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Abstract: This work proposes a new approach to improve swarm intelligence algorithms for dynamic
optimization problems by promoting a balance between the transfer of knowledge and the diversity
of particles. The proposed method was designed to be applied to the problem of video tracking
targets in environments with almost constant lighting. This approach also delimits the solution space
for a more efficient search. A robust version to outliers of the double exponential smoothing (DES)
model is used to predict the target position in the frame delimiting the solution space in a more
promising region for target tracking. To assess the quality of the proposed approach, an appropriate
tracker for a discrete solution space was implemented using the meta-heuristic Shuffled Frog Leaping
Algorithm (SFLA) adapted to dynamic optimization problems, named the Dynamic Shuffled Frog
Leaping Algorithm (DSFLA). The DSFLA was compared with other classic and current trackers
whose algorithms are based on swarm intelligence. The trackers were compared in terms of the
average processing time per frame and the area under curve of the success rate per Pascal metric.
For the experiment, we used a random sample of videos obtained from the public Hanyang visual
tracker benchmark. The experimental results suggest that the DSFLA has an efficient processing time
and higher quality of tracking compared with the other competing trackers analyzed in this work.
The success rate of the DSFLA tracker is about 7.2 to 76.6% higher on average when comparing the
success rate of its competitors. The average processing time per frame is about at least 10% faster
than competing trackers, except one that was about 26% faster than the DSFLA tracker. The results
also show that the predictions of the robust DES model are quite accurate.

Keywords: swarm intelligence; meta-heuristic; dynamic optimization problems; video target tracking;
time series forecasts

1. Introduction

The goal in optimization problems is the search for a solution that minimizes (or
maximizes) a cost function associated with the problem in a set of possible solutions called
solution space.

Evolutionary algorithms (EAs) and swarm intelligence algorithms (SIAs) are two
important categories of optimization methods. EAs use a population of agents or particles
that explore the solution space in search of the optimal solution inspired by the Darwin’s
theory of the evolution of species. SIAs use a population of particles that explore the
solution space while interacting with each other and with the environment, resulting from
this interaction a coherent global pattern [1]. Both algorithms are called meta-heuristics.

The advantages of the swarm intelligence strategy that make it so popular are the
simplicity and flexibility of the algorithms, their derivative-free mechanisms, and their
avoidance of the local optimum [2].

Some examples of SIAs are: Particle Swarm Optimization (PSO) [3], Shuffled Frog
Leaping Algorithm (SFLA) [4], Salps Search Algorithm (SSA) [5], Cuckoo Search (CS) [6],
Ant Colony Optimization (ACO) [7], Firefly Algorithm (FA) [8], and Gray Wolf Optimiza-
tion (GWO) [2]. For a recent up-to-date list of meta-heuristics, see [2].
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The common characteristics of SIAs are that they have search engines inspired by
nature, are based on populations, and are interactive. Their main difference, apart from the
source that inspires their behavior, is the way that the solution space is globally and locally
explored by agents [1].

Originally, SIAs were designed for stationary optimization problems in which the
optima do not change within the solution space, and the algorithms efficiently converge
to the optimum or near-optimum solution. However, in many real-world situations,
optimization problems are subject to dynamic environments in which the optimum can
change its position within the solution space. A strategy to address this challenge is to
adapt SIAs to work in dynamic optimization problems (DOPs) [1] by considering the
optimization environments as a sequence of stationary optimization problems.

Video target tracking is the task of estimating the position and trajectory of one or
more targets in a digital video image sequence. A digital video is a sequence of ordered
images or frames, and a target can be any object of interest in a scene, e.g., one or more
people walking on a sidewalk, cars traveling down an avenue, or animals running in
the field.

In the last decades, the increasing popularity of video cameras and digital computers,
technological advances, and the great extent to which these products are offered on the
market have led to an increased interest in automated video analysis for various real-
world applications, e.g., surveillance and security [9], human–machine interfaces [10], and
robotics [11]. A more detailed introduction to the subject is provided in [12].

Targets can be represented by their shape and appearance. The appearance of a target
is characterized by features (e.g., color, texture, corners) that are extracted from a specific
region of the target [12].

According to [13], there are two methods of estimating the target’s trajectory, online
and batch. The online method uses the current and previous frames to estimate the state of
the target in each time period and the batch method uses the entire sequence of frames to
optimize the target estimate in each time using past and future information, however, the
batch method cannot be used in applications where it is necessary to track the target in real
time. In this work we will only deal with online tracking of a single target.

Tracker models can be classified into two categories according to [14]:

• Category 1 whose models are based on stochastic algorithms. These algorithms are
used to predict the position of the target in each frame according to a pattern of
movement and observable characteristics of the target. The main examples are the
Kalman Filter (KF) [15] and the Particle Filter (PF) [16];

• Category 2 whose models are based on template matching. These models select
regions of the current frame and extract certain observable characteristics from these
regions, which are then compared with the respective characteristics of one or more
templates of the target to be tracked. The most similar region indicates the likely
position of the target in the current frame. A classic tracker in this category is the
Mean Shift (MS) [17] and other models in this category can be found in [18]. Therefore,
there is a class of trackers whose models are based on optimization algorithms since
the likely position of the target in a frame is indicated by the position of maximum
similarity between the templates and the candidate target [19–23].

It is worth mentioning that many authors have proposed the use of SIA to optimize
the trackers based on PF algorithm [14,24,25]. Furthermore, in recent years, great progress
and importance have been given to trackers based on Correlation Filter (CF) [26–28] and
Deep Learning (DL) [29–31] due to the good results in visual tracking.

Video target tracking is a challenging task because of the complexity generated by
interference from several factors [32], such as: partial or total occlusion of the target; sudden
changes in ambient lighting and movement of the target; rotations, deformations and scale
changes of the target; blurred and noisy digital images; videos recorded by low-resolution
cameras; and image backgrounds with similar aspects to the target. The interference
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of factors modifies the optimization environment. Therefore, the video target tracking
problem is a particular case of a DOP.

The objective of this work is to propose, analyze and discuss a DOP-enhanced SIA
approach applied to video target tracking. A tracker based on the meta-heuristic Shuffled
Frog Leaping Algorithm (SFLA) [4] is proposed and adapted to DOPs, the Dynamic SFLA
tracker (DSFLA).

