with <30% ME are generally considered acceptable
for transplantation [5,6], although this value varies by institution and can be increased up
to 60% [7]. Nevertheless, this criteria is based on subjective evaluation by an experienced
pathologist, which is strongly observation-dependent, non-reproducible, and challenging,
even in experienced hands [8,9]. Additionally, the main limitation of the use of H&E
frozen-stained sections is the risk of the underestimation of ME, due to the presence of
artifacts (e.g., water droplets) during the sampling procedure [3,10]. Thus, the development
of alternative technical and analytic procedures for staining and examining representative
frozen graft sections, which allow for the establishment of an objective ME value in the
shortest possible time, should be key to ensuring the viability of the transplant.

The development of image analysis tools based on machine learning algorithms for
histopathologic analysis is a extremely helpful application of computational biology, help-
ing pathologists to establish exact and accurate diagnoses. In this sense, several image
analysis algorithms to determine the degree of ME of the graft have been developed,
in terms of the determination of cross-sectional surface area of lipid droplets (LD) [11],
the determination of this area using a pre-determined cut-off LD size [12,13], and the use of
LD-induced nuclear dislocation of hepatocytes as methods to improve the algorithms [14],
or even the use of a four-stage approach, including k-means clustering and image ma-
nipulation algorithms to detect fat areas [14]. Nevertheless, the main limitation of all of
these applications is that their analytic procedures are based on H&E stained sections,
which may induce an underestimation of the value [3,15]. Although several deep learning
segmentation algorithms [10,16,17] and supervised machine learning procedures [18] have
been proposed to improve the accuracy of such algorithms in classifying intracellular fat
vacuoles—identified as white spaces in H&E sections—the use of these applications is still
not fully standardized. Other solutions have been proposed, such as the assessment of
liver steatosis by liver texture analysis, a macroscopic determination which uses machine
learning to speed up and automate the process [19]; a non-microscopic parameter which is
still under validation. Thus, the use of alternative and specific staining procedures, which
allow for the development of simpler, quicker, and specific image analysis algorithms to
determine ME in biopsies, is crucial in establishing an objective diagnosis in the shortest
possible time.

Consequently, the use of specific fat-staining procedures is the first stage to overcome
the limitations of H&E staining. Thus, the Sudan staining procedure may provide a good
alternative, as it is a fat-specific, quick, and easy stain procedure which is performed only
on frozen sections, showing higher sensitivity for the detection of steatosis, compared to H
& E [15]. Additionally, and due to the limited time available to perform this analysis prior
to the surgery, it is also necessary to optimize the analytic speed, the accuracy, and the
computational cost of the specific image analysis technique. Thus, the time required to
obtain the image set, the quality and the size of the images, and the time needed to obtain
the final result are variables which must also be optimized. Therefore, the aim of this
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report is to develop an image analysis application, based on machine learning algorithms,
to automatically determine the percentage of ME in a representative sample from a donor
liver using Sudan stained frozen sections, which may allow for optimized accuracy with the
lowest image quality possible and, thus, lower computational costs (by using the minimum
system requirements possible, even allowing for the use of an on-line application for the
analysis), through pre-existing and validated machine/deep learning algorithms.

2. Results
2.1. Train and Test Model

The application was able to easily differentiate specific fat staining from artifacts
related to the staining procedure. The average time that each algorithm takes to be trained
is a function of the number of pixels involved in the training, which ranged from 1000 to
100,000 pixels for each model (Figure 1). Our results showed that using images of Sudan
stained pre-transplant human donor liver sections, the training time using Keras increased
drastically, from 0.64 s with 1000 pixels to 38 s with 100,000 pixels (Table 1). On the other
hand, Naïve Bayes and KNN were the fastest algorithms in training stage, with the longest
times of 0.011 and 0.006 s with 100,000 pixels, respectively.
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Figure 1. Average training time for each algorithm (in s), according with the proposed range of pixels selected.

