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Abstract: This article presents a control system for a cutting tool condition supervision, which
recognises tool wear automatically during turning. We used an infrared camera for process control,
which—unlike common cameras—captures the thermographic state, in addition to the visual state
of the process. Despite challenging environmental conditions (e.g., hot chips) we protected the
camera and placed it right up to the cutting knife, so that machining could be observed closely.
During the experiment constant cutting conditions were set for the dry machining of workpiece (low
alloy carbon steel 1.7225 or 42CrMo4). To build a dataset of over 9000 images, we machined on a
lathe with tool inserts of different wear levels. Using a convolutional neural network (CNN), we
developed a model for tool wear and tool damage prediction. It determines the state of a cutting
tool automatically (none, low, medium, high wear level), based on thermographic process data. The
accuracy of classification was 99.55%, which affirms the adequacy of the proposed method. Such
a system enables immediate action in the case of cutting tool wear or breakage, regardless of the
operator’s knowledge and competence.
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1. Introduction

A new technological era, called Industry 4.0, will change all manufacturing-related
fields [1]. The industrial and production processes will be transformed into intelligent
factory systems [2]. Production will be controlled autonomously and dynamic, with a high
degree of automation [3]. Smart systems are replacing human decisions.

Due to high competition on the market and corresponding lowering of the production
costs, minimal worker presence, or even unmanned machining, is becoming the key trend
of the majority of manufacturing industries [4]. In manufacturing, the main source of
financial and time losses arises from material waste due to machining with an excessively
worn tool, and machine downtime [5].

We asked ourselves: Why are robots already replacing workers in assembly lines,
at workpiece manipulation, welding, casting, etc., while turning and milling machine
operators are still not (entirely) replaceable? The field of Computer Numerical Control
(CNC) machine augmentation is under intensive development, which is resulting in a
greater performance of the machines, capable of multiple operations on a single machine
(e.g., lathes with a driven tool and an additional y-axis allows a milling operation), faster
machining, etc. Even the latest modern machines, whose purpose is an individual or small
series production, are not capable of autonomous operation without human supervision.

It is crucial for automatic, or so-called unmanned machining, to detect wear of a cutting
tool edge in time to prevent negative effects on the quality of a machined surface [6,7].
Excessive cutting tool wear can also lead to serious workpiece or machine damage [8].
The wear control of a cutting tool benefits product quality enhancement, tool-related costs’
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optimisation, and assists in avoiding undesired events. In small series and individual
production, the machine operator is the one who determines when to change a cutting
tool, based upon their experience. Bad decisions can often lead to greater costs, production
downtime and scrap.

We focused on the turning process. The condition of a cutting tool affects not only
workpiece properties (geometrical, surface, and structural attributes), but also the quantity
of waste and frequency of production interruptions [9]. When should one change a cutting
tool? As seen in Table 1, this is decided by a machine operator based on their expertise and
informal knowledge (feeling, personal judgment, and experience), depending on numerous
criteria [8,10].

Table 1. Methods for determining the level of a cutting tool’s wear.

Direct Indirect
Visual inspection Cutting forces
Chip colour and shape

Roughness of a machined surface
Vibrations, acoustic emissions
Temperature

Stochasticity of the process for a cutting tool wear determination can lead to the
following scenarios:

e the cutting tool is still suitable for machining after replacement: A consequence of this
is an increase of cutting tool-related costs, and time spent needlessly for tool exchange;
e  the machining takes place using a worn or broken cutting tool: A consequence is a low
quality of the machined surface, overheating of the workpiece and tool material, an
increase of vibrations and cutting forces, which has negative effects on the machine, etc.

In practice, both scenarios occur regularly, especially due to less experienced operators,
who cannot make the right decisions about a cutting tool replacement. Cutting tools’
catalogues contain cutting tool lifetime information-the time that a tool spends in contact
with the workpiece. Such data would theoretically be useful if the machining process could
be executed under the exact same conditions that were used during lifetime estimation. In
a real environment, there are no such conditions-defects in the material, welded areas with
high hardness, cutting path interruptions, uneven cooling, vibrations during machining,
and other disturbances have a significant effect on the cutting tool lifetime. There is a
possibility for a cutting tool to damage even at a first cut, which makes active decision-
making based on constant tool supervision fundamentally better than lifetime-based
decision-making.