The proposed method introduces a procedure to select some good solutions from the
previous frame and consider them in the next frame, maintaining the diversity of solutions
and an adaptive transfer procedure for the selected solutions. Another procedure of the
proposed method is the delimitation of the solution space in a promising region of the
image by forecasting time series. A version of the double exponential smoothing (DES) [33]
model that is robust to outliers is used to forecast the position of the target and delimit the
solution space in a promising region for a more efficient search.

The quality of the tracking will be measured by the area under curve (AUC) of the
success rate per Pascal metric or One-Pass Evaluation (OPE). The average processing time
per frame will also be analyzed.

The quality results of the DSFLA tracker will be compared with the quality results
obtained from other SIA-based video target trackers: the PSO tracker whose meta-heuristic
is Bare Bones PSO (BBPSO) [34], the Adaptive Discrete Swarm Optimization (ADSO)
tracker [22], the SFLA tracker whose meta-heuristic is SFLA [4] and the SSA tracker [23]
whose meta-heuristic is SSA [5].

The innovations and contributions presented in this work are:

• A new swarm intelligence algorithm for dynamic optimization problems;
• A new video target tracker;
• An appropriate algorithm for optimization problems with discrete solution space;
• A new and adaptive method of knowledge transfer between two optimization envi-

ronments and the reduction of the solution spaces based on an efficient time series
forecast model;

• A case study in the area of video target tracking showing results compatible with
state-of-the-art models based on SIA;

• In situations of controlled ambient light, small occlusions and little camouflage of the
target, the DSFLA is fast and stable in tracking any target. Especially, it is robust in
situations where there are rotations or fast movements of the target, in low resolution
videos corrupted by blurred or noisy interference.

Table 1 presents the summary of characteristics and the strengths and weaknesses
of the trackers treated in this work. For all trackers covered in this work, the common
characteristics are: they were designed for online tracking of a single target and are based
on SIA for optimization problems. They are general propose trackers.
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Table 1. The features of the trackers.

Trackers Features Weaknesses Strengths

PSO OP: stationary; SS: continuous; DSS:
not; KT: not; PS: not.

unstable results and ambient
light variation. fast processing.

ADSO OP: dynamic; SS: discrete; DSS: yes.
(adaptive); KT: yes; PS: not.

unstable results and ambient
light variation. fast processing.

SSA OP: stationary; SS: continuous; DSS:
not; KT: not; PS: not.

slow processing and ambient
light variation. stable results and fast target movement.

SFLA OP: Stationary; SS: discrete; DSS: not;
KT: yes; PS: not. ambient light variation. fast processing, stable results, fast

target movement and target rotations.

DSFLA OP: dynamic; SS: discrete; DSS: yes.
(adaptive); KT: yes; PS: yes (adaptive). ambient light variation. fast processing, stable results, fast

target movement and target rotations.

Note: OP means “optimization problems”; SS means “solution space”; DSS means “delimiting solution space”; KT means “knowledge
transfer”; and PS means “particle selection”.

The next section presents a summary of the latest works related to the proposed theme.

2. Related Work

Canalis et al. [19] were one of the first to apply the PSO algorithm to a video target
tracking issue. The results were promising, comparable to the results of the traditional
Mean Shift (MS) [17] and Particle Filter (PF) Bootstrap [16] trackers. In [20], an improved
version of the PSO produced results that outperformed those in [19]. However, both
approaches used the meta-heuristic in a stationary optimization environment and there
was no delimitation of the solution space in a region of the image.

Gao et al. [21] proposed a tracker based on the Cuckoo Search (CS) [6] algorithm.
The CS algorithm mimics the predatory behavior of the cuckoo bird in relation to the
laying of eggs during the nesting period. They used six challenging videos and the
Bhattacharyya distance [17] from the color histogram based on a space kernel as a measure
of similarity between targets. They compared the performance of the CS tracker with the
PF, MS, PSO and more four versions of the PSO trackers, and the CS outperformed the
other competitors in terms of processing time and tracking quality using the Euclidean
distance from the central points of the estimated and true targets. However, similarly
to the previously mentioned trackers [19,20], the CS tracker considers only stationary
optimization environments.

Bae et al. [22] presented the Adaptive Discrete Swarm Optimization (ADSO) algo-
rithm, a tracker that applies solution space delimitation in a version of the PSO algorithm
for the discrete space of solutions. PSO was originally designed for stationary optimization
problems with continuous solution space, therefore, when it is applied to discrete opti-
mization problems, the chance of the PSO converging prematurely to local optimum is
greater [22]. ADSO was the first video target tracking algorithm that employed the swarm
intelligence method in DOPs for discrete solution spaces.

ADSO works in dynamic optimization environments by transferring knowledge from
one frame to the other through a probability function that controls the diversity of the
particles. This function assigns a probability to each particle according to the degree of
occlusion of the target, as defined by two thresholds, th1 and th2 where 0 ≤ th1 < th2 ≤ 1.
These probabilities define whether each particle variable will receive the value of the
optimum or if it will receive a random value that covers the entire amplitude of the variable
within the solution space.

Bae et al. [22] used seven videos from the public benchmark Pami (http://sites.
google.com/site/benchmarkpami/, accessed on 24 November 2020) and the Bhattacharyya
distance from the HSV color histogram as a measure of similarity between targets. The
results of ADSO outperformed those of PSO trackers and another EA-based tracker in terms
of processing time and Euclidean distance x and y coordinates between estimated and true
targets. The results showed that the ADSO is good for tracking fast-moving targets.

http://sites.google.com/site/benchmarkpami/
http://sites.google.com/site/benchmarkpami/
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Zang et al. [23] presented a tracker based on the Salps Search Algorithm (SSA) [5].
The SSA meta-heuristic mimics the behavior of a group of salps swimming and foraging
in the deep ocean. The salp is a member of the Salpidaes family; it has a transparent
barrel-shaped body and swims by propulsion, forming long chains. This chain (particles)
is formed by a leader who seeks a source of food (the optimal solution) and by followers
who follow the movement of the leader. The movement of the leader is responsible for the
global exploration of the solution space while the movement of the followers is responsible
for the local exploration. The algorithm performs L search iterations in the solution space
and, at each iteration, the movement of the leader is controlled by a function that makes a
balance between local and global exploration.

