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Abstract: Hydroelectric power plants often make use of tunnels to redirect the flow of water to the
plant power house. Such tunnels are often flooded and can span considerable distances. Periodical
inspections of such tunnels are highly desirable since a tunnel collapse will be catastrophic, disrupting
the power plant operation. In many cases, the use of Unmanned Underwater Vehicles (UUVs)
equipped with mechanical profiling sonars is a suitable and affordable way to gather data to generate
3D mapping of flooded tunnels. In this paper, we study the resolution of 3D tunnel maps generated
by one or more mechanical profiling sonars working in tandem, considering synchronization and
occlusion problems. The article derives the analytical equations to estimate the sampling of the
underwater tunnels using mechanical profiling sonars (scanning sonars). Experiments in a simulated
environment using up to four sensors simultaneously are presented. We also report experimental
results obtained by a UUV inside a large power plant tunnel, together with a first map of this
environment using a single sonar sensor.

Keywords: profiling sonar; UUV; sampling; mapping; mechanical profiling sonar; Imagenex 881L

1. Introduction

Man-made structures, such as channels and underwater tunnels, are often used in
some types of hydroelectric power plants to direct water from the river to the power
house. Such tunnels can span from tens of meters to kilometers in length. Engineers must
constantly monitor the tunnel conditions in order to prevent tunnel collapse, a catastrophic
failure which will interrupt essential services for a long time and lead to major financial
losses. While a full collapse of the tunnel is evident, partial collapses deform the ceiling or
side walls and often throw debris on the floor. The detection of such features is key to the
inspection of these tunnels.

Inspections of such power plant tunnels can be very challenging. Typically Unmanned
Underwater Vehicles (UUVs) only access these tunnels when the power plant operation
is halted for scheduled maintenance, due to the risks of operating the vehicle with a
high water flow [1]. This constraint means that there is limited time for testing the UUV
operation in the power plant tunnel before its deployment. Furthermore, water visibility
in such tunnels is often very limited. During our experimental tests, water visibility was
between 1–3 m (in clear rivers water visibility is around 20 m [2]) and in these conditions
the use of sonars is a viable and affordable alternative. Some authors have reported
success using active optical three dimensional (3D) scanners and other types of high-end
commercial equipment [3,4] to reach 10 to 20 m of range under clear water conditions. In
our case, water turbidity would restrict laser or vision based range finders to close range
operation [3] and therefore they could not be used for tunnel mapping.

There are mainly two broad groups of sonars—multi-beam sonars (MBSs) and me-
chanical profiling sonars (MPSs). MBSs can cast several rays at the same time, collecting
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range data at several orientations at once, while MPSs usually cast a single ray from a
sensor spinning under the control of a mechanical device. MPSs and MBSs typically have
a configurable angular step between adjacent samples, which often change the pooling
speed of the sensor. Both types of sensors can provide range data to map underwater envi-
ronments. However, the range sampling frequency for MBSs is often orders of magnitude
higher than MPSs. On the other hand, the price of an MBS is often several times the price
of a MPS. Therefore using multiple MPSs [5] might be an affordable alternative solution.

In this paper we study the mapping of flooded tunnels using an MPS, or a combination
of them. In particular, we focus on the effect of UUV velocity, sensor angular velocity and
step size on the distance between sampled points obtained with range readings from a
pool of several MPSs, testing two different spatial configurations of sensors—sector offset
and phase-shifted continuous rotation. We use a commercial product, the Imagenex 881L
profiling sonar, as a reference for sensor-specific settings of angular velocity and steps.
Experiments were performed in simulated versions of two robots equipped with 881L
sensors. We show how to predict the distance between samples on the surface of the tunnel
for one or more sensors in order to properly select the sensor configuration, which often
has several parameters that cannot all be tested on site. We also present our first test inside
an actual tunnel considering one single sensor to validate its use in large tunnels.

2. Related Work

In the context of tunnel mapping, Hosko [1] reports lessons learned over a five year
case study of inspection of hydro powers, emphasizing the problems to inspect tunnels
with divers, the cost of dewatering long tunnels, and pointing the need for mapping such
structures using UUVs.

In the context of vision based sensors, plenty of work is currently being undertaken
to achieve vision in turbid waters. Range gated underwater laser imaging [6,7], integral
image techniques [8,9], synthetic confocal imaging [10] and stereo cameras together with
structured light [11] have shown to work in turbid environments, even though only for
close range applications [3]. Bleier and Nüchter [4] even highlight a commercial sensor
which can work in the range of up to ten meters under specific water conditions. Still, the
visibility inside the tunnel was usually between 0.5–3 m. While such visual based methods
can certainly be used to map certain types of tunnels, the dimensions of the tunnels we
are working exceed the ranges reported by such methods and the range reported by
commercial devices is only possible with water conditions which are not present in our
environment. In fact, even though many visual based methods can offer better refresh rate
and even resolution at close range, sonars are still the norm for a number of underwater
applications [3]. For smaller tunnels, visually based methods are the best option.

Drap et al. [12] fuse vision and sonar data to generate accurate representations of
underwater environments with an ROV; however, in our case we cannot use vision, since
water turbidity is high. Fairfield et al. [13] reconstructs a cenote using sonars with one meter
voxels, comparing SLAM approaches and dead reckoning, and pointing the limitations
of sonars beams, which often cannot provide enough resolution for feature detection of
large environments such as cenotes. The voxel size is set to one meter, but the discussion
focuses on the beam shape, while information on how the voxel size was defined is not
further detailed. While the resolution of the map may not be important for environmental
surveys of cenotes, the resolution of the map is critical for the inspection of flooded tunnels.
Fairfield et al. [14] presents a 3D SLAM method for mapping structures based on a 2D Rao-
Blackwellized Particle Filter [15]. The study focuses on memory and computational costs
when increasing the voxel size, which show cubic growth with. Lasbouygues et al. [16]
presents a robotic system which is able to perform the mapping of karst aquifers with
an ROV and also an underwater scooter operated by divers. They show that these two
proposed systems can perform the task. White et al. [17] present several mapping strategies
using a UUV inside the flooded regions of cisterns at Malta, including sonar mosaicking
and SLAM with the aid of a tether counter—when walls are not able to provide sufficient
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features to localize the robot along the cistern length. McVicker et al. [18] also presents
the mapping of cisterns using an ROV and stationary scans in combination of a SLAM
approach to achieve 3D reconstruction. Another work involving cisterns is presented by
Dobke et al. [5], which uses two orthogonal mechanical sonars and the Iterative Closest
Point (ICP) algorithm to map cisterns, showing we can combine MPSs in tandem in
underwater environments. Other relevant works on mapping cisterns include the works of
Clark et al. [19,20].

Mallios et al. [21] presented a pose SLAM algorithm based on techniques derived
from the ICP algorithm to localize the SPARUS AUV inside a natural underwater tunnel.
Stipanov et al. [22] presented the mapping of a cave using a tethered ROV with a resolution
of two meters. Their experiments show that a tether can impair the forward speed and even
stop the UUV due to friction against rocks. While DVLs are an alternative for estimating
the UUV velocity inside tunnels, Kantor et al. [23] point out that the dropout rate of the
DVL can affect localization, even in outdoor environments which can use GPS. In a seminal
study, the Tunnel Sea Lion ROV design [24] is presented, including functions such as the
inspection of tunnels. Zhou et al. [25] present the design of a hybrid AUV/UUV for the
inspection of power plant tunnels along with tether counter and heading control data.
Loisy et al. [26] report a first inspection of long underwater tunnels with 2.4 m of diameter
using an ROV. The diameters of such tunnel is smaller than those we are working on,
10–20 m. They report counter current, which we also faced, due to a leak, considerably
affecting maneuverability and the operation. In the present work, we report our experience
while mapping an underwater tunnel with large dimensions, including information about
the visibility on site and the environment we have faced.

In addition, the quality of sampling of systems using one or more synchronized MPSs
in tandem in simulated scenarios is studied. Information theory is the foundation of
the present work. We use it to formally estimate the spatial distance between samples—
specially the sampling period and the sampling theorem [27–29]. One can see the process
of robotic mapping as a signal reconstruction process, where the environment surface can
be seen as a signal of interest, and the time t is replaced by the space covered by the robot
and its sensor over the region which must be reconstructed. Likewise, any range sensor can
be seen as a wave used to sample part of such signal as the robot moves over the terrain.

For the simulations, we have considered different simulation frameworks [30–39].
More recently, Paravisi et al. [40] presented a new simulator, usv_sim_lsa, based on
UWSim [32], improving support to USVs and realistic environmental disturbances. Many
of the simulators studied by the authors also work for UUVs. They point out problems in
several simulators, including lack of documentation and running code. Manhães et al. [41]
present the uuv_simulator, which considers factors such as added mass in the robot motion.
Among the available simulators, we have selected two: usv_sim_lsa and the uuv_simulator,
both which work with ROS and Gazebo. While the former offers a richer set of envi-
ronmental simulations and better underwater rendering, the latter offers slightly better
representation of the robot motion in water at the cost of increased instability. We stood
with the uuv_simulator, mainly due to its more complete motion model.

The two prototypes we have designed, VITA 1 and VITA 2, were ported to the
uuv_simulator, including sensors, to test synchronized MPSs. We also recreate an approxi-
mation of the underwater tunnel scenario we are currently working with.

3. Formalization of the Mapping Problem

In this section we mathematically describe an ideal robot designed to perform mapping
of a partially structured man-made tunnel and its ideal mapping sensor used to formalize
the problem of mapping for one sensor connected to a robot, as the latter moves with
constant velocity, v.

We start with a sensor constructed with a fixed base connected via a revolute joint
to a spinning head, where it is fixed (see Figure 1). The head rotates in discrete and
uniform angular steps around the rotation axis, represented by the normalized vector r̂,
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with constant but configurable angular velocity, ω. The exterioceptive sensor is a single
point sensor which samples points at each angular step, θ, with heading ŝ, orthogonal to r̂
such that ŝ · r̂ = 0.