Table 1. Average training time and AUC for each algorithm under different numbers of pixels.

Model Pixels Average Time Average AUC SE Time SE AUC

KNN 1000 0.000 1.000 0.000 0.000
NB 1000 0.001 1.000 0.000 0.000
NN 1000 0.117 1.000 0.032 0.000
RF 1000 0.118 1.000 0.001 0.000
SVM 1000 0.004 1.000 0.000 0.000
Keras 1000 0.645 0.984 0.022 0.012
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Table 1. Cont.

Model Pixels Average Time Average AUC SE Time SE AUC

KNN 5000 0.000 0.997 0.000 0.000
NB 5000 0.001 0.998 0.000 0.000
NN 5000 0.429 1.000 0.040 0.000
RF 5000 0.207 0.999 0.002 0.000
SVM 5000 0.045 1.000 0.000 0.000
Keras 5000 2.417 0.998 0.113 0.000

KNN 10,000 0.001 0.998 0.000 0.000
NB 10,000 0.001 0.999 0.000 0.000
NN 10,000 0.697 1.000 0.069 0.000
RF 10,000 0.329 0.998 0.002 0.000
SVM 10,000 0.115 1.000 0.001 0.000
Keras 10,000 4.616 0.999 0.080 0.000

KNN 50,000 0.003 0.997 0.000 0.000
NB 50,000 0.005 0.998 0.000 0.000
NN 50,000 1.763 0.999 0.141 0.000
RF 50,000 1.642 0.999 0.011 0.000
SVM 50,000 2.046 0.999 0.011 0.000
Keras 50,000 22.307 0.999 0.333 0.000

KNN 100,000 0.006 0.997 0.000 0.000
NB 100,000 0.011 0.997 0.001 0.000
NN 100,000 2.799 0.999 0.210 0.000
RF 100,000 3.562 0.999 0.079 0.000
SVM 100,000 7.153 0.999 0.107 0.000
Keras 100,000 38.802 0.999 2.507 0.000

The trained classifiers were tested with a test data set, comprised of 30% of the sample
corresponding to each set of pixels. Overall, the performance achieved by the classifiers with
different sets of pixels was close to 1. Thus, the analysis of the area under the curve (AUC)
obtained from the different ROC curves was also close to 1 (Figures 2a–e). Only Keras with
0.98 had an AUC below 0.99 for the 1 000-pixel proposed model (Table 1, Figure 2a).

(a) ROC 1000 pixels. (b) ROC 5000 pixels.

Figure 2. Cont.
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(c) ROC 10,000 pixels. (d) ROC 50,000 pixels.

(e) ROC 100,000 pixels.

Figure 2. ROC curves with the AUCs of all classifiers for each training/testing data set from 1000 (a) to 100,000 (e) pixels.

2.2. Classification Time

The time taken to classify one image differed widely, depending on the classifier and
the image size (from 1.5 to 6.1 MB; Table 2 and Figure 3). Regardless of the image size,
KNN and NB were the fastest algorithms, being slightly affected by both the number of
threads and the image size. On the other hand, SVM and RF were the slowest algorithms,
which were strongly affected by the size of the image and the number of processing threads.
As Keras handles the number of threads independently, due to its implementation, it
always involves all threads of the processor. Thus, the average classification time with this
algorithm was always the same (Figure 3).
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Figure 3. Classification time (in s) of each model used.

Table 2. Average classification time (in s), based on number of threads (from 1 to 10) and image size
(from 1.5 to 6.1 MB).