An important influencing factor on the cutting tool wear is a tool’s thermal load.
Finding correlations between machining parameters (turning, milling) and the cutting
temperature is frequently an object of research [11-15]. There are similar conclusions:

e higher temperature causes greater tool wear, and
e cutting speed has the largest effect on the temperature.

Correlations are, therefore, inversely proportional. Choosing optimal machining
conditions is a significant challenge (Figure 1).

It is the interdependence of temperature and cutting tool wear that makes the method
of thermography one of the possible ways for machining process control.

The optimisation of machining processes requires thorough study and comprehension
of the phenomena. In 1996 an infrared (IR) camera was used to measure the temperature of
chips and a cutting tool. They found that after the cutting edge is broken, the temperature
of a tool rises quickly. Furthermore, there is a connection between the temperature and the
wear of a tool’s flank surface [11].
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Figure 1. Inverse proportionality of machining parameters.

The heat transfer during the turning process and lathe tool life have been researched,
so that, along with the IR camera measurements, they also included thermocouple mea-
surements, which were positioned on the tool and workpiece. A correlation has been
discovered between locations on the tool with the maximum temperature and area of insert
wear [12].

The IR camera measurements are ordinarily carried out laterally, i.e., perpendicular to
the direction of the cutting speed, so a model was developed that calculates temperatures
at the contact point between a tool and a chip. This is done based on the given process
parameters (cutting force, chip thickness, tool-chip contact length) and a lateral thermal
image of the tool [13,14]. It was concluded that a two-fold increase in the cutting speed
(from 100 m/min to 200 m/min) causes a 20% increase in the tool temperature. Meanwhile,
doubling the feed rate (from 0.1 mm/rev to 0.2 mm/rev) yields only 10% higher tempera-
tures. All measurements were made without cooling during the machining process, due to
the presence of the IR camera [13].

Another research focused on a correlation between the cutting parameters and temper-
ature gradients on the cutting insert, where a thermal image was observed during turning
(heating of insert and chips). Cutting forces were also studied, as well as chip shape and
tool-chip contact length. The monitoring of the process with an IR camera was necessary
to provide an adequate method for researching the mechanical and thermal aspects of
cutting [15].

Many authors considered the possibilities of automatic cutting tool condition control.
They found that the most suitable approach for modelling non-linear dependencies are
Artificial Intelligence methods, namely artificial neural networks (ANN), fuzzy logic
systems, or a hybrid of both [9,16-18].

Automatic prediction of the remaining life of cutting edge is possible using ANN.
Accuracy of predicted flank wear is proven by conventional methods (measurements) and
image recognition with the special software Neural Wear [18].

An algorithm was developed that processes the thermographic image of a tool insert:
It divides it into two parts (the cutting area and surroundings), and from the cutting area
discerns two temperatures that represent an input for the neural network. The temperature
of the surrounding area is used to calculate the heat transfer to the rest of the tool insert. A
neural network makes predictions about the temperature at the point of contact between
the tool and the chip, that would otherwise be impossible to measure during turning due
to physical limitations [19].

The general regression neural network (GRNN) enables a prediction of the tool’s nose
wear on the cutting edge. Input data are speed, feed rate, and cutting depth. Results
indicated the need for an additional three parameters (three force components) in order to
get better prediction capability [20].

It was confirmed that the cutting tool flank wear affects the cutting force amplitude.
Using a backpropagation neural network (BPNN), the percentage error of the predicted
wear was found to be between 0.6% and 15.1%. The measured forces and parameters of
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turning were used as inputs for the neural network, which was comprised of 30 neurons in
the hidden layer and eight neurons in the output layer (output neurons represent binary
inscription of the flank wear, i.e., eight features of the wear) [21].

The insert wear can also be monitored with computer vision [22,23]. The algorithm
discerns four separate wear types: wear of the flank surface, fracture, built-up edge (BUE),
and chipping [23].

Another algorithm that analyses the insert, calibrates and calculates the average width
and a tool wear area automatically with a 3% absolute average error [24].

Real-time tool wear and breakage detection was developed on a CNC machine. The
input data were the electrical current, measured on a spindle, which was analysed with the
deep learning method (a convolutional neural network with the backpropagation) [25,26].