Zang et al. [23] used 13 videos from the public benchmark (in http://www.visual-
tracking.net, accessed on 24 November 2020) and the cross-correlation coefficient of the
Histogram Oriented Gradient (HOG) characteristic [35] as a measure of similarity between
targets.

The results in [23] outperformed another ten state-of-the-art trackers in terms of
performance quality and speed. However, the SSA tracker is based on optimization in
stationary environments and does not delimit the solution space in a region of the image.

3. Architecture
3.1. Swarm Intelligence Algorithm in a Dynamic Optimization Problem

Optimization problems entail searching for an optimal (or near-to-optimal) solu-
tion among a set of feasible solutions. This search may or may not be subject to one or
more restrictions.

Solutions are made up of variables associated with the problem. A solution is feasible
if the values assumed by the variables satisfy the restrictions. A feasible solution is optimal
if it minimizes or maximizes the objective function (or fitness function or cost function),
which measures the quality of solutions.

SIAs reproduce the collective intelligence that emerges from the behavior of a group of
agents and are inspired by nature. SIAs were designed for stationary optimization problems
in which the parameters, the solution space, and the objective function do not change
during the optimization process. However, in many real-world situations, optimization
problems are subject to dynamic environments in which the optimum can change its
position within the solution space during the optimization process. The optimization
environment of a DOP is more challenging than that of a stationary optimization problem
since repeated optimization is required in the presence of a changing optimum [1].

A DOP can be defined as a sequence of stationary problems that need to be optimized
and can be formally described as follows: Optimize f (p, t) subject to

P(t) ⊆ S, t ∈ T, (1)

where S is the solution space, t is the time, and

f : T × S→ R (2)

is the objective function that associates a real number to each solution p ∈ S. P(t) is the set
of feasible solutions over time t. Each feasible solution p ∈ P(t) ⊆ S consists of a vector of
d dimensions p = (p1, p2, . . . , pd), where each component of this vector corresponds to a
variable of the problem.

Each feasible solution in P(t) is associated with a set of neighbors N(p) ⊆ P(t) and
the feasible solution p′ ∈ N(p) is a local optimum if and only if

f
(

p′, t
)
≤ f (p, t), ∀p ∈ N(p), (3)

is a minimization or
f
(

p′, t
)
≥ f (p, t), ∀p ∈ N(p), (4)

http://www.visual-tracking.net
http://www.visual-tracking.net
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if it is a maximization.
Similarly, the feasible solution p∗ ∈ N(p) is a global optimum if and only if

f (p∗, t) ≤ f (p, t), ∀p ∈ P(t), (5)

is a minimization or
f (p∗, t) ≥ f (p, t), ∀p ∈ P(t), (6)

if it is a maximization.
The drawback of the SIAs is that the convergence ability decreases the particle di-

versity, reducing the ability of the algorithm to adapt to a new optimization scenario. On
the other hand, for an SIA to adapt to a DOP, it is necessary to promote the transfer of
knowledge. However, if too much knowledge is transferred, then the optimization process
in the current environment may begin near a poor location and get trapped in a local
optimum [1].

The goal is to promote an ideal balance between knowledge transfer and the diversity
of particles since they constitute two conflicting factors [1]. Therefore, enhanced SIAs that
promote this balance are suitable for dynamic optimization.

There are a few ways to promote this enhancement, e.g., maintaining a memory
scheme of the best particles from previous optimizations and using them in the current
optimization or maintaining multiple populations and allocating them to different regions
of the solution space [1].

3.2. The Meta-Heuristics SFLA and BBPSO

More details of the SFLA and BBPSO algorithms will be given in this subsection since
three of the five trackers were based on them, whereas the ADSO and SSA trackers were
reproduced in this work.

3.2.1. The Shuffled Frog Leaping Algorithm

The memetic meta-heuristic SFLA was proposed by Eusuff et al. [4] to solve com-
binatorial optimization problems. Its solution space exploration mechanism mimics the
behavior of a group of frogs (the particles) in a swamp (the solution space) as they vie
for the best place to feed. The best places are stones (solutions to the problem), which are
located at discrete points of the swamp.

The SFLA starts by randomly generating virtual frogs in the swamp and grouping
them into frog communities called memeplexes. Frogs jump within the solution space and
are influenced by the positions of the frog with the best fitness in each memeplex and the
frog with the best fitness in the swamp.

The position of the worst frog in each memeplex is changed according to

pτ
w = pτ−1

w + lτ
w, (7)

where pτ−1
w is the position of the worst memeplex frog in the previous iteration, pτ

w is the
position of the worst memeplex frog and lτ

w is the jump made by the worst frog in the
memeplex in iteration τ (τ = 2, 3, . . . , nτ , where nτ is the maximum number of iterations).
The jump is limited by a constant positive predefined and problem-dependent threshold
lMax (−lMax ≤ lτ

w ≤ lMax, ∀τ).
To calculate the worst frog jump, the SFLA calculates a new position adding a random

jump towards the best frog in the memeplex as follows

lτ
w = U

(
pτ−1

b − pτ−1
w

)
, (8)

where pτ−1
b is the position of the best memeplex frog in the previous iteration and U is a

pseudo-random number uniformly distributed over a continuous unit interval.
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If the fitness of the new position of the worst frog is not improved, the jump calculated
by Equation (8) is discarded and another random jump is added to the original position of
the worst frog in the memeplex towards the best frog in the swamp as follows

lτ
w = U

(
pτ−1

g − pτ−1
w

)
, (9)

where pτ−1
g is the position of the best swamp frog in the previous iteration.

If the new jump does not improve the fitness of the worst frog in the memeplex, then
it is replaced by a new frog located at a random point in the swamp.

After performing the jumps and updating the fitness of each frog, they are randomly
redistributed among memeplexes before the next iteration of the algorithm. The procedure
is repeated until the stop condition is reached.

The algorithm performs simultaneously an independent local search in each meme-
plex. The global search is guaranteed by the shuffling of frogs and the reorganization of
memeplexes. The algorithm also generates random virtual frogs to increase the opportunity
for new information in the population [4].