Model Image 1 2 4 6 8 10

KNN 1.5 M 0.09 0.28 0.26 0.24 0.22 0.26
SVM 1.5 M 8.48 4.37 2.41 1.67 1.29 1.46
RF 1.5 M 5.96 3.37 2.01 1.55 1.44 1.47
NB 1.5 M 0.15 0.25 0.22 0.21 0.20 0.21
NN 1.5 M 0.82 0.82 0.73 0.69 0.72 0.57

Keras 1.5 M 40.56 40.56 40.56 40.56 40.56 40.56

KNN 6.1 M 0.32 0.61 0.49 0.45 0.42 0.46
SVM 6.1 M 33.70 17.30 9.28 6.34 4.82 5.39
RF 6.1 M 27.68 13.91 7.85 6.10 5.54 5.77
NB 6.1 M 0.66 0.69 0.55 0.52 0.51 0.51
NN 6.1 M 3.14 2.85 2.61 2.49 2.62 1.94

Keras 6.1 M 163.84 163.84 163.84 163.84 163.84 163.84

2.3. Classification Validation

Images classified by every model were compared with the same image manually
classified by an expert pathologist (Figure 4).

Based on this comparison between images, we have calculated the accuracy (ratio of
well-classified pixels to total pixels; Equation (2)), sensitivity (ratio of detected fatty vacuole
pixels to total fatty vacuole pixels; Equation (3)), and specificity (ratio of non-fatty vacuole
pixels detected to total non-fatty pixels; Equation (4)).

In all cases (Table 3), the accuracy, sensitivity, and specificity values were above
0.95; except for KNN, whose sensitivity was 0.844. These values were consistent with
those obtained from evaluating classifiers with the train/test data sets, as shown by the
ROC curves.
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Table 3. Metrics comparing automatic and manual classification.

Metric KNN SVM RF NB NN Keras

Accuracy 0.996 0.996 0.996 0.997 0.997 0.995
Sensitivity 0.844 0.962 0.956 0.910 0.963 0.972
Specificity 0.999 0.997 0.997 0.999 0.998 0.996
Precision 0.961 0.897 0.894 0.969 0.906 0.856

Figure 4. Results of image classification for each classifier.

3. Discussion

Our goal was to develop an application which is able to establish an objective and
reliable value of macrovesicular steatosis from representative sections of pre-transplant
liver donor biopsies stained with Sudan—a fat-specific staining procedure—with minimum
requirements, in terms of image quality and processing time. For this purpose, we tested
several classification machine learning algorithms, in order to determine which algorithm
is the most suitable for application. To the best of our knowledge, this is the first report
in which several machine learning algorithms were tested for the automatic analysis of
fat-specific dye stained sections for biomedical purposes. Moreover, we developed a
graphical user interface (GUI) implementing the algorithms discussed in this work. It also
allows for the the training of new models, based on the same algorithms. The development
framework used was Shiny—a web development framework based on R—which allows
for near-native integration of all Python code necessary for generating the models and
analyzing the images. The simple and intuitive design makes it easy for the end-user to
quickly quantify steatosis.

Although the number of potential donors for liver transplant has increased, the num-
ber of canceled transplantations due to a high grade of ME have also risen [20]. As this
parameter still must undergo a subjective evaluation, the possibility of an error of criteria
cannot be excluded; even in the case of analysis by an expert pathologist. Liver transplanta-
tion is an extremely complex surgery, the success of which depends on the time consumed
between organ extraction from the donor and its reperfusion into the patient. Thus, the in-
traoperative histopathologic evaluation—which usually involves sampling, sectioning,
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staining, examination, and diagnosis—must be assessed in less than 30–45 min [21]. As the
fastest fixation and paraffin embedding procedures usually require 3–4 h, the use of frozen
samples is mandatory in this case. H & E is usually the standard procedure for general
evaluation, which is easy and quick to perform and usually provides a good contrast to
evaluate many parameters used to establish the quality of the graft for transplant. Nev-
ertheless, this procedure does not stain fat, and the possibility of overestimating ME due
to artifacts produced during the processing of the frozen biopsies (e.g., water droplets,
holes, and so on) may be not discarded [3,10]. Taking this into account, coupled with the
fact that ME determination is strongly observation-dependent, we find that the risk of
error of judgement can increase significantly, with severe consequences, regardless of the
final decision.