In more recent research [27], tool wear during milling was monitored with the help
of standard images and deep learning. Tools were divided into four categories of wear,
each containing approximately 2000 images. Based on the database, the system learned to
predict the wear with a 96.20% accuracy.

To the best of our knowledge, there are no studies that consider the control of a
machining process with an IR camera and direct cutting tool condition recognition, based
on a thermographic image and a prediction model. The novelty of this research is the
classification model for the tool condition monitoring during machining, which achieves
extremely high accuracy. The process is monitored with an IR camera which captures
multiple factors simultaneously, that are shown in Table 1: Visual inspection, temperature
condition, chip shape. Our research surpasses the current state-of-the-art because the
proposed solution contains not only temperature measurements and assumptions based
on temperature value, but a 2D-colour thermographic image, which contains substantially
more features. Such an image is the bearer of a huge amount of information because
each image point (i.e., pixel) is separate data, which store some absolute value. Likewise,
the pixel’s location in the image is equally important, so is the arrangement of similar
pixels and the differences between them, etc. Classical analytical models are not capable
of decision-making based on such a large quantity of input data, therefore we developed
an intelligent system, which has learned to correlate image features with the none, low,
medium, and high tool wear levels. Results are highly useful for optimizing costs and
processes in the manufacturing.

This paper is organised as follows: Section 2 presents the proposed method for the
monitoring of the machining process and prediction model, based on the CNN; Section 3
reports the Results and Discussion; Section 4 describes the conclusions of the paper.

2. Materials and Methods
2.1. System Overview

We divided cutting tools into four categories, according to the wear level: none, low,
medium, and high. The type of wear is not of interest here. Instead, we inspected the
suitability of cutting tools for further turning. A similar aspect was used in the research [28]
where tools were characterised into two groups: serviceable or disposable.

Each category of the cutting tool condition has been provided with more than 2000 images,
which were used for compiling train and test datasets for classification model preparation.

Images were inspected and sorted into appropriate folders. The Convolutional Neural
Network was trained using a training dataset, and later tested with yet-unseen test images.

The research was divided into two major sections:

e experimental part on the lathe machine (intended to build a large dataset), and
e  processing of the acquired data and training/testing of the CNN model.

The whole procedure of developing the tool condition monitoring model from data
acquisition (thermographic images of cutting tools) up to the use of the trained model, is
depicted in Figure 2.
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Figure 2. Schematic representation of the model for an intelligent control of the cutting tool wear level and breakage,

using thermography.

2.2. Determining Cutting Tool Condition

It is proven that the flank wear grows proportionally with the machining time [29]. There
are recommendations (ASTM Standard) on how to measure tool lifetime, based on the flank
wear level (designation VB) or the width of the worn edge. In the case of even wear, the
VB = 0.3 mm, but at uneven wear, the maximum local wear can be VB = 0.6 mm [8,30]. The
meaning of VB is shown in Figure 3.

Flank wear

Figure 3. A cutting tool with the flank wear (VB).

Some authors have pointed out the deficiency of such criteria: It does not take into
account the geometry of a tool [8,31,32]. In an in-depth study [32] where the effects of the
tool wear were analysed, Niaki presented an indirect method for the tool wear estimation.
Total tool height changed due to wear, which leads to the dimensional deviations of the
workpiece (Figure 4). Its diameter was measured after each cut at three locations. He
observed how the real value deviated from the expected one (AD). The correlation between
AD and flank wear VB was confirmed [32]. The method was checked and approved by
comparing a predicted flank wear VB and measured deviations of the workpiece’s diameter
AD at seven distinct feed speeds.
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Workpiece

Cutting tool

Lost tip of the insert

Figure 4. The effect of a cutting tool wear on the workpiece diameter deviation (r; is actual workpiece
radius, r, is expected workpiece radius in case of no tool wear).

In the scope of the research we determined the cutting tool quality according to
two methods:

(1)  With measurements: Niaki’s method [32]. The method is suitable because:

a tool insert can stay in the fixture permanently,
measurements are fast, and they interrupt the machining process only momen-
tarily (which is important for temperature monitoring, because insert cooling
between individual cuts is undesirable),

e the calibrated micrometre is the only additional equipment needed (an
affordable solution),

e the method is suitable for multiple measurements, for it is not time-consuming
(a large database is required).

