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Abstract: Angle-of-arrival (AoA) estimation in localized hybrid arrays suffers from phase ambiguity
owing to its localized structure and vulnerability to noise. In this letter, we propose a novel phase shift
design, allowing each subarray to exploit difference beam steering in two potential AoA directions.
This enables the calibration of cross-correlations and an enhanced phase offset estimation between
adjacent subarrays. We propose two unambiguous AoA estimation schemes based on the even and
odd ratios of the number of antennas per subarray N to the number of different phase shifts per
symbol K (i.e., N/K), respectively. The simulation results show that the proposed approach greatly
improves the estimation accuracy as compared to the state of the art when the ratio N/K is even.
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1. Introduction

Due to the superior balance between performance and cost, a hybrid antenna array
is regarded as an excellent candidate for millimeter wave (mmWave) communication
systems [1,2]. Typically, the hybrid array is composed of multiple analog subarrays with
phase controllable antenna elements. It includes two kinds of conventional configurations,
i.e., localized and interleaved arrays in the light of the topology of subarrays. As the
localized array is easier for schematic design and hardware implementation, it is more
suitable for building a massive array. Angle-of-arrival (AoA) acquisition of the incoming
mmWave signal is of considerable importance for signal reception, since the mmWave
channels are dominated by the line-of-sight (LOS) propagation. A wide range of its
applications including localization and tracking to mmWave communication systems,
e.g., 5G mmWave cellular networks [2] and satellite-borne communications [1], have been
increasingly studied in recent years.

AoA estimation using a localized array suffers from the phase ambiguity problem,
which has been progressively studied in [3–7]. Each of these solutions leverages the
cross-correlations between neighbouring subarrays for an AoA estimate. Phase ambiguity
stems from an undetermined integer multiple of 2π between Nu and the argument of cross-
correlations, where N is the number of antennas in a subarray, u = 2π

λ d sin θ, θ the elevation
AoA, λ the wavelength, and d the adjacent antenna spacing. With the identical phase shift
deployment over all subarrays for constructive combination of cross-correlations, the work
in [3] proposed a differential beam search algorithm to go through all possible beams and
determine u with the largest output power. However, it incurs a long scanning period that
linearly increases with the length of a subframe and N. To avoid a long scanning period,
the authors in [4] studied a phase shift configuration with different values in different
subarrays to eliminate the ambiguity by directly estimating u. Their ingenious idea is that
(1) Nu is estimated by rectifying the signs of cross-correlations and then combining them
coherently; (2) After calibrating subarray output signals with the estimated Nu, one takes
their inverse discrete Fourier transform (IDFT) and calculates the correlations of the Fourier
coefficients to uniquely recover u. The work in [5,6] further generalized the phase shift
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design in [4] to narrowband and wideband systems respectively, and revealed that the
strongest cross-correlation takes the opposite sign from the remaining cross-correlations.
Following this finding with an improved calibration accuracy of cross-correlations, the
AoA can be speedily and reliably estimated even in low signal-to-noise ratio (SNR) regimes.
In [7], an enhanced AoA estimation for a polarized mmWave signal was studied using
a localized hybrid dual-polarized array, where polarization diversity combining was
employed to improve the estimation of phase offset between adjacent subarrays. With the
cross-correlation based algorithm, a multi-AoA estimation scheme with a combiner design
was proposed in [8], where the paths for different users are identified by exploiting the low
correlation property of the pseudo-random sequences.