Thus, improvement of the staining procedure and the accuracy of the steatosis determi-
nation, by transforming an estimated determination into a quantitative one, in the shortest
time possible may allow for a drastically diminished possibility of error, an increase in the
number of viable organs, and the establishment of more accurate outcomes, in terms of
viability of the graft.

As the use of frozen sections to the immediate diagnosis is mandatory, our first goal
was to use an alternative staining procedure, which may replace the H & E stain and allow
for fat to be stained specifically. To this end, we decided to use the Sudan stain, as it can be
performed on frozen sections, is a fast and easy stain procedure, and is fat-specific, making
it chromatically easy to differentiate fat from non-fat structures. A possible disadvantage of
this stain procedure is that the value of steatosis can be overestimated by direct examination,
especially when the analysis depends on inexperienced pathologists. We did not observe
significant variations in ME values during the validation process, probably due to the use
of two experienced pathologists specialists in liver transplantation.

Once we had solved this problem, our next issue was to determine which is the best
machine learning algorithm for use in the development of our analytic tool. As all reported
image analysis tools have been based on the analysis of H & E stained sections [11–14],
these algorithms are focused on the measurement of numerous parameters, which try to
differentiate structures (i.e., fat vacuoles vs. non-fat vacuoles and unspecific structures)
with similar shape and color (i.e., round unstained/white structures). As there have been
no previous reports considering the use of Sudan stain for the automatic determination of
ME, we decided to use six of the most-used algorithms for image analysis [22], in order to
determine which is the best option—in terms of efficacy and time—for use in a new and
specific image system based on Sudan-stained section analysis. Additionally, we took into
account the time used for the analysis, as this parameter should not be extended, in order
to assure the efficiency of the procedure. Thus, the use of high-resolution scanned images
may be not useful in this particular case, as the time required to obtain and process such
images (which are near 1 GB in size each) may be not applicable to study one parameter,
which must be objectively determined in 5–10 min at maximum. For this reason, our tool
does not currently use whole slide images, although we are considering their use as future
work, provided that their processing time can be optimised. Therefore, our goal was to
develop an image analysis application with the best machine learning algorithm, which
is able to establish an objective value of ME using the lowest image resolution possible,
in order to optimize either the processing time and/or the requirements of the system
employed in the analysis (potentially even providing the possibility of performing through
an on-line web application). The evaluated algorithms showed high performance, in terms
of image classification. In the training/testing phase, the AUC obtained in all cases was
significantly high (>0.98), which was virtually unaffected by the number of pixels used.
Only the 1000 pixel data set decreased the AUC of the Keras algorithm. In the trials carried
out, it was shown that the AUC for 1000 pixels was more affected by the pixels selected in
the random sampling than by the number of pixels used.

Concerning the time spent by each classifier to be trained, it is worth mentioning
the outstanding difference between Keras and the remaining algorithms. Furthermore,
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for each classifier, the time increase was more significant from 50,000 pixels onwards; except
with KNN and NB, whose times were barely affected. Thus, between 10,000 and 50,000
pixels, a compromise can be achieved between time spent in training and robustness in the
random sampling of pixels.

In the classification step of a real image, KNN and NB were the fastest, regardless of
the number of threads. Even in the case of an image with 4 times more pixels than another,
the duration was shorter than 1 s. On the other hand, RF and SVM were significantly influ-
enced by both the size of the image and the number of threads involved in the classification.
Nevertheless, from six threads on, there was no significant reduction in the time spent
classifying the image on the equipment used; thus, it may be unnecessary to invest more
computational resources, when the performance is not going to be enhanced substantially.