(2)  Experimental: The quality of a cutting tool’s condition will be determined by an
experienced expert. An algorithm will replace the expert in decision-making, therefore
we want it to make decisions in the same way as the expert. They take into account
all factors shown in Table 1, based on their experience.

All tool wear was concatenated into three classes, according to the intensity (low,
medium and high). Altogether, this gives us 4 classification categories. Allowed deviation
of the workpiece diameter due to insert wear was determined based on dimensional
requirements, the diameter of the workpiece, and the tool insert type. Limit values of the
wear level are written in Table 2.

Table 2. Limit values of the wear level.

Wear Level Dimensional Deviations of the Workpiece
No wear AD < 0.02 mm
Low wear 0.02 mm < AD < 0.04 mm
Medium wear 0.04 mm < AD < 0.07 mm
High wear 0.08 mm < AD

2.3. Experiments

The experimental part of the research was designed to acquire a dataset. For this
section, we set two goals we wanted to achieve:

e Acquisition of thermographic images during the machining process (turning) at
maximal proximity to the cutting tool,
e  Acquisition of an adequate amount of images for each distinct cutting tool’s condition.

Machining operations were executed on a CNC machine, which was adapted to suffice
the aforementioned requirements. The following section presents the hardware that was
used in experimentation.
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2.3.1. Experimental Setup

The used IR camera, a FLIR E5 (Flir Systems, Inc., Wilsonville, OR, USA), can capture
nine images per second (9 Hz capture frequency), and a resolution of 120 x 90 pixels.
When transferring an image to the computer, a time delay and loss occur, so the number
of captured images per second was halved (4.5 image/s, or 1 image on every 0.222 s).
We used the following camera settings: Rainbow scheme, without edges, emissivity:
¢ = 0.60. Emissivity measures how efficiently an object radiates heat. Values can be
between 0 (perfect mirror that reflects all energy) and 1 (a blackbody that absorbs and
radiates all energy). Value ¢ = 0.60 was selected according to the IR camera’s distributor
recommendations based on the material of the workpiece.

The camera must be capturing images during the machining process, so it needs to be
protected against hot chips. We made a polymethyl methacrylate (PMMA) box for camera
protection. PMMA does not transmit IR radiation, so a hole was made in front of the lens
where a custom IR window was positioned, which is both durable and IR light transmissive
(Figure 5). The box with the IR camera was mounted on the revolver right up to the cutting
tool-on the next tool place in the revolver. The distance between the machining location
and the IR camera was less than 10 cm, so the camera moved with the cutting insert. With
that, we ensured the reproducibility of image acquisition.

IR window

@ | (b)

Figure 5. The camera position in a lathe (a) Protection for an infrared (IR) camera; (b) Mounting of the IR camera closely

against the cutting knife.

The experiment was executed on an Okuma LC30 CNC machine (Okuma Corporation,
Aichi, Japan). The machining parameters (provided in Table 3) were selected according to
the tool manufacturer’s recommendations based on the material of the workpiece, which
was 1.7225 steel in the normalized state (Table 4). The initial dimension of the workpiece
was ® 60 mm, and the length of machining was 100 mm.

Table 3. Machining parameters.

Machining Parameter Value
Cooling without
Cutting speed 100 m/min
Feed 0.2 m/min

Cutting depth 0.25 mm (0.5 mm on diameter)
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Table 4. Chemical compositions (in weight %) of material of the machined workpiece (according to the manufacturer’s
specifications; SI] Metal Ravne, Slovenia).

Chemical Composition %
Si Mn Cr Mo Ni \' W
1.7225 42CrMo4 - >900 N/mm? 0.41 0.20 0.75 1.05 0.23 - - -

Mat. No. EN DIN Yield Strength

In the research we used a Sanstone KNUX160410L11 cutting tool (produced by
Zhuzhou Yifeng Tools Co., Ltd., Hunan, China), which is the standard turning insert,
made from carbide with a CVD coating (a thick, rough layer) and two cutting edges. Its
main purpose is steel machining, but it also works well for machining other alloys. The
cutting tool insert and holder are presented in Figure 6 and Table 5.

(a) (b)

Figure 6. The cutting tool: (a) Holder of type CKJNL; (b) Cutting tool insert KNUX.

Table 5. Cutting tool geometric data.