The main advantages of SFLA are that it is more powerful in solving complex com-
binatorial optimization problems, has a faster search capability, and is more robust in
determining the global optimum because of the evolution of several memeplexes (the struc-
ture responsible for local exploration) and the scrambling process (the structure responsible
for global exploration), which can improve the quality of individuals [36]. The pseudocode
and more details are provided in [4].

3.2.2. The Bare Bone Particle Swarm Optimization

The Bare Bone PSO (BBPSO or Gaussian PSO) [34] meta-heuristic, as in the classic
PSO, mimics the behavior of a flock of birds (particles) that fly over the solution space
while exchanging information with their neighbors, and it has the advantage of working
with only two parameters: the number of particles and the neighborhood topology [37].

There are two types of neighborhood topology, the global one in which the particles
communicate with each other, and the local where each particle communicates with a
subgroup of particles. In this work, we adopted the local neighborhood topology.

The main difference between the two versions of the PSO is that BBPSO uses a
Gaussian random variable to update the position of the particles instead of adding a
velocity equation, as occurs in the classic PSO.

The equation for updating the position of the particles in the BBPSO is given by

pτ
i = µτ

i + στ
i ⊗ Z (10)

with

µτ
i =

pBestτ−1
i + gBestτ−1

2
, (11)

στ
i =

∣∣∣pBestτ−1
i − gBestτ−1

∣∣∣, (12)

where ⊗ is the element-by-element product between two vectors, pτ
i is the particle i in

iteration τ with dimension d; µτ
i corresponds to the mean and στ

i the variance of the random
vector Z with Gaussian distribution. pBestτ−1

i is the best position visited by the particle
i until the iteration τ − 1 end gBestτ−1

i is the best position visited by the swarm until the
iteration τ − 1 (τ = 1, 2, . . . , nτ and i = 1, 2, . . . , n, with nτ the number of iteration and n
the number of particle).

The pseudocode and more details are provided in [34].

3.3. Target Tracking

Target tracking is a particular case of a DOP since the challenges in the scene modify
the solution space, and the optimal solution can vary in each frame.
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In this work, to ensure a fair experiment for all trackers, the particles of the meta-
heuristics are represented by rectangular bounding boxes and are denoted by four-dimensions
vectors p = (x, y, w, h), where (x, y) is the 2D coordinate of the pixel located in the upper
left corner of the bounding box, and (w, h) denotes the horizontal and vertical dimen-
sions, referring to the base and height of the bounding box, respectively. Each particle
corresponds to a candidate target.

The appearance and characteristics of the targets are represented by the standardized
histogram of the first channel of the YCbCr color model [12]. From previous experience,
the inclusion of the second and third YCbCr channel histograms result in an almost zero
gain of target discrimination power at the expense of a higher computational cost due to a
longer processing time. Therefore, we decided to work only with the first channel for a
lower computational cost.

A standardized histogram is a unit area histogram and is an asymptotically unbiased
and consistent estimator of the probability density function [38]. The choice of the stan-
dardized color histogram is due to its invariance to rotations and scale changes [39], in
addition to being a quick approach.

To measure the similarity between the candidate targets and the template, the Bhat-
tacharyya distance [17] is adopted. The equation is given by

β(H∗T(b), H∗P(b)) =

√√√√1−
nBins

∑
b=1

√
H∗T(b)H∗P(b), (13)

where H∗T(b) and H∗P(b) are the standardized histograms of the template and the candidate
target, respectively, b indicates the histogram bin, and nBins indicates the total number of
bins in the histogram.

The Bhattacharyya distance is a standardized measure that is limited to the continuous
unit interval, where zero indicates total similarity and 1 indicates the total lack of similarity
between histograms.

Video target trackers in category 2 of the classification given in [14] based on SIAs
work as follows: In each frame, n particles are scattered at random within the solution
space given by

S =
{
∀p ∈ Z4

+|1 ≤ x, w ≤ R, 1 ≤ y, h ≤ Q
}

, (14)

where R and Q are the total pixels of the horizontal and vertical dimensions of the frame,
respectively.

Then, the meta-heuristic moves the particles and updates their fitness until a stop
condition is reached (e.g., a maximum number of iterations or a minimum quality value
of the best solution). When the meta-heuristic reaches the stop condition, the algorithm
returns the best quality particle of the swarm, gBest = (xg, yg, wg, hg) where gBest is p∗

or p′, indicating the target’s position in the current frame. However, it is possible to take
advantage of the good solutions of the previous frame to set the initial location of particles
in the current frame. It is also possible to spread the particles over a limited region of the
solution space since the hypothesis that the target does not move a long distance from one
frame to another one is plausible in the vast majority of cases of target tracking in videos.

3.4. Robust Double Exponential Smoothing

One of the proposals of this work is to delimit all dimensions of the solution space.
The goal is to surround the target in the next frame in a promising region and increase
the chances of detection. A robust version of the DES [33] time series model was used for
this purpose.

The exponential smoothing model, also called the Holt and Winters model [33], works
on a time series by decomposing it into four factors: level, trend, seasonal factor and an
unpredictable residual factor called random noise.
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The process of estimating these factors is based on exponential smoothing, i.e., the
process eliminates sudden variations in the observed series, and it is then described by
its structural components (the four factors). The factor estimation process involves the
calculation of weighted arithmetic averages in which the weights decay exponentially over
time as it moves to the past values of the time series. More details about the theoretical
issues involving Holt and Winters modeling are in [40], and for a review on the subject,
see [41,42].

The double exponential smoothing (DES) model decomposes a stochastic process
{Zt}t∈T into the level, the trend and a random error term according to

Zt = µt + Mt + εt, ∀t ∈ T, (15)

where Zt is the random variable of the stochastic process {Zt}t∈T at time t defined in the
same sample space, µt is the smoothing factor that corresponds to the level at time t, Mt is
the smoothing factor that corresponds to the trend over time t, and εt is a random variable
with a zero mean and constant positive variance and is not correlated with ετ , ∀τ 6= t and
Zt, ∀t.