The global result, when comparing the manually classified and the same automatically
classified image with the different classifiers, yielded good results overall. The ratio of
positives over the total number of images (i.e., accuracy) was close to 1 in every case.
With regard to the sensitivity of Keras, it was the most accurate, with 100% success; while
KNN, with 0.844 accuracy, was the most mistaken. The specificity, similar to the accuracy,
remained very high for all the classifiers. The main limitation regarding the use of these
algorithms was observed in those cases with an extremely high infiltration of fat (70–
80%). In those cases, the sensibility of the algorithms to pixel selection was increased,
possibly due to the fat infiltration observed within portal and stromal areas. In such cases,
alternatives like the use of morphological segmentation algorithms would be helpful to
establish accurate values of ME. Another limitation was based on the fact that we did not
compare the accuracy of these classification algorithms with other lipid staining methods,
such as the oil red procedure; however, our results indicate that the use of specific fat
staining procedures, such as Sudan, may be a good choice for the automatic determination
of ME in pre-transplant liver biopsies, using minimal requirements with optimal results for
those cases with low–average amounts of fat infiltration. Such cases are those in which the
pathologist may experience problems in establishing an accurate value of ME.

We conclude, based on these results, that Sudan stain is a suitable and value tool for
the evaluation of ME in pre-transplant liver biopsies, as it is suitable for frozen sections,
quick, fat-specific, and offers good contrast, which can allow for easy differentiation of
fat vacuoles from non-fat vacuoles and unspecific structures; while H & E stain can be
used for the evaluation of all other parameters, such as inflammation, infection, necrosis,
tumors, and pigment deposits. We propose the introduction of this stain as the technique
to use in the evaluation of ME in such biopsies. As our goal was to develop an automatic
analytic system which may determine the amount of ME in a stained section, this also
may save valuable time for the pathologist, in terms of evaluating the quality of the
graft, and minimize (or even eliminate) the possibility of criteria error in the evaluation
of this important parameter. Additionally, we developed our application based on the
optimization of the quality and the size of the images, in order to optimize the time required
for analysis and the computational cost. Regarding the algorithms analyzed, Naïve Bayes
and KNN were the best algorithms for the data set on which they were evaluated. Both
displayed remarkably high levels of accuracy, sensitivity, and specificity, while also proving
to be the fastest in both the training and classification steps, with minimal consumption of
hardware resources.

In the future, these algorithms may be implemented in specialized and automatized im-
age analysis applications for liver transplantation, with specific use in Sudan-stained sections.

4. Materials and Methods
4.1. Liver Samples and Histochemical Procedures

Eight micrometer-thick sections were obtained from donor liver samples (n = 20),
which were preserved at −80 ºC. These sections were stained with an improved Sudan
procedure, a specific histochemical fat-staining procedure routinely used in our depart-
ment to evaluate fat infiltration in frozen samples. Briefly, all samples were sectioned (8
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micrometers thick) and stained with a mix of Sudan III and Sudan IV dyes at 50%/50%
vol. (Sigma Aldrich, Madrid, Spain) for 10 min at room temperature. The sections were
Hematoxylin (Thermo, Barcelona, Spain) counterstained and finally mounted with an
aqueous permanent mounting medium. Fat Sudan-positive structures were identified as
intracellular orange vacuoles (Figure 5, left). The main artifacts related to the procedure
that were detected were air bubbles (due to the aqueous mounting media), sectioning
artifacts, unspecific hematoxylin deposits, and unstained blank spaces, mainly due to
sinusoid dilation, vessels, and hepatocyte ballonization unrelated to fat deposits.

Figure 5. Original image (left) and manually classified image (right).

4.2. Imaging

A number of digital images were obtained from stained samples by using a direct-light
microscope (Zeiss Axio A10, Carls Zeiss, Jenna, Germany) equipped with a high-quality
digital camera (Axio Cam 506, Zeiss) and specialized software (Zeiss Zen ver. 3.0). The
technical specifications of the camera are detailed in Table 4 (the complete specifications can
be found at https://www.zeiss.com/microscopy/int/products/microscope-cameras.html,
accessed on 11 March 2021). Histologically, macrovesicular steatosis is defined as the
presence of a large-sized intracellular fat vacuole (with a minimum of two-times bigger
than normal nucleus size) which displaces the nucleus to the periphery of the cells [23,24].
To determine the standard diameter of the normal hepatocyte nucleus in frozen sections,
we measured 3000 hepatocyte nuclei in frozen sections from 10 healthy livers only stained
with hematoxylin, measuring the media of all sizes (73.356 ± 0.177 µm2) and established
this value as a standard. Therefore, we considered intracellular macrovesicular fat vacuoles
as those with a size ≥146.71 µm2.