Cutting Edge Length Relief Angle Insert Included Angle Rake Corner Radius

16 mm 0° 55° negative 1.0 mm

2.3.2. Image Database

The acquired image database contains over 2000 images in each class of the cutting
tool wear. It is portrayed in Figure 7. The detailed explanation about two methods used for
determining cutting tool condition is in the Section 2.2.

IMAGE DATABASE
9,333 images
NO WEAR LOW WEAR
2,490 images 2,135 images

MEDIUM WEAR HIGH WEAR
2,213 images 2,495 images

Figure 7. The categorisation of the acquired images into wear classes.

As seen on the Figure 7 chips absorb the most heat generated during the cutting. At
the cutting speed 100 m/min approximately 70% of the heat is absorbed by chip, 20% by
tool, and 10% by workpiece [33]. On majority of the images the tool and the workpiece are
not even seen due to chip locations.
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The test set was created by selecting a portion of data from the training set, which the
model does not have access to during training. The same number of images were selected
for each class in the test set, which makes results more comparable. Nearly 10% of all
images in the distinct wear class were allocated to the test set (Table 6).

Table 6. The number of images in the training and test sets categorised by the wear class.

No Wear Low Wear Medium Wear High Wear
Training set 2270 1915 1993 2275
Test set 220 220 220 220
TOTAL 2490 2135 2213 2495

2.4. Convolutional Neural Network

The image recognition model used in this research was Inception v3. It is Google’s
pre-trained model based on a convolutional neural network, a type of deep learning neural
network. Inception was originally introduced during the ImageNet Recognition Challenge.
The model v3 has been shown to attain greater than 78.1% accuracy on ImageNet pictures-it
was the first runner-up in the competition [34]. The model was originally trained on over a
million images from 1000 classes on some very powerful machines [35].

Figure 8 presents the architecture of the Inception v3. The model was using loss func-
tion Softmax and was made of symmetric and asymmetric building blocks, including [36]:

convolutions,

average pooling,

max pooling,
concatenations,
dropouts,

fully connected layers.

Feature extraction Classification

=

Input:
299x299x3

3x

00060

Feature
vectors

Auxiliary Classifier S

LEGEND:

Concatenation Layer Output: Output:
Convolutional Layer (D) Dropout Layer 8x8x2048  n classes
o Average Pooling Layer G Fully Connected Layer
Max Pooling Layer Softmax Layer

Figure 8. Inception V3 architecture.

We used a pre-trained Inception V3 model, which is called transfer learning - storing
knowledge gained while solving one problem and applying it to a different but related
problem [37]. Since the model has been pre-trained, only the last few layers which are
shown on the Figure 8 must be trained on specific images (shown in Figure 9).
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Classification

No wear
Low wear
—> —> —>
. Medium wear
| High wear
Transfer values saved Fully connected layer Softmax layer Class determination
in Cache (2,048 features) (the probability of belonging (the one with the highest
to a particular class) probability)

Figure 9. Last layers of CNN that are trained for a specific case.

The Python libraries Keras and TensorFlow were used for model implementation.
TensorFlow is a software framework developed by the Google Brain team. In 2019, they
released version 2.0 with integrated Keras, which is a high-level API, written in Python.

2.5. Criteria for the Model Evaluation

Criteria for evaluating the performance of the classification were calculated using a
confusion matrix, which shows the classification of images into classes according to the
real situation and according to the model prediction. The matrix has the correct values
written in columns and the values specified by the model in the rows (or vice versa). The
correct predictions of the classifier lie on the diagonal of the matrix, and the incorrect ones
outside the diagonal.

The evaluation of the results is explained in Table 7 in the case of a confusion matrix
for a four-class qualification problem. The result categories are marked for Class 1, and the
index j denotes the individual class. The results in the contingency matrix are marked with
the following designations [32]:

e  True Positive (TP). When the actual value is true, and the result of the classification
model is also true;

e  False Positive (FP). When the model predicted false incorrectly when the actual value
was true;

e  True Negative (TN). When the actual value is false and the result of the classification
model is also false;

e False Negative (FN). When the classification model predicted true incorrectly when
the actual value was false.

Table 7. Confusion matrix for a j-class classification problem.