Estimates of level, denoted by µ̂t, and the trend, denoted by M̂t, are given by, respectively,

µ̂t = α3zt + (1− α3)
[
µ̂t−1 + M̂t−1

]
, (16)

M̂t = α4(µ̂t − µ̂t−1) + (1− α4)M̂t−1, (17)

where the coefficients α3 and α4 are called smoothing constants ( 0 < α3 < 1; 0 < α4 < 1),
and the higher the value of the coefficients, the lower the weight that is given to the past
values of each factor; zt is the current value of the observed series; µ̂t is the current time-
smoothing value used to estimate the level; and M̂t is the current trend estimate. When
t = 1, it is necessary to set the starting values of µ̂1 and M̂1 (in general, but not necessarily)
to µ̂1 = z1 and M̂1 = 0.

The time horizon forecasts k from the instant t are given by

Ẑt(k) = µ̂t + kM̂t, (18)

where Ẑt(k) is the forecast value of the random variable Zt+k of the generating process of
the observed series {Zt}t∈T .

The impact of an outlier on the series forecast can be seen by observing (16) and
(17). When an outlier zt is observed, the values of µ̂t and M̂t are overestimated. However,
these values continue to affect future estimates at both the level and the trend, producing
persistently skewed forecasts.

In order to mitigate the effects of outliers on predictions, we used a version of the DES
model that is robust to outliers. In this case, the observation of the series at time t, zt, is
replaced by the lower limit value, LLt, or the upper limit value, ULt, when zt < LLt or
zt > ULt, respectively. Limit values are calculated and updated at every time t according
to, respectively,

LLt = Z∗t − 3
√

s∗t , (19)

ULt = Z∗t + 3
√

s∗t , (20)

where Z∗t is the average of the observed series, from its update after the first observation
until zt, and calculated according to

Z∗t =
t− 1

t
Z∗t−1 +

1
t

zt, t ≥ 1, (21)
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and s∗t is the variance of the observed series, from its update after the first observation to
the observation zt, and calculated according to

s∗t =
t− 1

t

(
s∗t−1 +

(
Z∗t−1

)2
)
+

1
t
(zt)

2 −
(

Z∗t
)2

, t ≥ 1, (22)

for t = 1, Z∗0 = 0 and s∗0 = 0.
Therefore, the robust DES model (RDES) is the model given by Equation (15), the fore-

cast is given by Equation (18), and the estimates of µt and Mt are given by
Equations (16) and (17), respectively. In fact, the RDES model differs from the DES model
only when an outlier is observed and the value zt is replaced by the limit values given by
Equation (19) or Equation (20).

To measure the quality of forecasts in time series models, it is common to adopt the
square root of the mean squared error of the forecast (RMSE) [43] as a metric. The RMSE is
calculated for each point coordinate (x, y, w, h) of gBest according to

RMSE =

√
1
nt

nt

∑
t=1

(gBestt − p̂t−1(1))
2, (23)

where nt is the maximum number of times (or frames) and p̂t−1(1) is the gBest forecast for
time t from time t− 1 (p̂t−1(1) correspond to Ẑt−1(1) of Equation (14)).

The mean squared error measures the variance and squared bias of the forecast for
each coordinate [43]. The lower the RMSE, the more homogeneous and less biased the
forecast is.

The Euclidian distance of the 2D coordinates (x, y) between the points in the upper
left corner of the gBest and p̂t−1(1) bounding boxes will also be measured to check the
quality of the forecasts. The shorter the distance, the more accurate the forecast.

4. The Proposed Method

The video target tracking model proposed in this work, the Dynamic Shuffled Frog
Leaping Algorithm tracker, belongs to category 2 of the classification given in [14]. The
DSFLA tracker is an enhanced version of the SFLA meta-heuristic [4] for DOPs. The method
also involves a scheme for delimiting the space of solution according to the position of the
estimated and predicted targets in the previous frames. To predict the target’s position, the
RDES [33] is used.

The DSFLA tracker performs the following steps: for the first frame, n particles are
randomly scattered in the solution space S given by Equation (14); for the other frames, the
particles are randomly scattered in the delimited solution space by RDES.

Then, the value of the objective function is calculated for all particles, and the SFLA
meta-heuristic is executed until a stop condition is reached. In this work, the stop con-
dition is either when the fitness of the best-fit particle of the swarm is less than 0.005
(Bhattacharyya distance) or when the maximum number of iterations is performed.

The solution space (14) is delimited by proposed DSFLA tracker considering the union
of two rectangular regions, one around the target estimated by gBest =

(
xg, yg, wg, hg

)
(a

region generated by simulating a random walking movement) and another around the
predicted target p̂ =

(
x̂, ŷ, ŵ, ĥ

)
(p̂ correspond to p̂t−1(1) via RDES). The delimitation is

given as follows:

I. The limits of the coordinates (x, y) of the solution space are given by

Min
(
xg − α1wg, x̂− α1ŵ

)
≤ x ≤ Max

(
xg + α1wg, x̂ + α1ŵ

)
, (24)

Min
(

yg − α2hg, ŷ− α2ĥ
)
≤ y ≤ Max

(
yg + α2hg, ŷ + α2ĥ

)
, (25)

where 0 < α1 ≤ 2 and 0 < α2 ≤ 2 are predefined constants (problem dependent);
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II. The limits of the coordinates (w, h) of solution space are given by

γ1wg ≤ w ≤ γ2wg, (26)

γ1hg ≤ h ≤ γ2hg, (27)

where 0 < γ1 ≤ 2 and 0 < γ2 ≤ 2 are predefined constants (problem dependent).

Figure 1 shows an example of delimiting the solution space obtained from the tenth
frame of the video BlurBody (this video was selected from the public Hanyang visual
tracker benchmark [44]). The blue bounding box corresponds to the ground truth, and the
magenta bounding box corresponds to the estimated target, gBest =

(
xg, yg, wg, hg

)
. The

green-filled region corresponds to the delimitation of S around the gBest centered in the
upper left corner of the blue bounding box, and the yellow-filled region corresponds to the
delimitation of S around the p̂ centered on the (x̂, ŷ) coordinates. The area delimited by
the red rectangular box corresponds to the delimited S region in Equations (24) and (25) of
the proposed method for (x, y) coordinates.
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BlurBody (this video was selected from the public Hanyang visual tracker benchmark [44]).