Figure 1. An example of profiling sensor with a single ray connected to a moving head.

The sensor is mounted in a UUV with normalized heading vector, ĥ, matching r, such
that ĥ · r̂ = 1. In addition, we position the UUV at a point, P = (0, 0, 0), centered at the
entrance of a tunnel with cross-section shown in Figure 2, where a is the tunnel width,
b is the tunnel height, and û = (1, 0, 0), v̂ = (0, 1, 0) and ŵ = (0, 0, 1) form the basis of
the coordinate frame of the tunnel. We assume the tunnel is straight and, as the robot
moves, it is always at a point Px = (x, 0, 0) inside the tunnel, where 0 ≤ x ≤ l and l is the
tunnel length along û. The robot heading, ĥ is co-directed with û, making every sensor
ray co-planar with a plane represented by point Px = (x, 0, 0) and its normal û, where a
cross-section along the tunnel length lies.

Figure 2. An example of tunnel cross-section with base with length a, the tunnel height is b and its
arc shaped ceiling has radius c. Vectors û, v̂ and ŵ are the normalized basis vectors of the tunnel
reference frame, where û is orthogonal to the cross-section of the entrance of the tunnel.

We then start to study the resolution of 3D maps of tunnels. We break the problem
into parts. First we consider the cross-section and then the whole map as the robot moves
along the length of the tunnel with constant velocity. Lastly, we study the behavior of
multiple sensors working in tandem.
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The Sampling Period over Cross-Sections

When our ideal point-wise robot is stopped, we can disregard the effect of the robot
motion over û and simply analyze the behavior of the sensor as it rotates. Therefore, we can
devise a function g representing the cross-section of the tunnel in cylindrical coordinates as

g(t) = 〈x, ρ(t), α(t)〉, (1)

where at any time t, x is the value that designates the point Px = (x, 0, 0) where the robot
is stopped, ρ(t) is the distance from the center of the cross-section to the internal surface
of the tunnel at angle α(t), all on the plane with normal û, regardless of x. This way, ρ(t)
conveniently represents the sensor range reading, while α(t) represents the current angle
of the head of the sensor—assuming the robot and sensor are centered at the cross-section
(see Figure 2).

If using Cartesian coordinates, the function g(t) can be written as

g(t) = 〈x, ρ(t) cos(α(t)), ρ(t) sin(α(t))〉. (2)

Even if there are no occlusions blocking the sensor field of view, sensors do not have
infinitely small step angles. The number of angular steps for a full rotation of the sensor, n,
is finite and given by

n =
2π

θ
, (3)

where θ, the sensor step angle, is often small (typically around one degree), depending on
sensor configuration and quality.

Since the profiling sensor offers a single range measurement of the tunnel cross-section
at each angular position, α(t) and ρ(t) are only available at time instants t = kTs, where

α(t) = α0 + ωt, (4)

and k = 0, 1, . . . , n− 1, Ts is the sampling time (time interval between successive samples),
and α0 and ω are respectively the starting angle and the angular velocity of the sensor head.
Consequently, only a sampled version of the function g(t) can be acquired in practice.

Angular sampling in our case produces evenly spaced angles, but spatial samples are
usually not evenly spaced. The distance between samples in space will only be equal if the
robot is mapping an ideal duct, pipe or tunnel with the shape of a cylinder. In this case, the
cross-section of the environment is a circle and the space between samples is guaranteed to
be the same. For our tunnel, if c = b/2, the ceiling respects such condition; still, at the floor
and vertical walls, it is not. Moreover, the reconstruction, simply put as a Fourier transform
used to reconstruct a signal, would also rely on base functions of different frequencies,
but such frequencies represent changes in the terrain or cross-section, measured by the
rate of change of ρ, in meters. The information between such samples can be lost if the
features at the surface are not salient enough or are smaller than twice the distance between
samples—which is a consequence of the sampling theorem. Therefore, we can lose data
with our ideal sensor.

In order to analyze the sensor while it is mapping the floor, we keep the initial angular
position with the sensor pointing down to −ŵ (see Figure 3a). The distance between
samples, Ty, when the sensor rotates clockwise one step angle, θ, is trivial and given by

Ty1 =

∥∥∥∥ b tan(θ)
2

∥∥∥∥. (5)

This is the spatial sampling interval along the cross-section with the smallest distance
between the sensor and the floor. Besides, the distance between samples on the floor is
proportional to the tangent of the angular position of the head, α, and the angular step,
θ. On the other extreme, assuming the sensor moved θm steps clockwise, conveniently
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reaching the corner which connects the floor and side wall (see Figure 3b), the sampling
interval is given by

Ty2 =

∥∥∥∥ b(tan(mθ)− tan φ)

2

∥∥∥∥, (6)

where φ = (m− 1)θ. It represents the distance between samples with the largest distance
between the sensor and the floor—b(tan(mθ) = a/2 when m reaches the corner. Never-
theless, Equation (6) also describes all the distances between consecutive samples on the
floor by changing the value of m. In fact, it reduces to 5 when m = 1. Now we can write
Theorem 1 (see proof in Appendix A).

(a) The sampling of the floor, when starting at
−ŵ and then rotating the head clockwise, one
step angle, θ.

(b) The sampling of the floor, when starting at
the corner and then rotating the sensor head
counter-clockwise, one step angle, θ.

Figure 3. Analysis of floor samples in the two extreme cases: (a) when the sensor is centered and perpendicular to the floor; and,
(b) when the sensor hits the corner.

Theorem 1. When a single point sensor rotates around an axis to perform the sampling of a flat
region, sampling with uniform angular steps results in non-uniform spatial sampling. In particular,
if we assume the angular sampling starts at θ = 0◦ forming a vector which is perpendicular to
the flat region, any pair of samples on the floor, obtained by stepping from m(θ − 1) to m(θ), will
display a smaller spatial distance between samples than the next pair obtained at the next step—that
is, going from m(θ) to m(θ + 1).

Thus, we can infer the best and worst cases of spatial sampling over the cross-section
at flat regions with direct impact on sampling, knowing exactly where poor sampling
will occur. That is, Ty1 corresponds to the smallest distance between samples on the flat
region, while Ty2, when the sensor ray hits the corner, is the largest. In other words, the
best resolution obtained while sampling the floor would occur at the center of the tunnel,
degrading as sampling approaches the corners

Once the robot moves sideways, the distance to the farthest corner is increased in
the same amount. While such displacement to the sides can be small, its resulting effect
in the tangent function may not be negligible, depending on the size of the tunnel under
consideration and θ. Similarly, once the robot moves vertically towards the floor, the
distance between adjacent samples will decrease when the ray is nearly perpendicular
to the floor. However, it will increase near the corners, increasing drastically as the ray
approaches parallelism with the floor. Finally, if the robot does not keep its heading aligned
with the length of the tunnel, the difference in the yaw angle from the correct heading will
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also result in an increased distance from the farthest wall. As a consequence, the values of
Ty1 and Ty2 are affected by the robot displacement and attitude.

Sidewalls can be compared applying the same strategy, if they are flat. Then, the last
step is to study the ceiling. For tunnels with a rectangular cross-section, there is nothing
else to do but comparing such regions. However, for the cross-section with the circular
shaped ceiling of Figure 2, the spatial distance between samples is given by

Tc = ‖b sin(θ/2)‖, (7)

in the specific case where the center of the cross-section, matches both the robot position
and the center of the half-circle which forms the ceiling, that is, c = b/2 = a/2. The
distance between samples in this case is always smaller at the ceiling than the floor. That is,
as long as the profile of the ceiling presents a convex shape and the ceiling curvature does
not go beyond the center of the cross-section, Tc < Ty1. The intuition behind it is this: if the
ceiling is convex, every time the sensor spins one step angle, the ceiling curvature keeps
the measurement ρ constant or smaller than the distance of a purely flat ceiling parallel
to the floor (see Appendix B). Besides, the equation for the ceiling is bounded by the sine
function, which can only grow up to 1, while the tangent function which defines Ty2 can
grow to infinity.

Therefore, the sampling quality along the plane belonging to the cross-section is
constrained by corners. Such sampling period is given by Ty2. Tc and Ty1, can both be used
to as best case scenarios of sampling along v̂. However, Tc calculation varies with ceiling
shape and distance, since the ceiling often has specific constructions which do not match
our design. Thus, using the simple floor equation may be a reasonable approximation.

Note, that such distances also depend on the robot position, and small changes to
the sides lead to changes in minima and maxima. Also, man-made constructions often
have sharp corners where the derivative of the function representing the surface is not
defined. Such sharp corners demand infinite samples, previous knowledge about the
terrain or some sort of heuristic for reasonable reconstruction. Such discontinuities usually
are detected by sudden increases in the distance between adjacent samples, which change
maxima values. Discontinuities in the surface will also reflect on minima, since a salient
object, for example, a rock, may lead to the reduction of the distance between the sensor
and the feature.

We can also compute the mean distance of consecutive samples on the floor. One way
to compute it is using Equation (6) in the form of a sum, which for the first quadrant is:

T y2 =
∑m

k=1

∥∥∥ b(tan(kθ)−tan((k−1)θ))
2

∥∥∥
m

. (8)

Note that Equation (8) is a telescopic sum which can be directly reduced to:

T y2 =

∥∥∥∥ b(tan(mθ)

2m

∥∥∥∥ =
a

2m
. (9)

Since we have a symmetry, both sides of the flat region reduces to the same equation.
Moreover, we can estimate the mean distance between samples over the entire cross-

section as
T yp ≤

p
n

, (10)

where p is the perimeter of the cross-section and n is the number of angular steps given by
the sonar in one revolution of the sensor (see proof in Appendix C). Note that only T yp is
independent of the position of the sensor over the cross-section.