ACTUAL
Class 1 Class 2 e Class j
Class 1 TP FP FP FP
PREDICTED Class 2 FN N TN N
EN TN N TN
Class j FN TN TN TN

The recall [38] is calculated as the ratio between correctly classified positive cases
and all true positive cases. It is calculated for each class individually. This metric in-
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dicates the correctly categorised images in each actual class of wear (the column in a
confusion matrix):

Recall — R — no. of correct cla’ssificatiOfls into t@ejclass _ TP O
no. of actual instances into the j class TP+ FN

The precision [38] is calculated as the ratio between correctly classified positive cases
and all classified positive cases. It is determined for each class separately. These are,
therefore, correctly classified images in an individual classified wear class (the row in the
confusion matrix):

. no. of correct classifications into the j class TP
Precision = P = e . = 2
no. of all classifications into the j class TP+ FP

Accuracy [38] was calculated as the ratio between correctly classified cases and the
number of all cases (regardless of the wear class):

Accuracy — no. of all correct classifications Zle TP;
Y= o, of all classifications ~ no. of all classifications

®)

The evaluation indicator that can represent the performance of the model most intu-
itively is accuracy [39] and will be considered for the final CNN evaluation.

3. Results and Discussions
3.1. Classification of the Cutting Tool into 4 Classes

The first classification was performed using images, which are presented in Figure 7,
that is for four classes of cutting tools. The results of the classification are shown in Table 8.

Table 8. Confusion matrix for the tool wear classification.

ACTUAL .
No Wear Low Wear Medium Wear High Wear Sum Precision

No wear 216 1 7 0 224 96.4%

Low wear 1 219 0 0 220 99.5%

PREDICTED M;‘i‘;m 3 0 194 13 210 92.4%
High wear 0 0 19 207 226 91.6%

Sum 220 220 220 220
Recall 98.2% 99.5% 88.2% 94.1%

Number of correct classifications 836
Total number of images 880
Accuracy 95.00%

The model learned to recognise various wear levels of inserts successfully, and
achieved accuracy of 95%. The best recall was reached for classes “No wear” and “Low
wear”’; conversely, classes with the most prediction errors were “Medium wear” and “High
wear”. From the point of industrial applications, it is important never to miss-categorise
“High wear” to be of the class “No wear” or “Low wear”. This could lead to scrap (when
using a highly worn insert for machining to the final tolerance, one would not be able to
achieve the required dimensional criteria and surface roughness).
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3.2. Determining the Optimal Number of Training Iterations

The number of training iterations is one of the most typical topological parameters of
a Neural Network, that has a direct impact on the classification result quality. Generally,
increasing the number of iterations causes better model accuracy, but it also increases the
time needed for model training. The training time grows linearly, while the classification
accuracy converges to some value. The parameter of iteration number was varied, and the
CNN classification was carried out for ten distinct values of it. The number of iterations
was between 10 and 10,000.

Figure 10 shows that the accuracy of the model grows up to 5000 iterations, while the
additional iterations bring a minimal, insignificant difference. 5000 iterations were made in
24.6 min and the achieved accuracy was 95.0%. At 10,000 iterations and almost 50% longer
training time (36.5 min), the accuracy improved by just 0.5%. 5000 iterations have been
determined as the optimal choice.

100% 40

95% 35

c

90% 0 g
25

85% £

20 =

80% 5 2

c

75% 10 §

70% 5 ~
65% 0
0 2000 4000 6000 8000 10000

No. of iterations

Accuracy —&— Learning time [min] ‘

Figure 10. Graphical representation of the accuracy and the calculation time at different numbers

of iterations.

3.3. Classification of Cutting Tools into Three Classes

Prior results show that a CNN struggles most when classifying an insert with a medium
wear level. Machining-wise and in a sense of industrial use, this category makes little sense,
therefore, the decision was made to keep only three wear categories. The severity of the
wear at which a tool is still usable depends on the type of workpiece’s material and its
requirements (tolerance, roughness), and a general rule is written in Table 9.

Table 9. Adequacy of the tool according to the machining type.

Insert Suitable for

Rough Turning Fine Turning
No wear YES YES
Low wear YES NO
High wear NO NO

The classification was repeated with 3 categories of tool wear: None, low, and high
wear. The model training was performed in 5000 iterations. The results of the classification
are collected in Table 10.
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Table 10. Confusion matrix for the classification of the tool wear for three wear categories.