The new particle selection process selects the particles so that they are distant from
each other by a minimum distance, δMin, calculated as follows:

δMin =
Max

(
S′w, S′h

)
α0n

, (28)

where S′w and S′w are the vertical and horizontal dimensions of the delimited solution space
obtained by Equations (24) and (25), respectively, α0 is a predefined maximum percentage
of transfer, and n is the number of particles.

The choice of particles is made in ascending fitness order starting with gBest.
The new adaptive particle transfer process generates n random particles in the

bounded solution space and sorts the particles in decreasing order of fitness. Then, the fit-
ness of the selected particles is recalculated and compared with that of the worst generated
particles, and the one with the worst fitness is discarded.

The particle transfer process is adaptive since not all α0n particles are selected and that
not all selected particles are used (transferred). It varies from frame to frame. In addition,
it is possible that some of the transferred and selected particles are positioned outside the
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delimited solution space but within the solution space S (Equation (10)). For a summary of
the proposed DSFLA algorithm, see the pseudocode in Algorithm 1.

Algorithm 1. DSFLA tracker’s pseudocode

1: for f = 1:N % for all N frames
2: Img = readframe(f);
3: for i = 1:n % for all n particles
4: if f == 1
5: Generate n particles in S using Equation (14);
6: else
7: Generate n particles in reduced S;
8: end
9: Extract the histogram and update the fitness;
10: end
11: if f > 1
12: Knowledge transfer process;
13: end
14: Update gBest;
15: while <stop condition == false> do
16: Execute SFLA meta-heuristic;
17: end
18: Record gBest and tracker’s performance measures;
19: Particle selection process;
20: Reduce S as a function of gBest: S1;
21: Calculate the forecast pHat via RDES;
22: Reduce S as a function of pHat: S2;
23: Calculate reduced S as a function of S1 and S2 using Equations (24) and (25);
24: end

5. Experiments and Results
5.1. Experimental Design

To investigate the efficiency of the proposed approach, a random sample of 15 videos
was selected from the public Hanyang visual tracker benchmark [44] with the respective
ground truth with hand-marked targets. The benchmark focus is on tracking a single target
online. The benchmark presents 100 videos with generic scenarios and annotations of
ground truth for all frames and annotations of attributes that affect the performance of the
tracker in identifying the targets.

The public Hanyang benchmark was designed with a collection of video sequences
most commonly used in object tracking. It contains videos from various datasets such as
the VIVID [45], CAVIAR (http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1, accessed
on 24 November 2020). Other benchmarks such as PAMI share some public videos in
common with the Hanyang benchmark.

Table 2 shows the selected videos with the following information: the video’s size
(in number of frames), the resolution of the image (in number of pixels) and the main
challenges present in the scene. The challenges are rotation in the image plane (IPR),
rotation outside the image plane (OPR), fast movement (FM), blurred movement (BM), low
resolution (LR), scale variation (SV), deformation of the target (DEF), confusion between
the target and background of the image (BC) and occlusion (OCC).

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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Table 2. The features of the videos.

Video Name Size Resolution Challenges

1 BlurBody 334 (640,480) IPR, FM, MB, SV, DEF
2 BlurCar2 585 (640,480) FM, MB, SV
3 BlurCar4 380 (640,480) FM, MB
4 BlurFace 493 (640,480) IPR, FM, MB
5 BlurOwl 631 (640,480) FM, MB, SV
6 Boy 602 (640,480) IPR, OPR, FM, MB, SV
7 Couple 140 (320,240) OPR, FM, SV, DEF, BC
8 David2 537 (320,240) IPR, OPR
9 Deer 71 (704,400) IPR, FM, MB, LR, BC
10 Dog 127 (352,240) OPR, SV, DEF
11 Dog1 1350 (320,240) IPR, OPR, SV
12 Jumping 313 (352,288) FM, MB
13 MountainBike 228 (640,360) IPR, OPR, BC
14 Twinnings 471 (320,240) OPR, SV
15 Walking2 500 (384,288) LR, SV, OCC

Total - 6762

The Hanyang benchmark also includes most of the publicly available codes. The
benchmark disseminates performance metrics for in-depth analysis of tracking algorithms.
The metrics proposed in [44] are the AUC of the success rate per Pascal metric (success
rate) and the Euclidean distance from the central points of the bounding boxes (accuracy).

The Pascal metric [46] is defined according to

Pa(ξGT , ξC) =
|ξGT ∩ ξC|
|ξGT ∪ ξC|

, (29)

where ξGT is the bounding box that corresponds to the ground truth, and ξC is the bounding
box that corresponds to the candidate target.

The Pascal metric measures the quality of tracking by quantifying the percentage of
pixels that are shared between the bounding boxes, i.e., the overlap of the targets. The
Pascal metric ranges from 0.0, when there is no overlap between bounding boxes, to 1.0,
when there is total overlap between targets. A target is considered to be detected when
the Pascal measure of the candidate target is equal to or greater than a predetermined
threshold (in this work the Paschal threshold is 0.5).

The success rate per Pascal metric is the curve formed by the percentages of frames
in which the target was detected in a given video, with the threshold of the Pascal metric
varying from 0.0 to 1.0. The advantage of observing the curve is that the tracker’s perfor-
mance is visualized for all thresholds of the Pascal measurement. Therefore, calculating
the AUC of the success rate per Pascal metric is a more robust and complete measure to
assess the quality of the tracker’s performance when compared with a value for a single
fixed threshold. The AUC ranges from 0.0 to 1.0, and the closer it is to 1.0, the better the
tracker’s performance. More details on the Pascal metric and the success rate per Pascal
metric are provided in [44,46].

There are three tests to assess the robustness of the trackers in [44], the OPE (One-Pass
Evaluation) which tests the tracker for the success rate and accuracy from the first to the
last frame of the video and the template being the ground truth of the first frame; the TRE
(Temporal Robust Evaluation) that tests the tracker using a sequence of frames starting
from any frame until the last one; and the SRE (Spatial Robust Evaluation) in which the
template is modified from 0.8 to 1.2 of its original scale and starting from 12 different
locations in the first frame.

In this work, the performance of the trackers will be evaluated by OPE robustness of
the AUC of the success rate per Pascal metric and the average processing time per frame.