Together, T yp , Ty2 Ty1 (or Tc) can be used to estimate the size of features which can
be detected over the cross-section. Still, the robot forward motion affects sampling in
important ways.
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4. Considering Forward Motion

In order to map the tunnel, the robot must move over the environment—that is, over
axis û. In our analysis we consider the robot velocity v = (v, 0, 0), that is ‖v‖ = v. Thus,
no single point belongs to the same cross-section, as we have previously considered (see
Figure 4). For instance, if the robot moves over a tunnel in the shape of a cylinder with
constant speed, the resulting point cloud will form points over a spiral.

Figure 4. The impact of velocity on mapping with single point sensor when a robot moves with constant linear velocity
v = (v, 0, 0).

That is, the distance between consecutive point samples on the tunnel over axis û
(along the tunnel length) will be constant and given by

d = vTs, (11)

where Ts is the time taken for the sensor to move one angular step, θ. Since sampling is
uniform over such axis, the sensor always gives n steps per revolution of period, T—that
is, the time it takes for the head to get back to the same position is T, while the distance
between consecutive samples over û, taken at the same angular position, is given by

Tx = Tv, (12)

which is, in fact, the spatial sampling period over û. Note that, unlike the derived sampling
periods for the cross-section, Tx does not depend on the distance, ρ, measured by the sensor.
Thus, when v→ 0, Tx → 0. The smaller Tx, the better the resolution is over û. In fact, Tx
defines the maximum size of anomalies which can be detected along the tunnel length.
For instance, a rock with s meters of length might not be detected on the floor if Tx ≥ s,
due to sampling problems. In order to minimally detect the presence of the rock at the
floor, we have to make Tx ≤ s/2, which is a direct consequence of the Sampling Theorem.
The detection of such anomalies is critical for inspection, since missing one means we are
potentially losing information about an imminent collapse of the tunnel.

Of course, Ty2 is also affected by the small displacement d, resulting from Equation (11),
due to robot motion. Therefore, the distance between consecutive samples is given by:

Tymax =
√

d2 + T 2
y2, (13)
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at the corners. Similarly, as the distance between consecutive samples changes, the min-
imum distance on the floor and on the ceiling are also affected in the same way by d,
resulting in:

Tymin =
√

d2 + T 2
1 , Tymin =

√
d2 + T 2

c . (14)

Note that, the minima will often occur at the ceiling, but the selection of equation to
be used as reference can be dependent on the desired end use.

The mean is also affected, but the displacement over axis is û is md, since the head
is moved m times to go from the center (perpendicular ray in relation to the floor) to the
corner, which results in:

T y =

√
(nd)2 +

(
Typ

)2
. (15)

We know Tymax and Tx do not form a straight triangle due to the robot displacement
between sensor readings. In fact, the pair of samples obtained from mθ, at the corner and
(m− 1)θ, one sample before reaching the corner, and the next pair of samples at the same
head position but subsequent period of revolution together make a parallelogram (see
Figure 5).

Figure 5. Distance between pair of sensor readings which are closest to the corner, mθ and (m− 1)θ
angular positions, during the first sensor revolution are displayed as blue vertices, while the same
samples at the next revolution are in red. Note that they form a parallelogram of sides Tx and Tymax ,
with the largest distance between samples at the parallelogram at the largest diagonal, shown in red
dashed lines.

Such a parallelogram defines the worst case of distance between samples, which is
not perpendicular to any axis. Instead it is at the largest diagonal of the parallelogram. The
size of such diagonal is given by:

Tmax =
√
(Tx + d)2 + (Ty2)2. (16)

Features may not be detected by the sensor of if they are smaller than 2Tmax.
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Corollary 1. Given a tunnel with convex and symmetric ceiling, and a robot centered at the cross-
section, moving with constant speed along the tunnel length and equipped with a spinning profiling
sensor, the largest distance between samples obtained by such system is T , given by Equation (16).

Likewise, the mean can be computed as

T =
√
(Tx + d)2 + (T y)2, (17)

while the minimum distance is given by

Tmin =
√
(Tx + d)2 + (Tymin)

2. (18)

Note that when the robot moves slowly, as is the case with many UUVs, the covered
distance in the time between consecutive samples is often negligible, given the angular
velocity of the sensor. Therefore, d can be set to zero and ignored. Also, Equation (16) which
represents the parallelogram is simplified to the rectangle formed by Ty1 and Tx. Thus,
Tymin ≈ Tc (or Ty1), Tymax ≈ Ty1 and T y ≈ Typ . This is also true for Equations (17) and (18).
Interestingly, this is the case for an MBS and laser based profilers as well, which means that
they will suffer sampling problems similarly along the cross-section, but for those sensors,
usually Tx are considerably smaller than that of MPSs.

5. Multiple Sensors Strategy

A single point sensor such as that idealized in the previous section may suffer due to
poor sampling along the tunnel length. Multi-beam profile sonars with a field of view of
360◦ can sample many points at the same time, decreasing the size of Tx, which avoids the
spiral pattern generated by single point sensors. However, such sensors are expensive. A
less costly approach is to combine single point sensors, which can potentially decrease the
distance between samples by a factor equal to the number of MPS.

However, some decisions have to be made regarding the way each sensor will work.
Recall that the cross-section is separated into n uniform angular steps—that is, nθ = 2π.
Now, suppose we have s sensors, s0, s1, · · · , ss−2, ss−1. We can divide the field of view of
the sensor into equally discrete parts, 2π/s ∈ R and each sensor can be responsible for its
own interval

2πk
s
≤ j <

2π(k + 1)
s

,

where k = {k ∈ Z | 0 ≤ k ≤ s − 1} for each sensor sk. In this setup, all sensors move
from 2πk

s to 2π(k+1)
s and then back continuously. Another approach is to keep all sensors

spinning continuously with a difference of phase to ϕ(k) = 2πk/s for each sensor. While
these two approaches look similar, they are not. We discuss the two approaches below,
starting with phase shift.

5.1. Phase Shift

If we keep all sensors spinning but with different phases, each sensor will reach a
given angular position with a difference of phase given by ϕ(k) = 2πk/s, where k = {k ∈
Z | 0 ≤ k ≤ s− 1} is the id of the sensor, for each sensor sk. Therefore, every T/s seconds a
sensor will reach the same head position, leading to a constant uniform sampling of Tx/s
over the length of the tunnel.

Let’s suppose we are working with four identical sensors, that is s = 4 with sensor
s0, s1, s2, and s3, attached to our ideal UUV, where, as before, all the sensors are at the
center of the cross-section of an ideal cylinder-shaped tunnel with radius r and length
l. The robot is traveling with forward speed, v, so all the sensors have Tx = 1 m with
phase ϕ(k). Therefore, the phase for each sensor will be 0◦, 90◦, 180◦ and 270◦. Figure 6
shows the side view of the sampling of the surface of such ideal tunnel, where the distance
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between samples at the floor and at the ceiling for all sensors is shown to be Tx/s. The
same behavior happens for all samples at the same head position for each of the sensors.

Figure 6. The behavior of four identical sensors s0, s1, s2, and s3, with phases ϕ(k) for each sensor
sk—that is, the phase for each sensor is 0◦, 90◦, 180◦ and 270◦ respectively. Samples at the same head
position for all sensors are out of phase and the distance between subsequent samples with the same
head position is always Tx/s, where s is the number of sensors. For all sensors, the distance covered
while performing one full sensor revolution is Tx. A 4x faster sensor is shown in blue dashed lines.
As the slow sensors can sample 4 points at the same time, sampling does not happen exactly at the
same points of a faster sensor, but the distance between samples are the same—for example, the floor
is sampled with the same spatial distance, but not at the same points.

If we consider all sensors at the same position in space, we can ignore positioning of
sensors and apply the specified phase shift for each sensor. However, two MPSs cannot
occupy the same position in space. Thus, the phase difference must be ϕ(k) = 2πk/s,
where s and k are given as before, but it must happen when the sensors which are behind
reach the same position (see Figure 7) of the forward reference sensor s0. That is, if the
forward speed of the robot is v along the tunnel length, we need the phase difference to
be ϕ(k) after x meters, which takes t = x/v seconds. Then, if the reference sensor s0 starts
with angular position α0 = 0 at position x, and sk is also with αk = 0, but at position 0,
when sk moves from 0 to x its head position will be given by

αk = ωx/v, (19)

where ω is the angular velocity for all the sensors. Therefore, for the sensors which are
behind to be in the desired phase at x, their head positions must start with a phase shift of

γ = ϕ(k)−ωx/v, (20)

in order to cancel the phase shift caused by speed and apply the phase between the position
of the head of each sensor.
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Figure 7. Impact of sampling with two sensors when the robot moves with constant velocity
v = (v, 0, 0) and the distance between sensors is x. When s1, reaches the position of s0, phases must
be shifted by 180◦.

However, if the sensor sk is pointing at the opposite direction of the reference sensor
s0, its head position α will increase rotating to opposite directions. Thus, the phase shift for
sensor sk is given by

γ = 2π − (ϕ(k)−ωx/v). (21)

Thus, we may control the size of Tx by changing the forward speed v to achieve the
desired result. Nevertheless, increasing v will increase the distance between samples along
the length of the tunnel, which may not be desirable, while decreasing it may take too long
to complete the mission.

Note also that we can design a robot so that the distance between the forward sensor,
s0, and the distant sensor, sk, is x = vT or x = qvT, where q is the number of revolutions
or periods of the sensor. When the distance between the displaced sensors is equal to the
forward distance traveled during the period T, any phase difference applied on to the back
sensor will lead to such phase difference when sk reaches the starting position of s0, making
it easier to configure each sensor. Nevertheless, ignoring or failing to match the distance
between sensors with the distance covered by the robot and still trying to reach Tx/s can
lead to sensors which are not orthogonal to each other, increasing the chance of interference.
Hence, if x/v < qT/s, we must increase the distance between sensors or move slower
than v. On the other hand, if x/v > qT/s we must move faster or decrease the distance
between sensors. Still, depending on x/v, this modifications may lead to infeasible speed
or unreasonably large distances between sensors.