Table 4. Zeiss Axiocam basic specifications.

Sensor Model Sony ICX 694, EXview HAD CCD II
Sensor pixel count 6 Megapixel. 2752 (H) × 2208 (V)
Pixel size 4.54 µm × 4.54 µm
Exposure time range 250 µs to 60 s.
Spectral sensitivity Aprox. 400–720 nm. RGB Bayer color filter mask

4.3. Generating Learning Models

To carry out the classification of images, several learning models were generated
using different machine learning and deep learning algorithms. Specifically, K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB),
simple Neural Network (NN), and neural network with Tensorflow and Keras [25] (using
GPU) were used. Each algorithm, except for Keras, was evaluated with the default param-

https://www.zeiss.com/microscopy/int/products/microscope-cameras.html
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eters, and the image classification process was parallelized. Regarding Keras, a densely
connected first layer with 6 nodes with sigmoid activation and a final layer with 2 nodes
and softmax activation were used. Adamax was used as the network optimizer. In addition,
the computer graphics were configured to use the GPU for training and image classification
with this algorithm.

To generate the models, as well as to evaluate their performance, images from optical
microscopy of liver tissues at 100, 200, and 400× magnifications were used. Images
were obtained with exposure, brightness, and contrast values self-adjusted by the camera
software, and images with different levels of adjustment were modified manually. The color
histograms of the images were adjusted to the histogram of a reference image defined as
the best-fitting by a match-histogram algorithm.

Twenty images with 1920 × 1080 pixel resolution at different magnifications were
used. For each image, windows of 10 × 10, 20 × 20, 50 × 50, and 100 × 100 pixels were
manually extracted, depending on the enlargement level and size of the vacuoles. A total of
10 50 × 50 windows, 10 100 × 100 windows, 50 20 ×20 windows, and 50 10 × 10 windows
were finally taken. The total number of pixels obtained was 200,000. For every pixel,
a 6-characteristic vector, defined by RGB and CIE L*a*b color spaces, was obtained:

FVn =

Ri Gi Bi Li ai bi
...

...
...

...
...

...
Rn Gn Bn Ln an bn

∀i = 1, . . . , n, (1)

where FVn is the set of feature vectors for all pixels (n) used to construct the models,
and Ri, Gi, Bi, Li, ai, bi are the values of the red (R), green (G), blue (B), lightness (L*), green
to red (a*), and blue to yellow (b*) channels, respectively, corresponding to the ith pixel.
This type of feature vector has already been successfully tested in other works related to
image analysis [22]. Pixels were tagged with 1 or 0, depending on whether they belonged
to a region of the image where there was a fat vacuole (1) or not (0).

Of the total number of pixels, randomized subsets of 100,000, 50,000, 10,000, 5000,
and 1000 pixels were selected to train different models with different numbers of pixels.
From each pixel subset, 70% were used to train the models, while the remaining 30% were
used for testing. The data splitting was carried out by stratified random sampling, in order
to obtain a proportionate number of pixels from each class.

Finally, the performance of each algorithm was assessed using the test data sets (30%
remaining) of the corresponding training sets. The data splitting, training, and testing
processes were executed 10 times with each algorithm and with every data set, in order to
determine the average time each algorithm took to train and the average time to classify.
Likewise, the AUC of each algorithm for every subset of data was calculated by ROC curves.