With a digital array, MUSIC and ESPRIT [9] are the classical methods used in high-
resolution AoA estimation. The work in [10,11] applied them to a localized array. Although
accurate estimation can be achieved, the computational complexity incurred from singular
value decomposition grows cubically with the total number of antennas [5], which makes
the applications of these methods impractical in mmWave massive arrays. In [12], an
auxiliary beam pair (ABP) design was proposed to provide high-resolution AoA estimation
via amplitude comparison relating to each ABP. It, however, needs to scan all the directions
of interest exhaustively, and the resolution is subject to the beamwidth and SNR. In [13],
the optimal sum and difference beamformers based AoA estimator was constructed by
exploiting the ratio of difference pattern to sum pattern with two overlapping subarrays,
which can achieve the minimum estimation variance under Gaussian noise, regardless of
any nulling performed. The work in [14] uses hierarchical search in the designed multi-
resolution codebook to promptly identify one single multipath component (MPC) and thus
the AoA. A compressed sensing based method was further investigated in [15] to find
multiple MPCs, exploiting the sparse nature of mmWave channels. The beam needs to be
recurrently narrowed down according to the codebook, which incurs additional overhead.

In this paper, we propose a novel phase shift design to enable unambiguous AoA
estimation using a localized array. Instead of generating multiple single beams as proposed
in [3–7], a difference beam based phase shift configuration is designed to steer each subarray
in two directions. This can effectively improve the performance in terms of mean square
error (MSE) of Nu estimation and detection probability of the expected subarray index by
providing better coverage of the directions of interest. Based on the derivation in terms
of the even and odd ratios of N/K where K is the different phase shifts per symbol, two
IDFT-and-correlation based estimation schemes are proposed to directly estimate the AoA.
Simulation results show the effectiveness of the proposed approach in estimation accuracy.

2. System Models

As illustrated in Figure 1, we consider a uniform linear localized array composed
of M subarrays, each with N evenly spaced phase-tunable antenna elements. Assume
the arriving information-bearing signal s̃(t) with wavelength λ and elevation angle θ.
The received signals at the mth subarray (m = 0, ..., M − 1) are combined after phase
shifting, and then the analog beamformed signal is down-converted to baseband. Through
analog-to-digital conversions, the output signal is given by [5]

sm(t) = s̃(t)Pm(u, t)ejmNu + ξm(t), (1)

where ξm(t) is the zero-mean additive white Gaussian noise (AWGN) at the output of the
mth subarray with power σ2

n ; Pm(u, t) is the radiation pattern of the mth subarray at time t
given by

Pm(u, t) =
N−1

∑
n=0

P̌n
m(u)e

j(nu+αn
m(t)), (2)
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where P̌n
m(u) denotes the radiation pattern of the nth antenna element (n = 0, ..., N − 1) at

the mth subarray. As in [4,5], we assume P̌n
m(u) = 1; αn

m(t) represents the phase shift of the
corresponding antenna element at time t and u = 2π

λ d sin θ.

A/D

. . .Subarray 0 . . . Subarray M-1Subarray 1. . .
A/D A/D

AOA Estimation

0 1 N-1 . . . . . .
Figure 1. Illustration of a localized array with M subarrays, where the RF and down conversion
components are omitted for simplicity.

Let ρm(t) denote the cross-correlation between the output signals of the mth and
(m + 1)th subarrays given by

ρm(t) =s∗m(t)sm+1(t)

=|s̃(t)|2P∗m(u, t)Pm+1(u, t)ejNu + s̃∗(t)P∗m(u, t)e−jmNuξm+1(t)

+ s̃(t)Pm+1(u, t)ej(m+1)Nuξ∗m(t) + ξ∗m(t)ξm+1(t)

=|s̃(t)|2P∗m(u, t)Pm+1(u, t)ejNu + zm(t), (3)

where (·)∗ and |(·)| represent the conjugate and absolute value of (·), respectively; zm(t) is
approximated as an AWGN.

In [3], identical phase shifts are used in all the subarrays, i.e., for any m, the val-
ues of α0

m(t), ..., αN−1
m (t) form the same arithmetic progression, such that Nu in (3) can

be estimated by taking the argument of ρm(t). However, since Nu can be outside the
range [−π, π), the determination of u from the estimate of Nu (N̂u) will lead to phase

ambiguity, i.e., there are 2bN/2c + 1 possible estimates of u, given by û(p) = 2πp+N̂u
N ,

p = −bN/2c,−bN/2c+ 1, ..., bN/2c, where b·c denotes the floor function. As a result,
all possible directions need to be tested by applying a scanning beam within a long scan-
ning frame, in order to find the one with the largest signal power, and thus incurring
excessive delays.