ACTUAL o
No Wear Low Wear High Wear Sum Precision
No wear 218 1 0 219 99.5%
PREDICTED Low wear 2 219 0 221 99.1%
High wear 0 0 220 220 100.0%
Sum 220 220 220
Recall 99.1% 99.5% 100.0%

The classification accuracy with three classes yielded 99.55%, which is an excellent
result, and confirmation of the possibility for the method to be used in a real process. Only
three of 660 images were classified incorrectly. CNN made a mistake when classifying “no
wear” and “low wear” tools. All images in “high wear” were predicted correctly, which
is a fundamental advantage. The model could be used in industry, especially because a
sudden tool breakage is the most significant factor for a smooth working process.

e  Number of correct classifications 657
o  Total number of images 660
e  Accuracy 99.55%

3.4. Classifications with the Exclusion of Image Series

The nature of the experiment caused each individual image to be a part of the series
(each cut of the insert represents one image series). Therefore, we made 13 different
classifications, where we excluded selected image series from the training set and used it
as a test set. CNN did not see any of the images from the test set during training.

We excluded the first cut (first image series) from the training set in the first classifi-
cation. The second image series was eliminated from the training set during the second
classification, etc. The training and test sets are shown in Table 11, and the results of all 13
classifications are presented in Table 12 and Figure 11.

Table 11. Learning and test sets for 13 classifications *.

Series number 1 2 3 4 5 6 7 8 9 10 11 12 13
No. of images in a series 424 497 498 502 508 505 499 503 487 510 520 486 489

Classification 1 T L L L L L L L L L L L L
Classification 2 L T L L L L L L L L L L L
Classification 3 L L T L L L L L L L L L L
Classification 4 L L L T L L L L L L L L L
Classification 5 L L L L T L L L L L L L L
Classification 6 L L L L L T L L L L L L L
Classification 7 L L L L L L T L L L L L L
Classification 8 L L L L L L L T L L L L L
Classification 9 L L L L L L L L T L L L L
Classification 10 L L L L L L L L L T L L L
Classification 11 L L L L L L L L L L T L L
Classification 12 L L L L L L L L L L L T L
Classification 13 L L L L L L L L L L L L T

L= Learning dataset, T = Test dataset.
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Accuracy

100 %

98 %

96 %

94 %

92 %

90 %

Table 12. The classification accuracy for each test set.

Tested Image Set Accuracy No. of Incorrect Predictions
Series 1 93.63% 27
Series 2 100.00% 0
Series 3 99.80% 1
Series 4 100.00% 0
Series 5 100.00% 0
Series 6 99.80% 1
Series 7 99.80% 1
Series 8 100.00% 0
Series 9 100.00% 0
Series 10 99.61% 2
Series 11 99.62% 2
Series 12 99.79% 1
Series 13 100.00% 0
30
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Figure 11. Classification results for different image test sets.

As expected, the greatest deviation was in the first exclusion of the image series. What
are the possible causes? The first cut was not uniform. The workpiece does not have an
even diameter, therefore conditions were varying along with the cut-the cut depth was not
constant. The second, very important aspect is temperature. The workpiece was initially at
room temperature. At the first cut, the workpiece was cold, so we infer that it was cooling
the insert. Training of the model was executed exclusively on later cuts when both insert
and workpiece were already heated, but the first cut was in the test dataset. CNN did not
know about any of the images with a cold insert and a workpiece. Besides everything
written here, the classification accuracy was 93%, which was well above our expectations.

In later cuts the tool and the workpiece were at least partially heated. When we
exclude any other series that followed, the classifications become comparable and are all
above 99.6%.

The average classification accuracy for all 13 classifications was 99.39%, although if
only series from 2 to 13 are taken into account, it was even higher-at 99.87%. For series
from 2 to 13, there were four out of eight incorrect classifications, where an image was
one of the first three in the series. It is important that the error is made in random images,
and never in two subsequent images. We propose that future system upgrades should
include analysis of three subsequent images in the classification and determine wear level
only if all three predictions are of the same class. The proposed method would enable the
classification accuracy to be 100%.
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4. Conclusions

Monitoring of the cutting tool wear during the machining process is crucial for final
product quality, as well as manufacturing costs’ optimisation. Due to the extreme conditions
in the proximity of the cutting (hot chips), in-process tool monitoring becomes difficult. In
the scope of the research, we found a solution for equipment protection and developed a
method for real-time process monitoring in the immediate proximity successfully.