The overall results will be summarized by the mean, median and coefficient of varia-
tion. The coefficient of variation (cv) is the ratio between the sample standard deviation,
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s, and the sample mean, p, of an observed variable. The cv is a dimensionless measure of
dispersion and can be expressed as a percentage of variation.

cv =
s
p

. (30)

5.2. Configuration of the Tracker’s Parameters

The configuration of the parameters of each tracker was based on previous experience.
The average processing time and the AUC of the success rate per Pascal metric were
analyzed to determine the configuration of the parameters of each tracker that results in
the best performance.

For this purpose, an analysis was conducted by performing the following experiment:
(i) four videos were selected at random from [44]; (ii) the values of the processing time
and AUC variables were calculated by averaging three executions of each video for each
tracker; (iii) the configuration of the parameters for each tracker was chosen according to
the best values of the two metrics.

The videos chosen in this stage of the experiment were Couple and Deer (videos 7
and 9 in Table 1, respectively), Bolt2 (frames: 293; resolution: 480 × 270; challenges: IPR,
DEF, BC) and Football1 (frames: 74; resolution: 352 × 288; challenges: IPR, OPR, BC).

It is worth mentioning that the chosen values of the parameters were kept fixed
throughout the experiment. The final configuration of parameters for each tracker was
as follows:

• PSO: 150 particles and 15 local groups with 10 particles;
• ADSO: 40 particles, the thresholds th1 = 0.01, th2 = 0.45, th3 = 0.005, and the

probability H f = 0.7;
• SFLA: 50 particles, 10 memeplexes with 5 particles, a maximum number of iterations

of 10 and a maximum pixel number for frog leaping of 10;
• DSFLA: The same parameters of SFLA plus α0 = 0.3, α1 = α2 = 1, α3 = [0.9, 0.9, 0.8, 0.8],

α4 = [0.4, 0.4, 0.5, 0.5], γ1 = 0.9, and γ2 = 1.1;
• SSA: 80 particles, a maximum number of iterations of 100, and 20 leader salps.

5.3. Analysis of Results

The results of the main experiment are summarized in Tables 3 and 4. The values
presented in the tables correspond to the average of six executions of each video for each
of the trackers: PSO, ADSO, SFLA, DSFLA and SSA, always in that order. Replications of
all the videos for each tracker were coded in MatLab and executed on the same processor
(Intel Pentium Dual-Core, 1.86 GHz, 2 GB DDR2 and 160 GB HDD) to compare the average
processing time per frame (it is worth saying that the program codes are not optimized).
The average, median, and cv of the 15 videos are in the last three rows of the tables.
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Table 3. Processing time per frame (s) (the best results are in bold).

Video PSO ADSO SFLA DSFLA SSA

1 3.0914 0.4776 1.1673 1.0911 6.8387
2 2.1559 0.5382 0.9801 0.9436 4.7558
3 2.9967 0.2774 1.1992 1.0951 6.5406
4 2.0773 0.4318 0.9154 0.8588 4.6733
5 1.7022 0.2508 0.8447 0.7370 3.6917
6 1.4303 0.2082 0.8014 0.6653 3.0493
7 1.4158 0.1959 0.7841 0.6641 3.0406
8 0.5485 0.1933 0.6779 0.5570 2.9147
9 1.7645 0.3321 0.9555 0.8803 3.8661

10 1.4918 0.1947 0.6860 0.6147 3.2001
11 1.4474 0.2138 0.7166 0.6182 3.0866
12 1.4036 0.1939 0.7864 0.6572 2.9656
13 1.6324 0.2263 0.9009 0.7829 3.5079
14 1.6444 0.2147 0.6960 0.6470 3.5379
15 1.6005 0.1991 0.8188 0.6511 3.4203

Mean 1.7602 0.2765 0.8620 0.7642 3.9393
Median 1.6324 0.2147 0.8188 0.6653 3.5079
cv (%) 63.30 11.48 16.15 17.25 12.52

Table 4. AUC of the success rate per Pascal metric (the best results are in bold).

Video PSO ADSO SFLA DSFLA SSA

1 0.4698 0.3654 0.5746 0.5851 0.5795
2 0.2518 0.2025 0.3234 0.3633 0.3632
3 0.2683 0.0803 0.4033 0.4091 0.3791
4 0.4927 0.4558 0.5906 0.6896 0.6428
5 0.2347 0.2257 0.4489 0.4114 0.4191
6 0.1139 0.3176 0.2882 0.4271 0.4985
7 0.3254 0.3198 0.4923 0.5264 0.4226
8 0.0206 0.1582 0.2949 0.2436 0.3244
9 0.4213 0.4084 0.4261 0.4874 0.3623

10 0.1838 0.3494 0.3215 0.4047 0.3337
11 0.2435 0.4649 0.4877 0.5419 0.4493
12 0.3022 0.1543 0.4668 0.5300 0.4838
13 0.2572 0.3229 0.4794 0.4457 0.4986
14 0.1905 0.3063 0.4011 0.4824 0.3964
15 0.1384 0.2711 0.2973 0.3423 0.2708

Mean 0.2609 0.2935 0.4284 0.4593 0.4285
Median 0.2518 0.3176 0.4261 0.4457 0.4191
cv (%) 49.69 38.20 23.82 23.63 23.22

Table 3 shows the performance of the trackers according to the average processing
time per frame of each video.

As observed in Table 3, the SSA tracker takes more time for execution, and the ADSO
tracker is the fastest, however, the DSFLA tracker is, on average, the second fastest. The
values are representative given that the cv of the trackers is low, except for the PSO tracker.

Figure 2 shows the Whiskers boxplot (output of MatLab’s internal boxplot function) of
each tracker for the observed data of the average processing time per frame. Each boxplot
segment corresponds to 25% of the observed values, and the small circles correspond to
the outliers. The darker part of the central region of the boxplot represents the interquartile
range (IQR), q3 − q1, where q3 is the third quartile and q1 is the first quartile. The central
point of this region corresponds to the median of the observed values, and the triangles
represent the extremes of the 95% confidence interval centered on the median [47], which
is calculated according to

q2 ±
1.57(q3 − q1)√

n
, (31)
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where q2 is the second quartile, i.e., the median, and n is the size of the observed sample.
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Figure 2. The boxplot of the variable processing time per frame for all trackers.