3. Proposed AOA Estimation Approach

In this section, phase shifts providing difference beams are designed to facilitate the
phase offset estimation between adjacent subarrays. Two AoA estimation schemes are
proposed for direct AoA acquisition according to the value of N/K, where K is the number
of different phase shifts for any symbol.

3.1. Phase Shift Design

Let the nth phase shift of the mth subarray at the tth (t = 0, ..., T − 1) symbol be αn
m(t)

given by

αn
m(t) =


nαm(t), n = 0, ...,

N
2
− 1

π + nαm(t), n =
N
2

, ..., N − 1
(4)
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where αm(t) = −2π( mod {m, K}T + t)/L, mod {·, ·} represents the modulo operation,
and thus mod {m, K} indicates that αn

m(t) varies periodically every K subarrays in one
symbol; K takes a value from (2, M] and N = QK, where N is assumed to be an even
number and Q is an integer; T is the number of training symbols; L = TK is the total
number of different phase shifts used in the system. The setting given by (4) is able to make
the array scan potential 2L directions within [−π, π) across T symbols, ensuring that the
AoA is acquired by at least one of the L beams with high gain. Note that it is necessary
to have the mainlobes of two difference beams to cover the AoA so that sufficient energy
can be obtained when computing the cross-correlation to estimate the AoA. According
to the sampling theorem, at least N scanning beams are required to cover the AoA range
of [−π, π) given the number of antennas per subarray N. Generally, the proper values
of N, K and T are supposed to be set to satisfy N ≤ TK for good AoA coverage with
beamforming gains.

Unlike the phase shift design in [5] that leverages multiple sum beams to steer multiple
evenly distributed directions within [−π, π), the proposed one can steer double directions
using each subarray by exploiting the difference beams [12]. Each difference beam steers a
null towards the boresight of the corresponding sum beam. An example of normalized
beam patterns within the first symbol period are shown in Figure 2, where the red solid
and black dotted curves represent the synthesized difference beams and sum beams,
respectively. In this example, we adopt K = M = 8 and N = 24, and therefore the phase
shifter values of subarray m for difference beams are set to be −πmn/4 for n = 0, ..., 11
and π(1−mn/4) for n = 12, ..., 23, while for sum beams, −πmn/4 for n = 0, ..., 23. When
multiple training symbols are used, both null-steering direction and phase shifts are rotated
by 2π

L between every two consecutive symbols. Although the maximal beamforming gain
of a difference beam is 3 dB lower than that of a sum beam, multiple difference beams
across multiple training symbols overlap in some directions of interest, which can make up
for the beamforming gain loss.

  0.2
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Figure 2. An example of normalized synthesized patterns of difference beams and sum beams.

3.2. Estimation of Nu

We apply Equation (4) to the estimation of Nu, which is then used to suppress ejmNu

of sm(t) in (1) followed by the estimation of u. Substituting Equation (4) into Equation (2),
we have

Pm(u, t) =
N/2−1

∑
n=0

ejn(u+αm(t))
(

1− ej N
2 (u+αm(t))

)
= −2jej(N−1)ωm(u,t)

sin2
(

Nωm(u,t)
2

)
sin(ωm(u, t))

, (5)
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where ωm(u, t) = (u + αm(t))/2. For convenience of illustration, we consider the first K
subarrays even though the results apply to the remaining M− K subarrays. Therefore,
ωm(u, t) is simplified as ωm(u, t) = u

2 − π
(m

K + t
L
)
.

Substituting Equation (5) into Equation (3), ρm(t) can be given by

ρm(t) = |s̃(t)|2Gm(u, t)ejNu + zm(t), (6)

where

Gm(u, t) = 4e
−j(N−1)π

K
sin2

(
Nωm(u,t)

2

)
sin2

(
Nωm+1(u,t)

2

)
sin(ωm(u, t)) sin(ωm+1(u, t))

.