Another way to adjust phases is to change T (and ω), modifying the configuration of
the sensor—typically changing the angular step θ. This way, T is a variable

T =
sx
qv

which often has limited options which depend on the available configurations of each
specific MPS. Still, increasing the angular velocity of the sensor will often impact resolution,
since a faster rotation often means larger angular steps. The phase shift approach is
therefore highly dependent on phase differences.

5.2. Sector Offset

In this alternative method of configuring multiple sensors, each sensor is responsible
for its own sector. Therefore, it takes T/s seconds to scan its own sector. As each sensor
does its sector in parallel, it may look like we can get s times faster sampling and s times
smaller distance between samples than that with a single sensor. However, when the
movement from one end of the sector to the other is finished, the head is not back at the
start position, as it would be in a full revolution. Therefore, the sensor will have to travel
back for another T/s seconds to reach the starting angular position (see Figure 8). In this
case, the period of the sensor is 2T/s. Another problem is that the time to reach the same
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head position to find Tx varies depending on the position and direction of movement of
the head.

Figure 8. Sector sampling of a flat region. Dashed black lines represent the readings of a sensor, while green dashed lines
represent the reading of an adjacent sensor. The distance between readings at the same head position, β, but subsequent
time-steps, presents different values—depending on the path taken by the sensor. The Long path (blue dashed) results in
greater distance between samples than the shorter path (red dashed). Smaller and larger distances alternate each other and
also that the sum of both is 2Tx

s .

As a result, the distance between samples at the same head position but subsequent
periods are no longer constant. In fact, at each end of the interval, the distance between
samples is constant and equal to 2Tx/s, which may be assisted by a sample from another
sensor between them (see where dashed lines in green connect in Figure 8), which leads to
a distance between samples of Tx/s. Also, if the head is positioned at the middle of the
sector, subsequent readings at this position are always equal to Tx/s. Unfortunately, for the
other samples in the interval, the distance decreases and increases linearly depending on
the angular position and direction of rotation of the head—clockwise or counter-clockwise.
These samples present two possible values: a small value, Tx1, where the path from the
head position to the edge of the sector is such that 0 < Tx1 < Tx/s; and a large value, Tx2,
when the edge of the interval where the head is distant from the current head position,
where Tx/s < Tx2 < 2Tx/s. Note that

Tx1 + Tx2 =
2Tx

s
.

Besides, this abrupt change in the distance between samples as the robot moves
forward leads to poor and good sampling periodically. As a result, when we use s sensors
to perform sampling over sectors, the sampling distance is often larger than the desired
result of Tx/s for half the samples periodically. The opposite is also true, that is, for half
the sector samples over the tunnel length will present a smaller distance than T /s. One
final note on sectors is the area covered during the half of the sector with smaller distances
is smaller than the half of the period when samples are larger than T /s, increasing the
chance of missing features of the tunnel.
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In order to reproduce the triangular-shaped pattern of sensors configured to work
in sectors as in Figure 8, we must also consider the delay between the forward sensor
and backward sensors, to achieve phase alignment and the displacement for each sector.
Such alignment generates triangle wave patterns, which can be reproduced by means of
Algorithm 1. However, as the difference of phase between sensors will affect only the end
of the sector at one sample, ignoring it in favor of perpendicular sensors, that is, setting the
delay to 0, can help decrease inter-sensor interference.

Algorithm 1: Computing the angular position of the head of sensor sk for sector-
based configuration.

Result:
Given the current head position and angular velocity of s0, computes the shifted
angular position of sk, αk, of the head of sensor sk for the sector-based
configuration
Data:
n← number of sensors; k← sensor id; ssize← sector size in radians;
x ← distance between sensors over û; v← robot forward linear velocity;
delay← x/v; // time for sk to reach the position of the forward sensor s0
Ts ← 2T/n; o f f set← ssize · k; //sector offset
α0 ← current sensor angular position ;
ω ← current sensor angular velocity; tθ ← 0; αk = 0 ;
reversed← true if sk and s0 point to opposite directions

1 if ω < 0 then
2 α0 ← (2 · ssector− α0)
3 end
4 // Computes times required to shift αk tα0 ← Ts · α0/(2 · ssector) ;
5 tαk = tα0 − delay;
6 // Make tα0 positive and in the interval between 0 and Ts
7 while tαk < 0 do
8 tαk ← tαk + Ts;
9 end

10 while tαk > Ts do
11 tαk ← tαk − Ts;
12 end
13 // Compute number of half-laps to determine if the sensor is the sensor is going

back
14 a = tαk /(Ts/2) ;
15 b = f loor(a) ;
16 // Depending on the result, the direction of the sensor the phase shift is

computed differently
17 if ‖b%2‖ == 0 then
18 αk = ssize · a + o f f set;
19 else
20 αk = (2 · ssize− a · ssize + o f f set);
21 end
22 // if the sk is pointing to the opposite direction of sk, change the angle accordingly

if reversed then
23 αk = 2π − αk
24 end

It is worth noting that there is a third way to perform sector sweep using multiple
sensors, commanding the head to go back to the initial position once it reaches the end of
the sector, and then restart the sweep. However, even for fast sensors the time taken to
go back will force distances between samples to be always greater than Tx/s, impairing
sampling quality. Also, even if the time taken to go back to the starting position was 0,
a proper alignment of phases would produce results similar to those of the phase shift
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approach. Therefore, we leave it as an alternative to the reader, but we no longer discuss it
in this work.

6. Non-Ideal MPSs

When we step from ideal to non-deal MPSs we have to consider the beam shape
which, in the case of pen-based sonars, opens in a cone shape with aperture ζ and radius
ζ/2. It means the information about sonar range data in one beam is obtained from the
projection of such cone on the surface, centered at position α of the head. As we know the
size of the angular step, θ, we can estimate the amount of overlap between sensor readings
when the robot is stopped at the center of the cross-section as

ε = ζ/θ. (22)

Such metric reflects the ratio of overlap between readings. The effect of such an
overlap is a smoothing of range data for MPSs. For instance, for the 881L, a commercial
MPS, ζ varies with the operation frequency which goes from 600 kHz to 1 MHz, which
respectively lead to ζ = 2.4◦ for sonars operating at 600 kHz and 1.4◦ for sonars operating
at 1 MHz. Therefore, 1.4◦ ≤ ζ ≤ 2.4◦. Table 1 presents the available configuration of
angular steps θ, and the overlapping ratio, ε for theses two cases.

Table 1. Superposition of rays considering different sensor configurations and frequencies.

θ 0.3◦ 0.6◦ 0.9◦ 1.2◦ 2.4◦

ε @600 kHz 8 4 2.67 2 1
ε @1 MHz 4.67 2.33 1.55 1.16 0

The ratio ε means that a sensor can potentially carry, or compress, range data of many
angular steps alone. The larger the ratio, the larger the amount of data a beam carries.
Separating such information is not easy if we do not have information about the beam
response over the cone or the data we scanning. A traditional probabilistic model [42]
can be used to combine sensor readings to update sensor information, but it comes with
considerable computational cost when done in 3D. We could also use heuristics considering
the pattern of the beam to find points on the surface, for instance using shadows to estimate
the height of objects, but it is dependent on the position of the head and also on where on
the surface of the tunnel the cone will hit—ceiling, floor or sidewalls. Finally, ray casting
and a bilinear interpolation can also be used to obtain estimates of the range data for the
entire tunnel.

Features will show up in the map with more or less detail, depending on how we
combine data. Little overlap can be good if we have narrow beams and small angular
steps, while a wide beam and large angular step leads to poor sampling data. When θ is
small and ζ is large, data will probably be smoothed, unless one can decompress beam
information. Large θ and small ζ comes with poor interval between samples, but points
have a greater chance to be in the correct position in space, but the chance to combine data
from several sensors decrease as subsequent beams do not carry information from one
another. This can be a problem since some degree of overlap can be used to filter out noisy
data. Further, the beam range information comes from an area, instead of a point. Thus, a
feature on the surface of the tunnel, which is catch by the cone will be present in the range
data, while point-wise sensors can easily miss data. Still, even with the beam, information
can be lost—for example, when theta = 2.4◦ and the sensor operates at 1 MHz, which has
no overlap between subsequent rays.

Furthermore, sonars often make discrete measurements over the range of the sensor.
The number of range samples can be constant or vary with range, but it always equal
to an integer number, g. The ratio η = (range_max− range_min)/g defines the smallest
measured range value the sensor is able to achieve, given the range. In the equation above,
range_min and range_max are the maximum and minimum ranges which can be detected
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by the sensor. For instance, when the 881L sensor is configured with the range of 10 m,
η ≈ 0.01 m.

Finally, the quality of the entire system is defined by many variables. We can control
some of them using the robot speed and the configuration of the sensor. Overall, the range
of the sensor, the size of T and related values, ζ, ε and η together define the quality of
sampling with single beam sensors. One important aspect from the present study is the
resolution of the sensor does not reflect the distance between samples in the map—as we
have seen with T , Tx, and Ty.

7. Materials and Methods
7.1. Sensor

The present paper performs experiments using the specification available for com-
mercially available mechanical profiling sonar with a single ray. We have chosen the
Imagenex 881L profiling sonar (Information available at https://imagenex.com/products/
881l-profiling (accessed on 20 February 2021)) for our experiments. As any sonar, its re-
sponse time is dependent on range. However, it has five available configurations which
change the revolution period T and the size of the angular step, θ—the five configurations
are named SLOW, MEDIUM, FAST, FASTER, and FASTEST in the experiments. In addition,
its operation frequency can be configured from 600 to 1000 kHz. The sensor is also able to
perform both phase shift and sector offset approaches. Table 2 displays the information for
each configuration considering the range of 10 m, which is the range set for all experiments.

Table 2. Imagenex Parameters for the Range of 10 m.

Parameter SLOW MEDIUM FAST FASTER FASTEST

θ (degrees) 0.3◦ 0.6◦ 0.9 1.2◦ 2.4◦

samples/rev 1200 600 400 300 150
T (s) 21.6 10.8 8 6.6 4.8

fs (samples/s) 55.55 55.55 50 45.45 31.25

As we can see from Table 2, the decrease of the angular sampling resolution implies
an increase in the revolution period T. Also, even though the sampling frequency is high
for small θ, it may be misleading, since the revolution will take longer to complete.