An IR camera was used, which captures the following process attributes: Visual
inspection of the surroundings, workpiece, and chips; acquisition of the temperature
conditions and the chip shape. The absolute temperature value was not measured, and the
IR camera automatically adjusts the temperature scale for each image. Image recognition is
based on the temperature gradients, not on the absolute temperatures.

The research objective was to develop a classification model that would discern the
wear level of the cutting insert autonomously, based on deep learning and the convolutional
neural network.

First, we categorised the tool condition into four classes (no wear, low wear, medium
wear, and high wear). The model was trained using over 8000 images. The test set contained
880 images, out of which 836 were classified correctly. With that, the achieved classification
accuracy was 95.00%. Most of the incorrect classifications happened in the classes “medium
wear” and “high wear”. For images in series, which were captured from the start of turning
(cold tool), the CNN categorised them in the better category rather than the actual. While,
after turning for some time (tool and workpiece were heated), some images were classified
as a higher wear level than they should be.

It is unusual for industrial machining to distinguish between medium wear level
and high wear level. The medium wear level of the insert produces low quality surfaces,
also such an insert is overheating and breaks after a short usage time. This model also
distinguished between these two categories badly. Based on the classification results and
the usefulness for industry we decided that a more sensible categorisation should be into
just three classes (no wear, low wear, and high wear). We repeated the classification.
Results for the three classes were astounding, because the reached accuracy was 99.55%
for a random test set. The average classification accuracy was 99.39% for 13 classifications,
where we excluded the image series for the individual test set.

Results were compared with the research which was done by Wu et. al. [27]. Their
goal was automatic cutting tool wear type determination (adhesive wear, tool breakage,
rake face wear, and flank wear), but they did not determine the adequacy of the worn
tool for the machining. They used a classical camera and the CNN for image analysis.
The achieved accuracy was 96.20%. The tool classification according to it’s suitability for
further machining has already been done by Garcia-Ordas et.al. [28] and achieved accuracy
of 90.26% Our system with an IR camera, which was proposed in this article, turned out
to be more effective (better accuracy). Its additional benefit is the monitoring of a tool
during machining.

The research objective was to develop a model, that makes decisions in place of the
human. We were successful in that. With more than 99% model accuracy we affirmed the
capability of decision-making about the cutting tool condition, using the IR camera and
Artificial Intelligence.

Other smart systems often theoretically determine the type and the size of a tool wear.
The presented model makes decisions from a practical point of view-is this tool still suitable
for further machining? Practical significance of the research is reliable and fast detection
of the tool wear, which ensures savings and an increase of machined surface quality in
the industry. The advantage is also a relatively low investment cost, which is estimated at
2500 EUR for all needed equipment.

It was confirmed that the method is suitable for determining the cutting tool condition
in a real industrial environment, and that it enables the determination of the tool condition
at the first cut.
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5. Future Work

For industrial use, we propose an additional algorithm, which analyses three subse-
quent image classifications and determines wear only if all three images belong to the same
class. This mitigates the error of random incorrect classifications.

Future work will include an efficiency analysis of the proposed system after the cut
(similar to Wu et. al. [27]) and finding the optimal tool condition check time (right after
cutting, a few seconds after cutting, etc.).

The experiment was performed under constant cutting conditions. Future work
anticipates changing parameters (one by one) and observing which cutting conditions can
be changed, no to affect the accuracy of the proposed model. For major changes in cutting
conditions (cutting tool, material, etc.) a new learning base should probably be done.
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Abbreviations

The following physical quantities and abbreviations are used in this manuscript:
ANN Artificial Neural Networks

BPNN  Backpropagation Neural Network

BUE Built-Up Edge

CNC Computer Numerical Control

CNN Convolutional Neural Network

FN False Negative

FP False Positive

GRNN  General Regression Neural Network
IR Infrared

P Precision

PMMA  Polymethyl methacrylate
R Recall

el Actual workpiece radius

9 Expected workpiece radius
TN True negative

P True positive

VB Flank wear

AD Diameter deviation
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