As specified in Lemma 1 [5], there exists a unique integer m′ ∈ [0, K− 1] satisfying
sin(ωm′(u, t)) sin(ωm′+1(u, t)) < 0. Given m′, we have

4 sin2
(

Nωm(u, t)
2

)
sin2

(
Nωm+1(u, t)

2

)
=1− cos(Nωm(u, t))− cos(Nωm+1(u, t)) + cos(Nωm(u, t)) cos(Nωm+1(u, t))

=1− 2 cos
(

Nωm′(u, t) +
[2(m′ −m)− 1]Qπ

2

)
cos
(

Qπ

2

)
+ (−1)[2(m

′−m)−1]Q cos2(Nωm′(u, t)), (7)

since ωm(u, t) = ωm′(u, t) + (m′−m)π
K . Considering two cases of Q, i.e., even and odd,

we have

Gm(u, t) =


ej π

K [1− cos(Nωm′(u, t))]2

sin(ωm(u, t)) sin(ωm+1(u, t))
, Q is even

−ej π
K sin2(Nωm′(u, t))

sin(ωm(u, t)) sin(ωm+1(u, t))
. Q is odd

(8)

Furthermore, as stated in Lemma 2 [5] that | sin(ωm′(u, t)) sin(ωm′+1(u, t))|
< | sin(ωm(u, t)) sin(ωm+1(u, t))|, ∀m 6= m′, only Gm′(u, t) with the largest amplitude has
the opposite sign of the remaining since the numerator of Gm(u, t) does not change with m.
As a result, when the SNR is not very low, m′ can be determined by ρm(t) with the largest
amplitude, i.e., m′ = argmax

m=0:K−1
{|ρm(t)|}. Given m′, the signs of ρm(t) (m = 0, ..., K − 1)

can be aligned following ρ̃m(t) = (−1)Q+1{m=m′}ρm(t) for N̂u, where 1{·} is the indi-
cator function. Note that, from the expression of αm(t), we have ρm(t) = ρ mod {m,K}(t)
(m = 0, ..., M− 2) while ignoring zm(t) in Equation (6), and hence the signs of ρm(t) can
be further calibrated following Step 7 in Algorithm 1. As shown in Step 9 of Algorithm 1,
ρ̃m(t) across all subarrays and symbols can be coherently combined to improve the accuracy
of N̂u.

3.3. Estimation of u

Next, we perform the estimation of u in terms of Q being even or odd as follows.
(I) When Q is even, letting n = k + qK, k = 0, ..., K− 1, q = 0, ..., Q/2− 1, Equation (5)

can be written as

Pm(u, t) =
K−1

∑
k=0

Q/2−1

∑
q=0

(
1− ejNωm(u,t)

)
ej2(k+qK)ωm(u,t) =

K−1

∑
k=0

gk(u, t)e−j 2πmk
K , (9)

where

gk(u, t) = −2j
sin2

(
Nu
4 −

Nπt
2L

)
sin
(

Ku
2 −

Kπt
L

) ej(N−K)( u
2−

πt
L )ejk(u− 2πt

L )
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are the Fourier coefficients of Pm(u, t).

Algorithm 1 Estimation of Nu

Input: sm(t), m = 0 : M− 1, t = 0 : T − 1;
1: for t = 0 : T − 1 do
2: Calculate ρm(t) by (3), m = 0 : M− 2;
3: if K = M then
4: ρK−1(t) ← s∗K−1(t)s0(t);//The cross-correlation between the first and the last

subarrays
5: end if
6: Determine m′ ← argmax

m=0:K−1
{|ρm(t)|};//Find the subarray index with the largest

amplitude
7: ρ̃m(t)← (−1)Q+1{ mod {m−m′ ,K}=0}ρm(t), m = 0 : M− 2;//Calibrate their signs
8: end for