7.2. Simulations

We made use of a simulation environment which makes use of ROS [36], Gazebo [37],
and the uuv_simulator package [41]. We designed two robots for the simulations: VITA 1
(shown in Figure 9) and VITA 2 (currently under construction). The relevant differences
between them, for the current series of experiments, were size and payload capacity. VITA
2 is larger than VITA 1 and is designed to operate with up to four MPS Imagenex 881L.
We made use of VITA 2 to perform tests with more than one sensor. When required, the
3D reconstruction process was performed using the Poisson reconstruction [43] algorithm,
which is one of the algorithms that shows good mapping results [44], depending on the
configuration.

https://imagenex.com/products/881l-profiling
https://imagenex.com/products/881l-profiling
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Figure 9. Robot connected to one mechanical profiling sonar (MPS) with the sensor rotation axis
aligned to the robot heading.

7.3. Simulated and Real World Environment

We created a simplified mesh of an actual tunnel from Ceran, a company from the
south region of Brazil. The tunnel has a base of 10.4 m, ceiling and side walls comprise a
trimmed circle with radius 6.05 m, and its length is around 7 km. Still, in our experiments
we concentrated our tests on a section of around 130 m at one end of the tunnel, between
the rock trap and an entrance of an auxiliary tunnel connected to the main tunnel (see
Figure 10).

Figure 10. The tunnel scenario considered for simulations and real world tests. The rock trap (the
ditch shown in the figure) along with an auxiliary tunnel entrance.

8. Experiments

In this section we analyzed the metrics from Section 3, considering UUVs equipped
with up to four sensors in ideal conditions. A comparison of sector offset and phase
shifted sampling is presented in Sections 8.1–8.3 with up to four sensors. We validated the
methodology for the alignment of sensors, showing the effect of phase alignment when
sensors are distant from each other, and also the problem of occlusions when sensors are
side by side.

We made use of VITA 1 equipped with one 881L sensor positioned at the front of the
robot, 0.15 m below the center of mass of the robot Figure 11a. Experiments with two to four
sensors were performed with VITA 2 (see Figure 11b–d), where sensors were positioned as
follows: when using two aligned sensors, one sensor was positioned at the rear and one
at the front of the robot with opposite headings; in the case of 3 sensors, one sensor was
centered at the front of the robot and two other sensors were positioned side-by-side and
separated by 0.3 m at the back, both with opposite headings with respect to the sensor at
the front; and, finally, the configuration with four sensors, had two side-by-side sensors at
the back and two side-by-side sensors at the front, also separated by 0.3 m and the sensors
at the back having opposite headings with respect to the sensors of the front of the robot.
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The distance between forward and backward sensors in VITA 2 is 1.102 m. Simulated tests
were performed using Gazebo and the uuv_simulator. All robots were equipped with four
Bluerobotics pings to give the pilot information about the UUV distance from sidewalls,
the ceiling and the floor. All tests were performed with the pilot controlling the robot with
a joystick. During the simulations, the robot moved at approximately 0.197 m/s.

(a) VITA 1 with one sensor (b) VITA 2 with two sensors.

(c) VITA 2 with three sensors. (d) VITA 2 with four sensors.
Figure 11. Robots positioned in the entrance of the tunnel. In (a), the vector in red depicts the robot heading vector, while
the green vector is the ray of the sensor which is always co-planar with the cross-section of the tunnel. Blue lines depict
the ping rays of four ping sensors which are used to keep the two robots centered at the cross-section of the tunnel as they
move. In (b–d) we see VITA 2 with several 881L configurations.

8.1. Metrics

In this section we present the tests in simulation scenarios for one and then multiple
sensors. Table 3 compares experimental and predicted data for minima, maxima, and mean.
We also include the standard deviation for analysis of the behavior of the mean distance
between subsequent samples, even though the distribution is not a Gaussian. Table 3 shows
predictions seem to match experimental data, even though the sample size is too small
for statistical analysis. However, we consider the multi-sensor approaches, the Wilcoxon
Signed-Rank test comparing the values of estimated and obtained experimentally for all
configuration of sensors for Tx, T y, Tymin , Tymax with significance α = 0.01, confirm the
use of such parameters as reference for estimating mapping resolution. Using the same
approach for sector offset mode, leads to the same results.
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Table 3. VITA1 with one 881L sensor and range of 10 m: Ty = sampling dist. along the tunnel cross
section; T y = mean; Tymin = min.; Tymax = max.; Tx = dist. between samples along the tunnel length.

881L Mode Experimental Data (m) Baseline (m)
T x T y T y std T ymin T ymax T x T y T ymin T ymax

SLOW 4.200 0.032 0.009 0.016 0.099 4.255 0.029 0.013 0.014
MEDIUM 2.090 0.058 0.015 0.038 0.156 2.128 0.057 0.026 0.203
FAST 1.527 0.086 0.033 0.045 0.337 1.573 0.086 0.039 0.301
FASTER 1.283 0.114 0.049 0.051 0.417 1.300 0.115 0.053 0.396
FASTEST 0.947 0.226 0.079 0.075 0.552 0.946 0.230 0.100 0.752

Due to the shape of the tunnel we have chosen to use Ty1 as Tymin , since the ceiling
does not follow the shape of the tunnel, we have studied. We ignore the region of the rock
trap and the auxiliary tunnel, giving preference to the regular shape of the main tunnel,
which is the use case we are interested in. Also, when we consider T y, Tymin , Tymax , and
also with T , Tmin, Tmax, we ignore the effect of motion during the time taken between
subsequent angular steps, which results in very small distances traveled, since the robot
will move slowly in our experiments—0.197 m/s. For the sector offset approach we ignore
valleys in the distance between subsequent samples next to the borders of the sector, since
the sensor is decreasing speed due to the control system of the head, which leads to false
minima. Such values are discarded since they do not represent our model or the behavior
of typical MPSs which steps at every angular position. For Tymax , we consider the pilot
can drift 1.5 m vertically and horizontally. Besides, we consider the robot heading can
drift 15 degrees from the direction along the length of the tunnel, (û). We also include
the displacement of sensors vertically and horizontally to compute maxima and minima,
summing the robot drift and the sensor displacement with respect to the center of the
cross-section of the tunnel, for each of the configuration of sensors and robots.

Table 4 compares data for multiple sensor configurations. For phase shift, we use Tx/s,
while for sector offset we use 2Tx/s. Comparing the two multi-sensor approaches one
against the other, results in smaller Tymax smaller for sector offset than phase shift approach.
Such difference shows specially for three and four sensors. The key point is sensors in
sector offset configurations always point outward, as is the case for 3 and 4 881Ls, which
have side-by-side sensors separated by 0.3 m. As such, those sensors always point to the
closest walls, 0.15 m forward, while continuous spinning will have to scan the opposite and
distant side. While this leads to values which tend to benefit maxima measurements when
using sector offset for 3 or 4 sensors, such difference vanishes for 2 sensors, since it has
zero horizontal offset between sensors and the center of mass of the robot. The Wilcoxon
Signed-Rank test comparison leads to no statistical difference between the two approaches
with respect to maxima. Still, when we isolate data for three and four sensors the test
rejects the alternative hypothesis, that is, that phase shift presents greater values for Tymax

than sector offset, with significance α = 0.05 with a small margin. Also, FASTER and the
FASTEST configurations have large differences at the corners, as predicted.

Still, the major difference between the approaches occurs in the maximum interval
between samples along the tunnel length, that is, Tx, which presents significantly higher
values for the maxima for the sector offset approach with significance α = 0.01. While this
is true for half the sector, it can lead to missing features during the tunnel inspection. When
we observe the triangular wave pattern, we can see the cost of decreasing Tx half the sector
is a reduced area covered in such region, while the area covered during large Tx values is
increased. We draw attention to the fact that once the sensors do not help each other in any
multi-sensor configuration with respect to the cross-section, we will have large differences
between samples near the side walls and such differences can be larger than the forward
gap between sensors, Tx.

When we compare the predictions for the cross-sections combined with the measure-
ments along the length of the tunnel (see Table 5), we can see that the distance between
samples increases. Moreover, the phase shift approach presents consistently greater dis-
tances between samples when compared to sector offset. Still, for slow configurations of
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the sensors, Tx is the major cause of large spaces between samples. In fact, T and related
metrics can be seen as a sampling interval. Therefore, in order to guarantee the detection of
sensors using a multi-sensor strategy, features will only be detected if their size is greater
than T . Therefore, in the best case, when using four sensors and traveling with the given
forward robot speed leads to the detection of features with size around 0.6 m, which can be
decreased if the robot travels slower than 0.197 m/s, considering ideal sensors.

Table 4. Experiments for the range of 10 m considering 2, 3 and 4 881L sensors using VITA 2, comparison of Phase-Shift and
Sector Offset, where s = nr. of sensors; Tx/s = phase shift resolution along the tunnel length; 2Tx/s = sector offset resolution
along the tunnel length. Numbers in bold indicate winning approach.