4.4. Classification Time

With the trained models at 50,000 pixels, the same image was classified at two different
resolutions—2752 × 2208 and 1376 × 1104 pixels—in order to determine the time spent by
the different models in classifying each image with a different number of threads.

Every performance test was carried out on a laptop with an Intel Core i7-9750H
processor at 2.6 GHz, with 6 cores and 12 threads, 16 Gb RAM, and a 4 Gb NVIDIA
GTX1620 graphics card.

4.5. Classification Validation

The automatically classified images were compared with the same manually classified
images by two expert pathologists (Figure 5) through a simple binary image subtraction
operation, hence obtaining the TP, FP, TN, and FN values, with respect to the reference
image, in order to obtain the overall accuracy, sensitivity, specificity, and precision scores
(Equations (2)–(5), respectively). We defined those pixels classified as fat vacuole matching
the manually classified image as the TP, those classified as non-vacuole matching the
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manual image as the TN and, finally, those wrongly classified in the fat vacuole or non-
vacuole categories as FP and FN, respectively.

Accuracy =
TP + TN

TP + FP + FN + TN
, (2)

Sensitivity =
TP

TP + FN
, (3)

Speci f icity =
TN

TN + FP
, (4)

Precision =
TP

TP + FP
. (5)

As, in many cases, the fat vacuoles are totally united in the image, to correctly quantify
the size and number of vacuoles, it is necessary to have an automatic mechanism that,
as far as possible, distinguishes two or more vacuoles together as independent entities.
To do this, morphological segmentation has been applied using the watershed algorithm,
which has been widely used in the analysis of biomedical and biological images for cell
segmentation [26–28]. In those cases of extremely high values of ME infiltration (e.g.,
70–80%), this classification algorithm experienced some problems in classifying extremely
large overlapped vacuoles, although the final result of ME value was not altered due to
this limitation.

4.6. Web Application Development

In order to assist in the assessment of ME degree, a web application was developed
using the Shiny [29] framework provided by R [30], which enables the rapid development
of web applications and simplifies the integration of additional programming languages.
The web application was developed in such a way that the user may sequentially follow
the steps that lead them from image uploading to the degree of ME quantification.

The user sets the number of microscope magnifications when capturing the image
(Figure 6(1)). This determines the size of each pixel (in microns). Then, after loading the
image (Figure 6(2)), the application allows the user to select a pre-trained model from
several algorithms, or to manually train the model by marking the points of interest on
the image (Figure 6(3),(4)). Afterwards, the application classifies the image and returns
the number and extension of fat vacuoles over the total image, as well as the macrovesicle
percentage (Figure 7).

Figure 6. Web application interface image classification steps: (1) Objective magnification selector;
(2) Image uploader; (3) Manual or pre-trained model selector; and (4) (if pre-trained) algorithm selector.
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Figure 7. Result of image classification and quantification of fatty vacuoles.

The whole image classification process was conducted in python, mainly using the
scikit-image [31], scikit-learn [32], and Keras libraries. Its integration with R was carried out
using the R Reticulate library [33], which allows for the execution of python code inside
R applications.

5. Conclusions

Sudan staining is a suitable stain procedure, which can be used in the evaluation of
macrovesicular steatosis of the graft in pre-liver transplantation histopathological eval-
uation. It is a quick and easy technique that, unlike the hematoxylin and eosin stain, is
specific to fat identification. Due to its specificity, this stain is suitable for automatic and
quantitative evaluation by the use of machine learning algorithms.

The machine learning algorithms Naïve Bayes and KNN showed the best results,
in terms of speed and accuracy, in all tests performed for the automatic identification of
macrovesicular steatosis in Sudan pre-transplant liver stained sections.

Therefore, the automatic evaluation of macrovesicular steatosis may be performed
during the histopathologic evaluation of the quality of the liver graft in the pre-transplant
evaluation by using Sudan-stained sections, while other parameters can be established by
direct examination of hematoxylin and eosin stained sections by an expert pathologist.
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