9: N̂u ← arg
{

e−j π
K

T−1
∑

t=0

M−2
∑

m=0
ρ̃m(t)

}
.//Coherent combination for improving estimation

accuracy

Given N̂u, we calibrate sm(t) by multiplying e−jmN̂u, i.e., sm(t)e−jmN̂u. Provided that
ejm(Nu−N̂u) ≈ 1, sm(t) can be almost perfectly calibrated. Performing the K-point IDFT
of sm(t)e−jmN̂u produces S̃k(t) ≈ s̃(t)gk(u, t) + Ξk(t), where Ξk(t) are the K-point IDFT of
ξm(t)e−jmN̂u, m, k = 0, ..., K− 1.

To obtain an estimate of u, û, we compute the cross-correlation between any two
adjacent IDFT outputs, S̃∗k (t)S̃k+1(t), denoted by dk(t), k = 0, ..., K− 2, given by

dk(t) = 4|s̃(t)|2
sin4

(
Nu
4 −

Nπt
2L

)
sin2

(
Ku
2 −

Kπt
L

) ej(u− 2πt
L ) + Ξ̃k(t), (10)

where Ξ̃k(t) is approximated as an AWGN. It is observed from Equation (10) that û can be

unambiguously captured by û = arg
{

dk(t)e
j2πt

L

}
. Similarly, dk(t) across all subarrays and

symbols can be combined to improve the accuracy of û.
(II) When Q is odd, K must be even since N is even. Letting n = k + qK/2, k =

0, ..., K/2− 1, q = 0, ..., Q− 1, (5) can be written as

Pm(u, t) =
K/2−1

∑
k=0

Q−1

∑
q=0

(
1− ejNωm(u,t)

)
ej(2k+qK)ωm(u,t) =

K/2−1

∑
k=0

[
1− (−1)mejN( u

2−
πt
L )
]2

1− (−1)mejK( u
2−

πt
L )

ejk(u− 2πt
L )e−j 2πmk

K . (11)

Separating Pm(u, t) to even and odd samples, we have

Pm(u, t) =



K/2−1

∑
k=0

[
1− ejN( u

2−
πt
L )
]2

1− ejK( u
2−

πt
L )

ejk(u− 2πt
L )

︸ ︷︷ ︸
ge

k(u,t)

e−j 2πlk
K/2 , m = 2l

K/2−1

∑
k=0

[
1 + ejN( u

2−
πt
L )
]2

1 + ejK( u
2−

πt
L )

ejk(u− 2πt
L −

2π
K )

︸ ︷︷ ︸
go

k(u,t)

e−j 2πlk
K/2 , m = 2l + 1

(12)

where l = 0, ..., K/2− 1. Performing K/2-point IDFT of the even and odd samples of
sm(t)e−jmN̂u, respectively, and then calculating the cross-correlation between adjacent IDFT
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outputs, denoted by de
k(t) and do

k(t), k = 0, ..., K/2 − 2, we have û

= arg
{

de
k(t)e

j 2πt
L + do

k(t)e
j( 2πt

L + 2π
K )
}

.

The estimation of u is summarized in Algorithm 2, where S̃q(t)(k1 :k2)
denotes a vector

consisting of the k1th to k2th elements of S̃q(t) and (·)T stands for the transpose of (·). Note
that in Step 12, the samples from the (M− bM/KcK)th to the (K− 1)th are concatenated
after the samples from the (bM/KcK)th to the (M − 1)th to constructively estimate u,
exploiting the periodicity of the phase shifts designed in (4). As the proposed approach is
based on cross-correlation and IDFT computation, its computational complexity is similar
to that in [5] given by O(N(3 + log2 M)), which is much lower than the subspace-based
methods, e.g., MUSIC or ESPRIT in [10,11] given by O(M3N3).