881L Mode Sensors
Experimental Data (m) Baseline (m)

Phase Shift Sector Offset
T x /s T y T y std T ymin T ymax 2T x /s T y T y std T ymin T ymax T x /s 2T x /s T y T ymin T ymax

FASTEST

2

0.470 0.226 0.083 0.074 0.542 0.939 0.224 0.082 0.077 0.575 0.470 0.941 0.230 0.100 0.745
FASTER 0.647 0.114 0.051 0.052 0.414 1.300 0.113 0.050 0.056 0.418 0.647 1.294 0.115 0.05 0.391
FAST 0.788 0.086 0.034 0.046 0.345 1.572 0.086 0.034 0.049 0.362 0.784 1.568 0.086 0.041 0.297
MEDIUM 1.056 0.058 0.016 0.035 0.154 2.115 0.058 0.016 0.037 0.156 1.058 2.117 0.057 0.027 0.201
SLOW 2.098 0.032 0.009 0.017 0.104 4.174 0.032 0.009 0.016 0.098 2.116 4.234 0.029 0.014 0.102

FASTEST

3

0.320 0.226 0.083 0.072 0.597 0.635 0.221 0.083 0.076 0.567 0.314 0.627 0.23 0.109 0.759
FASTER 0.429 0.114 0.051 0.049 0.419 0.865 0.112 0.050 0.048 0.405 0.431 0.862 0.115 0.055 0.399
FAST 0.525 0.086 0.035 0.040 0.364 1.003 0.085 0.034 0.046 0.335 0.523 1.045 0.115 0.055 0.399
MEDIUM 0.709 0.058 0.016 0.029 0.154 1.416 0.058 0.016 0.036 0.168 0.706 1.411 0.057 0.027 0.205
SLOW 1.410 0.031 0.009 0.015 0.099 2.832 0.032 0.009 0.019 0.099 1.411 2.822 0.029 0.014 0.104

FASTEST

4

0.229 0.226 0.081 0.088 0.585 0.461 0.217 0.081 0.074 0.585 0.235 0.470 0.23 0.109 0.759
FASTER 0.323 0.114 0.050 0.057 0.491 0.641 0.111 0.049 0.058 0.401 0.323 0.647 0.115 0.055 0.399
FAST 0.394 0.086 0.047 0.043 0.359 0.790 0.084 0.033 0.044 0.340 0.392 0.784 0.115 0.055 0.399
MEDIUM 0.532 0.058 0.016 0.034 0.185 1.066 0.057 0.015 0.031 0.189 0.529 1.058 0.057 0.027 0.205
SLOW 1.056 0.032 0.010 0.015 0.101 2.100 0.031 0.009 0.001 0.101 1.058 2.117 0.029 0.014 0.104

Table 5. Comparing Experimental data for multi-sensor approaches considering T , Tmin, Tmax,
where T is a combination of Ty and Ty, which varies depending on Ty.

881L Mode Sensors Phase Shift Sector Offset
T (m) T min (m) T max (m) T (m) T min (m) T max (m)

FASTEST 2 0.522 0.476 0.717 0.965 0.942 1.101
FASTER 2 0.657 0.649 0.768 1.305 1.301 1.366
FAST 2 0.793 0.789 0.860 1.574 1.573 1.613
MEDIUM 2 1.058 1.057 1.067 2.116 2.115 2.121
SLOW 2 2.098 2.098 2.101 4.174 4.174 4.175

FASTEST 3 0.392 0.328 0.677 0.672 0.640 0.851
FASTER 3 0.444 0.432 0.600 0.872 0.866 0.955
FAST 3 0.532 0.527 0.639 1.007 1.004 1.057
MEDIUM 3 0.711 0.710 0.726 1.417 1.416 1.426
SLOW 3 1.410 1.410 1.413 2.832 2.832 2.834

FASTEST 4 0.322 0.245 0.628 0.510 0.467 0.745
FASTER 4 0.343 0.328 0.588 0.651 0.644 0.756
FAST 4 0.403 0.396 0.533 0.794 0.791 0.860
MEDIUM 4 0.535 0.533 0.563 1.068 1.066 1.083
SLOW 4 1.056 1.056 1.061 2.100 2.100 2.102

8.2. The Impact of Alignment on Tunnel Sampling

Here, we compare the phase shift and sector offset configurations in simulated sce-
narios using the point clouds and meshes for each strategy considering a sensor with a
10 m range. The distance between the forward and backward sensor heads is 1.102 m and
VITA 2 is moving at 0.197 m/s. Our test scenario consists of a 130 m slice of a hydroelectric
power plant tunnel, next to the rock trap. In order to better illustrate the effect of phase
alignment, we select the 881L SLOW configuration setting with two sensors. This way,
the distance between samples over then length of the tunnel is more clearly visible than
with more sensors and superior sampling results. Figure 12, presents the point clouds
of a two-sensor array using phase shift without and with alignment (see Figure 12a,d).
Figure 12 presents the same scenario for sector offset. In addition, Figure 12e–h shows the
Poisson reconstruction with 8 levels, 1 point per sample and a point weight of 5.
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(a) phase shift, without phase alignment. (b) sector, with phase alignment.

(c) sector, without phase alignment. (d) phase shift, with phase alignment.

(e) phase shift, without phase alignment. (f) phase shift, with phase alignment.

(g) sector, without phase alignment. (h) sector, with phase alignment.

Figure 12. Comparison of the two configuration of sensors with respect to phase alignment.

Figure 12e,f highlights the influence of correct phase in the phase shift approach, while
the same is not true for sector offset, which presents inferior results but does not seem to
suffer influence when ignoring phase alignment (see Figure 12g,h). We compare the two
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approaches considering aligned phases, with the reference mesh in the interval between
the rock trap and the auxiliary tunnel, the unsigned mean distance between the reference
mesh and the reconstructed using aligned phase shift is 0.040 m with standard deviation
of 0.060 m, while for sector offset the mean distance is 0.057 m with standard deviation
of 0.077 m. The unaligned version of phase shift gives us a distance from the reference
mesh of 0.050 m of mean and 0.083 m of standard deviation, which is interesting, keeping
alignment seems to bring harm to the reconstruction process and a random position of the
sensor seems to have provided superior results. The same is not true for phase shift which
presents 0.059 m as the mean distance and standard deviation of 0.083 m.

In summary, the phase of sensor can importantly affect the distance between samples
of phase shift configurations. Still, when configuring sensors in sectors, there seems to
be a negative effect to try to keep interlaced triangle patterns of sectors in terms of 3D
reconstruction. The unaligned results of phase-shift are inferior to those with sectors—be it
aligned or unaligned. However the maxima of distances along the length of the tunnel,
which reflect the distance between consecutive scans of cross-sections is visibly smaller in
the point clouds of aligned phase shift (see Figure 12b) than the point cloud of the sector
offset approach (see Figure 12d). We highlight it is just a mere difference in configuration
pattern, not the amount of points in any of the case studies above.

8.3. Three and Four Sensors—The Problem of Occlusion in Phase Shift

While the sector off-set approach will not suffer occlusion problems, this is not the
case for the phase shift approach. In fact, phase-shift will suffer angular occlusions every
time sensors are side by side—that is, occlusions will only occur when using the three and
four sensors layout.

Moreover, the occlusion angle is a function of the tangent of the distance between
sensors, which we set to 0.3 m, and the dimensions of the opposite sensor—that is, the
radius of the cylinder of the 881L sensor, which is around 0.04 m. The result of such
occlusions is a gap in readings which will show up as missing samples in the side walls
(see Figure 13), which will generate a spatial gap of approx. 1.7 m and an occlusion angle of
around 15.07 degrees. Therefore, occlusions in the phase shift case lead to under sampling
at the side walls, dependent on the number of sensors and how the phase of sensors is
configured.

For three sensors, Figure 13a, the backward sensors occlude one another, leading to
twice the distance between samples along the length of the tunnel when the gap is present,
decreasing the quality of resolution at occluded regions. The four sensors’ layout suffers
from such problems twice, at forward and backward side by side sensor pairs. The behavior
of the resolution is dependent on how the phase of sensors is set. If the phase between side
by side sensors is 180 degrees, the distance between samples along the length of the tunnel
is doubled at occluded regions due to missing data. We do not use this strategy because
sensors will always face one another, increasing the chance of interference between sensors.
However, if the phase between side by side sensors is 90 degrees (see Figure 13b), this will
lead to two subsequent sensor gaps, making the distance between samples along the length
of the tunnel suffer an increase of four times periodically at side walls.

We proceed with the comparison of the phase shift and the sector approach with the
reference mesh, as we did before for two sensors. The sector offset approach for three
sensors presents a mean distance of 0.037 m, while the standard deviation is 0.106 m, while
the phase shift approach for three sensors presents a mean distance of 0.018 m with a
standard deviation of 0.031 m. The same result for four sensors in the sector offset reveals a
mean distance from the reference mesh of 0.02 m, and standard deviation of 0.036 m. while
the phase shift approach presents a mean distance of 0.016 m and standard deviation of
0.025 m. That is, even with the occlusions of three and four sensors results with the phase
shift approach are slightly superior in terms of mesh reconstruction. Still, the four sensors
approach using either phase shift or sector offset has an additional gap when compared to
three sensors. In the former case the gap is not continuous and caused by occlusions but
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larger in terms of area, while in the latter case the gap is continuous but smaller, caused by
the distance separating the two forward sensors.

(a) phase, three sensors. (b) phase, four sensors.

(c) sector, three sensors. (d) sector, four sensors.

(e) phase, three sensors mesh. (f) phase, four sensors mesh.

(g) sector, three sensors mesh. (h) sector, four sensors mesh.

Figure 13. The problem with occlusions in the phase shift approach is shown in (a,b) when using sensors side by side, for
the MEDIUM configuration of the 881L sensor, which makes it easier to see the resulting sampling of both approaches. Note
the reading gaps at the side walls. The space between sensors also results in gaps in the sector approach, the gap is smaller
on side walls than the phase shift approach, see (c,d). Comparing figure (a) with (c) and figure (b) with (d), the resolution
difference between the two approaches. The resulting meshes for the phase shift and sector approaches for three and four
sensors are shown in (e,f) and (g,h), respectively. The phase shift approach for three and four sensors shows aliasing at the
side walls at the occlusions, but there is little aliasing at the floor for three and four sensors. Note the aliasing in (g), for
sector offset for three sensors shown at the regions in blue next to the floor, while the mesh reconstruction algorithm can
decrease the aliasing when using four sensors in (h). Also aliasing at side walls seems to be smaller for the sector offset than
the phase shift approach.
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While the area of occlusion of phase the shift approach is larger than the space between
sensors gap created in the sector offset, spreading to an entire angle of the field of view, the
occluded area is not continuous, which is beneficial for the mesh reconstruction algorithm,
see Figure 13e–h. This summed with its smaller distance between samples in the remaining
areas gives a small advantage to the phase shift approach even for configurations with
occlusions. The advantage of the phase shift approach lies on the resolution outside
occluded areas, but if these areas are important it can be a limitation of the strategy and
sector offset is a viable option. The sector approach can also be improved for tunnels
if we place sensors one above the other and we can place them closer to each other, to
give preference to ceiling and floor, leaving gaps at side walls. The phase shift approach
improves, if we separate the sensors to decrease the size of occluded areas.