If the intervals do not overlap, then we can conclude with 95% confidence that there is
a significant difference between the medians, this is equivalent to a statistical test in which
the hypothesis that there is no difference between the medians is rejected at 5% significance.

From the graph in Figure 2, all processing times are significantly different except for
the those between the SFLA and DSFLA trackers. However, empirically, the proposed
DSFLA tracker is systematically about 10% faster than the SFLA tracker.

Table 4 shows the performance of the trackers in relation to the tracking quality
according to the AUC of the success rates per Pascal metric. We can see from Table 4 that
the cv of all the trackers indicates a low variation of the results except for the PSO tracker.
Therefore, we can say that the trackers are satisfactorily stable. Table 4 also shows that the
videos 2, 8, 10 and 15 presented the most difficult challenges for all trackers.

Figure 3 shows the boxplots for the AUC of the success rates per Pascal metric. The
DSFLA tracker is significantly superior to the PSO and ADSO trackers since the 95%
confidence interval referring to the DSFLA tracker has no overlap with the confidence
intervals referring to PSO and ADSO trackers. It is not possible to reject the hypothesis of
comparable quality between the DSFLA, SFLA, and SSA trackers. However, Table 4 shows
empirically that DSFLA tracker results are consistently better than SFLA and SSA trackers
results, at about 7.2% higher AUC on average.
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Figures 4 and 5 show two examples, chosen at random, of tracking performance given
by the success rate per Pascal metric for all trackers for videos 4 and 7, respectively. In
Figure 4, the curve that represents the performance of the DSFLA tracker is largely above
the other curves. This indicates that DSFLA has higher target detection rates for most of
the Pascal metric threshold.
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The graphs of the success rate per Pascal metric for most of the other videos show
results that reflect the performance of the trackers shown in Figure 5.

The DSFLA tracker produced the best results with videos 1, 4, 7, 11, and 12. The
DSFLA tracker is effective in tracking targets with fast movements or when there are
blurred images or rotations of the target.

The videos in which all the trackers performed poorly are those with ambient light
variation and when the scale of the target has a wide range, as in the case of video 10
(Dog), or moderate occlusion, as in the case of video 15 (Walking2). A common weakness
of all the trackers analyzed in this work is related to the variation in ambient lighting.
This is probably due to the use of the standardized color histogram to represent the target
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characteristics. The color histogram is sensitive to any variation in light in the environment,
and it can also easily miss the target when the characteristics of the target and background
are similar. The illumination of the target in the scene changes substantially and non-
proportionally to the frequencies of the histogram since the change in pixel intensity is
not linear.

A possible strategy to overcome this problem is to include a target characteristic based
on the shape of the object.

When the target and the background have similar characteristics, bounding boxes of
different sizes can contain a similar proportion of pixels of the same intensity, and thus,
the histograms are similar in appearance. Therefore, the solution space has several local
minima whose objective function values are very close. This case can reduce the quality
of tracking since candidate targets of different window sizes have a chance of being the
estimated target.

The following analyzes check the quality of the RDES model predictions and how
much the delimitation of the solution space is useful for tracking. Table 5 shows the RMSE
values (in number of pixels) of the forecasts for the x and y coordinates and the Euclidean
distance between the forecast p̂ and gBest.

Table 5. The RMSE values (in pixels) of the forecasts for the x and y coordinates and the Euclidean
distance between the forecast and gBest.

Video x y Distance

1 48.5473 31.7972 17.0507
2 78.8097 33.0285 15.3551
3 99.6405 41.2005 22.3768
4 43.2171 24.7496 20.4736
5 58.8349 81.6870 17.2760
6 30.4878 23.5310 9.6919
7 25.6458 15.6825 6.2391
8 7.2707 7.8175 1.2050
9 67.5223 43.8717 17.0988
10 11.1590 4.8302 2.7205
11 12.1733 9.6148 3.3553
12 41.3441 39.5144 8.7537
13 19.8933 12.0985 4.7146
14 15.1080 5.3767 2.8219
15 3.7789 9.0745 2.4323

Mean 37.5621 25.7911 10.1044
Median 30.4878 23.5310 8.7537
cv (%) 76.24 80.82 73.47

Using the data in Table 5 and Equation (31), the 95% confidence intervals for variable
RMSEs of x and y are [11.57; 49.44] and [11.19; 35.87], respectively. Therefore, the prediction
error does not exceed 50 pixels of RMSE, that is, the forecasts are reasonably homogeneous
and slightly skewed.

Similarly, the 95% confidence interval for the Euclidian distance between the predicted
target and gBest is [2.96; 14.48]. Thus, we can conclude that the distance between the
predicted and estimated target does not exceed 15 pixels. Considering the largest diagonal
of the video image, this value varies from 400 to 800 pixels of the videos observed. Therefore,
the biggest forecast error made does not exceed 3.8%, that is, we can conclude that the
predictions of the RDES model is quite accurate.

The same experimental design used to calibrate the parameters of the trackers was
used to investigate whether video target tracking benefits from restricting the solution
space by the proposed region.

Table 6 shows the global average and median of the four videos for the variables’
AUC of success rates per Pascal metric and processing time per frame. Two versions of the
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DSFLA tracker were assessed: version 1 delimits the solution space, as proposed in this
work, and version 2 does not delimit the solution space.

Table 6. AUC of the success rates per Pascal metric and processing time for DSFLA tracker with
and without delimitation of the solution space (versions 1 and 2, respectively) (the best results are
in bold).

Version 1 Version 2

Mean AUC 0.3579 0.3303
Median AUC 0.3932 0.3408
Mean time (s) 0.7193 0.8092

Median time (s) 0.6719 0.7649

Table 6 shows that the median AUC for version 2 is about 87% of that for version 1
and that the median time to process a frame for version 2 is about 14% longer than that for
version 1. Therefore, consistent empirical evidence suggests that the use of the restrictions
proposed in this work helps to increase the AUC of the success rate per Pascal metric and
improves the processing time.

To conclude, future work to improve the tracker performance involving multiple
particle populations acting in different regions of the solution space (in the particle selection
process) and an adaptive scheme for quantifying the number of particles to be used in the
transfer of knowledge based on the similarity of the frames.

Other representations of the target will also be tested to improve the target recognition
ability in environments with varying lighting including the target appearance model with
HOG characteristic [35], for instance.
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