Algorithm 2 Estimation of u

Input: N̂u, sm(t), m = 0 : M− 1, t = 0 : T − 1;
1: for t = 0 : T − 1 do
2: s̃m(t)← sm(t)e−jmN̂u, m = 0 : M− 1;//Calibrate sm(t)
3: for q = 0 : bM/Kc − 1 do//bM/Kc non-overlapping groups
4: if Q is even then
5: s̃q(t) ←

{
s̃qK(t), s̃qK+1(t), ..., s̃(q+1)K−1(t)

}
, S̃q(t) ← IDFT

{
s̃q(t)

}
;//K-

point IDFT
6: else
7: s̃e

q(t) ← the even samples of s̃q(t), S̃e
q(t) ← IDFT

{
s̃e

q(t)
}

;//K/2-point
IDFT

8: s̃o
q(t) ← the odd samples of s̃q(t), S̃o

q(t) ← IDFT
{

s̃o
q(t)

}
;//K/2-point

IDFT
9: end if

10: end for
11: if Q is even then
12: s̃bM/Kc(t)←

{
s̃bM/KcK(t), ..., s̃M−1(t), s̃M−bM/KcK(t), ..., s̃K−1(t)

}
;

13: S̃bM/Kc(t)← IDFT
{

s̃bM/Kc(t)
}

;
14: else
15: s̃e

bM/Kc(t)← the even samples of s̃bM/Kc(t), S̃e
bM/Kc(t)← IDFT

{
s̃e
bM/Kc(t)

}
;

16: s̃o
bM/Kc(t)← the odd samples of s̃bM/Kc(t), S̃o

bM/Kc(t)← IDFT
{

s̃o
bM/Kc(t)

}
;

17: end if
18: end for
19: if Q is even then

20: û← arg

{
T−1
∑

t=0
ej 2πt

L
bM/Kc

∑
q=0

S̃∗q(t)(1:K−1)
S̃T

q (t)(2:K)

}
;//Coherent combination

21: else

22: û← arg

{
T−1
∑

t=0
ej 2πt

L
bM/Kc

∑
q=0

(
S̃e∗

q (t)
(1: K

2 −1)
S̃eT

q (t)
(2: K

2 )
+ ej 2π

K S̃o∗
q (t)

(1: K
2 −1)

S̃oT
q (t)

(2: K
2 )

)}
.

23: end if

3.4. Discussion on Extension of the Proposed Approach

The proposed approach can be potentially extended to wideband mmWave systems,
where each subcarrier or a cluster of subcarriers are assumed to be narrowband, and
the proposed approach is performed separately at different subcarriers or clusters. The
cross-correlations between subcarriers or clusters can also be exploited to improve the
estimation accuracy [6].

The proposed approach can be extended from a linear array to a planar array, where the
proposed phase shift design and cross-correlation operation can be applied similarly along
the orthogonal dimension. Since the radiation pattern of a planar array can be represented
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by the product of independent radiation patterns along two orthogonal dimensions, the
AoA estimation between them can be decoupled from each other.

The proposed approach can potentially be extended to the case in the presence of
nonline-of-sight (NLOS) or interferences from other transmitters. Since the NLOSs are
typically much weaker than the LOS, serial interference cancellation could be performed
for sequential AoA estimation with the proposed approach. When the AoA of the LOS is
estimated, we can steer all beams of subarrays towards this direction, and then evaluate its
channel amplitude and phase. By regenerating the LOS signal component and removing it
from the received signals in all subarrays, the second strongest path can be estimated. In
the same way, the remaining paths can be estimated and subtracted one by one. When there
exist multiple interferences with similar power from different directions, the proposed
approach could be conducted in terms of parallel interference cancellation, where multiple
AoAs are simultaneously estimated and cancelled.

4. Simulation Results

In this section, we present the simulation results to evaluate the proposed approach,
compared with the state of the art [5]. Denote the average received SNR per antenna as γa.
The training symbols, s̃(t), are generated following complex Gaussian distributions with
zero mean. Assuming uniformly distributed AoA within [−π, π], simulation results are
obtained by averaging over 50,000 trials. Here, we define Pd as the probability of correctly
finding the index m′ at Step 6 of Algorithm 1.