9. Real World Experiments

We could perform experiments with VITA 1 in the SLOW configuration inside the
actual tunnel. We use it to validate the tests with our first UUV prototype. VITA 2 is
still under construction, which is why no tests with it using more than one sensor will be
provided.

9.1. The Power Plant Environment

In this section, we report the general conditions of the environment VITA 1 has faced.
The underwater tunnel was under maintenance, and there was a leak which resulted

in a counter or favorable current around 0.10 m/s, depending on the UUV direction—
upstream or downstream. The robot was able to move inside the tunnel despite such
current.

The visibility inside the tunnel was between one and three meters, which is a common
trait of river waters [2]. We have used a Gemini 720im sonar to navigate inside the tunnel
and the 881L for manual navigation. Instead of a black or a Secchi disk, we performed a
custom test. Such test consisted of submerging VITA 1 with its four led lights on maximum
power, and measure the depth where the vehicle vanishes completely from sight using
our depth sensor. We performed such test twice which resulted in a visibility of around
three meters next to the power house. Logistics at the water intake made a similar test a bit
more difficult, but divers reported visibility between 0.5 and 1 m, probably due to the large
number of debris from the river, wood, and other objects.

When navigating inside the tunnel, we performed manoeuvres placing the robot at
the center of the tunnel cross-section, and every time, it was not possible to see the side
walls, even with the robot facing them. The typical video image is shown in Figure 14a,
which we have hours of video recording with very similar images. An image when the
UUV is less than 0.5 m from the floor is shown in Figure 14b. As one can see, the visibility
is low even in a region next to the rock trap which usually has mostly stones, with the UUV
almost touching the floor.

(a) Typical view when navigating at the tunnel. (b) Robot approx. 0.3 m from the floor.

Figure 14. Low visibility using the low light camera at the tunnel: centered at the cross-section (a)
and close the floor (b).
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9.2. Mapping

In order to construct the map, we used telemetry data from the IMU with a compass to
obtain an estimate of the pose of the robot inside the tunnel. We used information from the
pressure sensor, a Bar100 high-resolution 1000 m Depth/Pressure sensor, to obtain depth
information and a tether counter to obtain an estimate of the robot position along the tunnel
length. Finally, as we did in the simulated experiments, we also used four Bluerobotics
Ping Echosounders pointing to vertical and horizontal walls to obtain an estimate of the
robot position along the plane of the cross-section of the tunnel. No SLAM technique was
used at this time, beyond the correction of the position of the robot using ping data and
the known information that the tunnel is straight to position the robot inside the tunnel.
That is, we used the differences between left and right pings, to detect motion to the left
or to the right and top and bottom pings to keep the robot away from the walls, however
depth was controlled by the depth sensor at this time. The UUV was manually controlled
in this experiment making use of a Teledyne Gemini 720im imaging sonar to help guiding
the pilot during the operation. Imaging sonar data was not used as input for mapping due
to noise. It is worth noting that the simulated tunnel was a simplified version of the actual
tunnel at Ceran, a utilities company from the south region of Brazil. Furthermore, the 881L
sensor was configured with the range of 10 m, operating at a frequency of 1 MHz.

It is important to note that the 881L is not an ideal sensor, as we have been working
with until now. In fact, its beam aperture diameter widens with the increase of the frequency
of operation, going from 1.4◦ to 2.4◦ which leads to projections of the cone that vary with
range—see Figure 15. In fact, we can see that the beam is indeed wide reaching up to
around 25 cm, with its projection increasing as it moves towards the corner. Besides, the
overlap between the sonar at different head positions will occur with increasing overlap as
the angular step gets smaller. Such behavior is similar to Tymax—that is, the projection of
the beam shape follows the tangent function as well. This is expected behavior from the
sensor but it will often lead to smoothing of features when there is two much overlapping
between sensor readings. In addition, 881L also has a resolution of 500 points per scan,
which for ten meters leads to approximately 0.02 m of sensor resolution.

Figure 15. The behavior of projected distances on a surface as the range and frequency change.

First, we stop the robot in the center of the cross-section to measure the perimeter
of the tunnel, considering the effect of the beam aperture to check if we can obtain an
estimate of the mean distance between samples at the cross-section in real world conditions.
We use bilinear interpolation of range values of the 881L sensor to determine where the
tunnel surface is. The profile of the tunnel is shown in Figure 16. We perform thinning,
pruning, and then manual cleaning to ensure eight connectivity of the tunnel profile. We
opted for such an approach since the thickness of the tunnel profile make it difficult to
know where the floor or the ceiling are. The skeletonization process leads to an average
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of the estimate of the perimeter of the cross-section, which results in 33.09 m, versus the
nominal blueprint of the plant of 34.17 m, which is in accordance with what we expect our
from simulations. One may also notice the group of readings near the surface next to the
corners thickens. This is a combination of the increase in the distance between samples
and the beam aperture, which reduces the amount of information we can obtain from such
regions, confirming our expectations. That is, when we interpolate non-ideal cone shaped
readings the result will degrade the precision of the sensor and lower its accuracy. This is a
limitation of the approach.

Figure 16. Cross-section of the tunnel and the red thinning line which represents its skeletonization
followed by pruning.

Regarding Tx, it depends on the forward speed which was measured with the tether
counter. The estimated mean forward velocity of the UUV was 0.197 m/s, which will lead
to mean values of Tx = 4.255. Still, manual coordination between tether operator and
pilot can be hard to achieve, especially when both are distant from one another. In respect
of inspection, this is poor space between samples, but it was still used to show we can
reconstruct the tunnel with the initial prototype. We present the part of the tunnel which
we have reconstructed with VITA 1 in our first visit to the tunnel in Figure 17.
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(a) Side view.

(b) The reconstructed tunnel.
Figure 17. The reconstructed tunnel. Regions of interest are marked in red. Note we can detect height differences in the
ceiling and also some details of the end of the rock trap. Due to poor sampling along the tunnel length we cannot get a lot of
details of the side tunnel we saw in previous experiments.

10. Discussion

Experiments with simulated scenarios have shown that we can predict the distance
between samples including maxima and minima. The main problem for sensors which
have a slow angular velocity or pooling rate is the distance between consecutive profiles of
the cross-section of the tunnel. Even if we work with ideal sensors, the distance between
samples can be large. Moving away from the center of the cross-section results in important
changes in the distance between samples, affecting maxima and minima of the distance
between samples. Therefore, it is important that the control system of the robot to be robust,
keeping it at the center of the cross-section as it moves, or the input data for mapping will
not be optimal.

Regarding the sensor model, which we can use to combine all readings when the
sensors are not ideal, a few considerations can be made. First, we could use a traditional
probabilistic model to update sensor information, but it comes with high computational
costs when done in 3D. We could also take advantage of the aperture of the sonar ray over
nearly flat regions, and use the upper and lower angular limits of the beam to point the
exact position of the beam in these regions. However, it demands some of inference to
know where such regions are. Finally, as we are using an MPS, such points will not lead to
continuous sweep as an MBS performing bathymetry, since the pattern of the point cloud
with MPSs will be spiraled. It may lead to a gap between points which might never be
filled. However, these ideas need further experiments and validation.

The positioning of sensors can help increase or decrease the distance between samples,
but it can also leave holes in the tunnel profile caused by the space between sensors or
even lead to sensors which can block each other. One result of the experiment is that even
if we combine sensors at different positions, they will probably need adjustments of phase
in order to keep a uniform space between samples along the length of the tunnel, which
is particularly important if we are going to keep the sensors spinning continuously. The
rule after phase adjustment was uniform space between samples but sensors which are not
orthogonal to each other. Experiments have shown that in multi-sensor configurations, at
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first we have to choose a forward speed with which the robot will operate inside the tunnel.
Then, we define the distance between sensors, to simplify phase adjustment. While the
sector offset approach has shown inferior sampling results, it might be easier to configure
since it is less sensitive to phase shifts. In other words, we ignore the phase in favor of the
orthogonality of sensors, which can help minimizing interference.

Interference is a problem which we are currently working on. Sensors operating in
different frequencies have a smaller of inter-sensor interference than when all of them
operate on the same frequency—a feature of 881L. Still, some sensors may not have such
feature. Also, the beam shape may change as the operating frequency changes, thickening
the ray and decreasing sampling quality for those sensors operating with frequencies
smaller than 1 MHz. Unexpected side lobes in the beam shape can make the process hard
to solve. Using barriers to separate the beams is also under consideration, but it may not
be very effective due to multi-path reflections of the rays of all sonars on the tunnel walls.

If water visibility inside the tunnel were better or the tunnel smaller, vision based
sensors could have been used, improving the resolution and precision of the entire system.
However, during an entire week the visibility at the tunnel remained poor. Besides, the
other tunnels we are addressing in the future are wider than the one we present in the
paper, where the range of the sensor will most likely increase, surpassing the maximum
range of commercial visual based sensors. Having said that, we believe not all rivers and
tunnels offer the same conditions than the one we have tested—the reader will have to test
such conditions on site to decide the feasibility of use of vision based sensors. As we have
shown in the formalization, the use of MPSs with good resolution can lead to considerably
slow forward speeds, due to the low refresh rate of the sensor, and longer duration of
missions, specially if the tunnel is long. Breaking the tunnel into parts can be an option if
the duration of the mission is impractical.

11. Conclusions

In this paper we present a clear way to analytically determine the resolution of a
system equipped with a set of MPSs when they are used in tandem for mapping tunnels.
The system is tested in simulation using Gazebo, ROS, and the uuv_simulator. We have
prepared two robots, one with a single sensor and the other which can simulate different
configurations and quantities of sensors. For this purpose we have used the Imagenex 881L
sensor data as reference, even though our work can be extended to other sensors, including
multi-beam sensors.

We demonstrate that sampling with an MPS or multiple MPSs resides in two important
metrics: the distance covered by the robot at each revolution of the system; and the angular
step size of the sensor. We also show that the distance covered by the robot at each
revolution often is larger for UUVs operating in tunnel scenarios, mainly due to the
typically slow angular velocity of MPSs. As such, we may have to move slower, depending
on the desired resolution, to guarantee the distance between samples remains small. In
other words, with such a solution we trade quality for mapping speed. Special attention
must be paid in large tunnels, since time can be critical for the operation, occurring during
the stops of hydroelectric power plants for maintenance. Also, we highlight the importance
of knowing the speed of the robot inside tunnels, where a DVL or a tether counter can
be valuable—specially if the tunnel does not have features which can be used to estimate
the speed and position of the robot along the tunnel length. Overall, results show that
engineers and technicians must be aware of the quality of sampling the system is capable
to achieve during such tunnel inspections.

Regarding the sampling quality of the system, we mathematically show that when
using MPSs the distance between samples on the floor next to the side walls usually present
the largest distance between samples for the entire tunnel. Also, the floor is where debris
from side walls and ceiling often stop and where valuable information must be collected.
Furthermore, the largest range measured by a robot centered in a cross-section of the tunnel
is often at the corners—which can be used as a reference to estimate the operation range
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of the sensor. Therefore, the proper definition of the maximum distance between samples
on the floor is critical for inspection, and the worst case scenario can be used as reference
parameter to determine the resolution quality inside tunnels.

We have also compared two different approaches for the combination of sensors
focusing the mapping of tunnels: continuous phase shift rotation and sector offset seg-
mentation of the cross-section of the tunnel. We show that the phase shift configuration
presents uniform sampling over the tunnel length, while sector sampling does not. In
the worst case scenario, the sampling distance over the tunnel length for sector offset is
twice the size of the worst case scenario of the phase shifted configuration. On the other
hand, since sampling of each sector is carried out by one sensor, it is less prone to sensor
synchronization problems than the phase-shift configuration. An important restriction of
the phase shift method is self occlusion of side by side sensors, which can lead to areas
where the resolution can be as poor as using a single sensor, which does not occur with the
sector offset approach. If occluded areas are not an option, sector offset can be used, but it
will present inferior resolution elsewhere.

Finally, we have also presented a first map of part of an actual tunnel, where even
with a slow sensor configuration we could detect some interesting features of the tunnel.
We report the visibility at our testing site, which is between 0.5 and 3 m, with poor visibility
at the water intake and a better visibility at next to the power house. Still, we are currently
finishing the construction of our second prototype which can hold up to four MPSs—
starting with two sensors for testing purposes. An important limitation of the present
work is the absence of tests with multiple sensors in real world scenarios, which we plan to
address in the future once the second prototype is ready, addressing frequency interference
and reflections. We are planning to test the new prototype in two power plant tunnels,
as soon as it is feasible, given the logistics for 2021. We are also working on a better
localization strategy to minimize localization errors. Another area we are working on is
control, which is now being implemented in the robot to ensure a better motion model.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three Dimensional
DVL Doppler Velocity Log
MBS Multi-Beam Sonar
MPS Mechanical Profiling Sonar
SLAM Simultaneous Localization and Mapping
ROS Robot Operating System
UUV Unmanned Underwater Vehicle

Appendix A

Proof of Theorem 2. In order to prove that the spatial distance between consecutive sam-
ples increases on the floor, we just need to prove that distance between one step, as the
sensor moves m steps, is smaller than the distance measured when the sensor moves m + 1,
that is: ∥∥∥∥ b(tan(mθ)− tan((m− 1)θ)

2

∥∥∥∥ <

∥∥∥∥ b(tan((m + 1)θ)− tan(mθ))

2

∥∥∥∥. (A1)

Since we are choosing the step angle to be small where 0◦ < mθ < 90◦. As a
consequence θ < 90◦/m and m ≥ 2, leading to tangent values which are always positive
and we can remove the modulus sign. The proof for the other quadrant can be derived by
using the symmetry of the scenario, which generates mirrored samples on the floor at the
opposite quadrant. Therefore, Equation (A1) can be rewritten as:

tan(mθ)− tan((m− 1)θ) < tan((m + 1)θ)− tan(mθ)

2 tan(mθ) < tan(mθ + θ) + tan(mθ − θ)

2
sin(mθ)

cos(mθ)
<

sin(mθ + θ)

cos(mθ + θ)
+

sin(mθ − θ)

cos(mθ − θ)

2
sin(mθ)

cos(mθ)
<

sin(mθ + θ) cos(mθ − θ) + sin(mθ − θ) cos(mθ + θ)

cos(mθ + θ) cos(mθ − θ)

sin(mθ)

cos(mθ)
<

sin(2mθ)

2 cos(mθ + θ) cos(mθ − θ)
.

If on the right side we use the double-angle formula for the sine at the numerator and
the product-to-sum of cosines at the denominator, we have:

sin(mθ)

cos(mθ)
<

sin(2mθ)

2 cos(mθ + θ) cos(mθ − θ)

sin(mθ)

cos(mθ)
<

sin(2mθ)

cos(mθ + θ + mθ − θ) + cos(mθ + θ − (mθ − θ))

sin(mθ)

cos(mθ)
<

2 sin(mθ) cos(mθ)

cos(2mθ) + cos(2θ)

1 <
2(cos(mθ))2

2(cos(mθ))2 − 1 + cos(2θ)
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2(cos(mθ))2 − 1 + cos(2θ) < 2(cos(mθ))2

cos(2θ) < 1.

Since 0◦ < θ < 90◦/m the inequality holds, and the distance between samples in-
creases between every consecutive pair until we reach the corner connecting the floor to the
side walls, as expected. As a result, the pair at the corner has the greatest distance between
samples on the floor, while the pair of samples when the sensor ray is perpendicular to the
floor the smallest.

Appendix B

Proof that Tc < Ty1. We can show that the ceiling has a smaller distance between samples
than the smallest distance we can get on the floor by showing that Tc < Ty1:

‖b sin(θ/2)‖ <
∥∥∥∥b

tan θ

2

∥∥∥∥
sin(θ/2) <

sin θ

2 cos θ

sin(θ/2) <
2 sin(θ/2) cos(θ/2)

2 cos θ
,

leading to the inequality,
cos(θ/2)

cos θ
> 1, (A2)

which is true for 0 < mθ < 90◦, since the cosine of a positive angle in the first quadrant,
when halved, is always greater than the cosine of the angle itself. Therefore, the space
between samples on the ceiling is smaller than the smallest space between samples on
the floor, making the distance between samples on the ceiling smaller than the best case
scenario at the floor, as expected.

Furthermore, if the upper part of the tunnel is convex and symmetric, such as
Figure A1, we can also show that Tc < Ty1. By using cosine law and making b/2 = s
to shorten the equations we can proceed to:

Tc < Ty1

q2 + s2 − qs cos θ < (p + q)2 + s2 − (p + q)s cos(θ)

−p2 − 2pq < (qs− (p + q)s) cos θ

−p(p + 2q) < −ps cos θ

(p + 2q) > s cos θ.
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Figure A1. The upper part of a tunnel with an arbitrarily convex but symmetric ceiling. Note that
Ty1 and b/2 always form a square angle, therefore p + q = b/(2 cos θ).

Since we know p + q = s/ cos θ, we have

q +
s

cos θ
> s cos θ

q > s
(
(cos θ)2 − 1

cos θ

)

q > s

������:
−(sin θ)2

(cos θ)2 − 1
cos θ



q > −s tan θ sin θ

q > − b
2

tan θ sin θ

As 0 < mθ < 90◦ and q and b are positive, the right side is always negative. Therefore,
q is always greater than the left side. Also, as the ceiling is symmetric, Tc < Ty1 as
expected.

Appendix C

Proof that T yp ≤ p/n. Let the perimeter of the cross-section of the tunnel be represented
as graph G = {V, E}, where V is the set of vertices which comprise the cross-section of the
tunnel and E are the set of edges connecting them. In this sense, G a cycle where all nodes
have degree two—that is, every node x ∈ V is connected to two other nodes w ∈ V and
z ∈ V by two edges {w, x} and {x, y} of sizes ‖{w, x}‖ and ‖{x, y}‖. The sum of the size
of all edges is the perimeter, p, of the cross-section.

The path followed from x to itself leads to a revisit of all nodes and edges. If this path
is split into n sub-paths of arbitrary sizes, the sum of the edges in all sub-paths is still the
perimeter. However, for every sub-path we have a starting node ai ∈ V and ending node
bi ∈ V. Let us say that the sum of the sizes of all edges between ai and bi is si. If ai and bi
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are nodes sampled by a sensor, the distance between samples is given by the size of the
line segment bi − ai which connect ai to bi and has size ‖bi − ai‖. If all nodes in the interval
delimited by ai and bi belong to the same line, ‖bi − ai‖ = si, since the smallest distance
between two points is a line. However, if the nodes of the sub-path do not form a straight
line, ‖bi − ai‖ < si. Therefore, ‖bi − ai‖ ≤ si for all sub-paths. Since we know that

n−1

∑
i=0

si = p,

and also that
n−1

∑
i=0
‖bi − ai‖ ≤

n−1

∑
i=0

si,

we can conclude that
n−1

∑
i=0
‖bi − ai‖ ≤ p. (A3)

Thus, the mean distance between samples can be directly given by

T yp =
1
n

n−1

∑
i=0
‖bi − ai‖. (A4)

Therefore, if we divide Equation (A3) by n, we get

1
n

n−1

∑
i=0
‖bi − ai‖ ≤

p
n

. (A5)

Finally if we replace the left term of Equation (A5) by the left term of Equation (A4),
we get

T yp ≤
p
n

. (A6)

as expected.
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