Figure 3 compares the MSEs of ejN̂u versus γa with Q = 1 and 2. As shown in the
figure, the proposed phase shift design outperforms that of [5] in terms of MSE of ejN̂u,
since a higher SNR for N̂u can be achieved at Step 9 of Algorithm 1. The MSE curve of ejN̂u

becomes increasingly tight to its asymptotic lower bound with the increase of γa, where
the asymptotic lower bound is the lower bound of proposed approach produced under the
assumption of Pd = 1. There is more gain with Q = 2 than Q = 1 in comparison with [5],
which indicates that the proposed scheme is more applicable to narrow beams, i.e., large N.
This is because multiple narrower single beams cannot provide desirable AoA coverage,
resulting in estimation performance loss, which, however, can be compensated by our
phase shift design.
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Figure 3. MSE of ejN̂u versus γa (M = K = 8 and T = 16).

Figure 4 shows Pd versus γa with different values of Q. We can see that the proposed
scheme generally has better performance. At high SNRs, it achieves higher Pd with Q = 1,
while it is inferior to that of [5] when SNR is low. Note that, compared with that in [5],
our proposed phase shift design improves the capability of identifying the correct m′, thus
effectively suppressing the noise and indirectly improving the SNR of estimation. When
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γa is greater than 5 dB, the proposed one leads to a higher Pd with a smaller Q. This is
because, when the number of beams is fixed within one symbol period, a smaller N, and
hence a wider beam, leads to a better coverage of the directions of interest. Therefore, it is
easier to find the correct m′.
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Figure 4. Pd versus γa (M = K = 8 and T = 16).

The MSEs of û are shown as a function of Q in Figure 5. It can be seen that its MSEs
generally increase with Q attributed to the decreasing number of subarrays. The proposed
approach generally achieves better performance than [5] when Q is an even number. When
Q is odd, the proposed method results in larger estimation errors since the signals are only
averaged over K− 2 product terms (see Step 22 of Algorithm 2), less than K− 1 in [5]. The
corresponding asymptotic lower bound of MSEs of û are displayed for comparison. To
evaluate the credibility of estimation errors, we calculate 95% confidence intervals (CIs)
for û. When γa = 5 dB and Q = 2, 4 and 6, the CIs are given by [–0.0207, 0.0111], [–0.0204,
0.0114] and [–0.0244, 0.0075] for the proposed one, [–0.0219, 0.0099], [–0.0258, 0.0060] and
[–0.0224, 0.0096] for [5], [–0.0205, 0.0113], [–0.0232, 0.0086] and [–0.0213, 0.0104] for the
asymptotic lower bound, respectively. The MSEs of û in Rician fading channels [12] are
also provided to show the impact of multipath channels on the proposed approach, where
the Rician factor is assumed to be 10 dB. Figure 6 presents the MSE of û versus γa with
even values of Q. From the figure, we can see that the proposed approach outperforms [5]
by 1.4 dB at the MSE of 0.1, 0.4 dB at the MSE of 0.01 and 0.7 dB at the MSE of 0.001,
respectively, when Q = 6, 4 and 2.
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Figure 5. MSE of û versus Q, (N = 24 and T = 6).
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Figure 6. MSE of û versus γa, (N = 24 and T = 6).

5. Conclusions

In this letter, we proposed a novel phase shift design to facilitate the estimation of
a single AoA in a localized hybrid array. Based on the ratio of the number of antennas
per subarray to the number of different phase shifts per symbol being even or odd, we
presented two different AoA estimation schemes. Employing difference beam steering in
each subarray, the proposed approach can effectively improve the phase offset estimate
accuracy between adjacent subarrays, and thus the AoA estimate. Simulation results of
MSEs showed that the proposed one achieved better AoA estimation performance over the
state of the art when Q is designed to be an even number.
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