
sensors

Article

Point Cloud Resampling by Simulating Electric Charges on
Metallic Surfaces

Kyoungmin Han 1, Kyujin Jung 1, Jaeho Yoon 2 and Minsik Lee 1,*

����������
�������

Citation: Han, K.; Jung, K.; Yoon, J.;

Lee, M. Point Cloud Resampling by

Simulating Electric Charges on

Metallic Surfaces. Sensors 2021, 21,

7768. https://doi.org/10.3390/

s21227768

Academic Editor: Kourosh

Khoshelham

Received: 13 October 2021

Accepted: 16 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronic Engineering, Hanyang University, 55 Hanyangdaehak-ro,
Sangnok-gu, Ansan-si 15588, Gyeonggi-do, Korea; gkssrudalls@hanyang.ac.kr (K.H.);
nicefoxj@hanyang.ac.kr (K.J.)

2 School of Electrical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu,
Ansan-si 15588, Gyeonggi-do, Korea; wer600@hanyang.ac.kr

* Correspondence: mleepaper@hanyang.ac.kr; Tel.: +82-31-400-5173

Abstract: 3D point cloud resampling based on computational geometry is still a challenging problem.
In this paper, we propose a point cloud resampling algorithm inspired by the physical characteristics
of the repulsion forces between point electrons. The points in the point cloud are considered as
electrons that reside on a virtual metallic surface. We iteratively update the positions of the points
by simulating the electromagnetic forces between them. Intuitively, the input point cloud becomes
evenly distributed by the repulsive forces. We further adopt an acceleration and damping terms in
our simulation. This system can be viewed as a momentum method in mathematical optimization
and thus increases the convergence stability and uniformity performance. The net force of the
repulsion forces may contain a normal directional force with respect to the local surface, which can
make the point diverge from the surface. To prevent this, we introduce a simple restriction method
that limits the repulsion forces between the points to an approximated local plane. This approach
mimics the natural phenomenon in which positive electrons cannot escape from the metallic surface.
However, this is still an approximation because the surfaces are often curved rather than being strict
planes. Therefore, we project the points to the nearest local surface after the movement. In addition,
we approximate the net repulsion force using the K-nearest neighbor to accelerate our algorithm.
Furthermore, we propose a new measurement criterion that evaluates the uniformity of the resampled
point cloud to compare the proposed algorithm with baselines. In experiments, our algorithm
demonstrates superior performance in terms of uniformization, convergence, and run-time.

Keywords: point cloud resampling; electric repulsion force; local surface projection

1. Introduction

With the evolution of 3D scanning technology, in the field of scanning and data acqui-
sition, various types of point clouds are routinely collected by 3D scanners. Researchers
use point cloud data in various applications, such as 3D CAD models, medical imaging,
entertainment media, and 3D mapping. Despite advances in scanning technology, scanned
raw point clouds may have inadequacies such as noise, multilayered surfaces, missing
holes, and nonuniformity of distribution, depending on the performance of the scanner.
Such poorly organized point clouds have negative effects on downstream applications
such as surface reconstruction. Therefore, there have been recent attempts to refine point
clouds by eliminating noise, producing evenly distributed data points while retaining the
original shape and obtaining high-quality normal information.

Over the past few years, the computer graphics and numerical computation commu-
nity has intensively studied point cloud resampling techniques. The locally optimal projec-
tion (LOP) operator, a popular consolidation method, was proposed by Lipman et al. [1].
They formulated the problem to simultaneously optimize terms that maintain the shape
of the input point cloud and widen the distance between the cloud points. This method

Sensors 2021, 21, 7768. https://doi.org/10.3390/s21227768 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4941-4311
https://doi.org/10.3390/s21227768
https://doi.org/10.3390/s21227768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227768
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227768?type=check_update&version=3

Sensors 2021, 21, 7768 2 of 20

utilizes only the point locations and does not require the normal vectors. Therefore, this
algorithm is robust for point clouds with distorted orientations as well as in cases where
the orientations are ambiguous, e.g., when two surfaces lie close to each other. However,
in LOP, the density of the output point cloud follows that of the input point cloud, due to
which the output point cloud becomes nonuniform.

Huang et al. [2] proposed the weighted LOP (WLOP) operator for initializing normal
vector estimation. The WLOP operator improves the LOP by introducing density weights.
WLOP compensates sparse areas in a point cloud with density weights. However, this
algorithm requires a full pairwise distance calculation as in LOP. Thus, the execution of
the algorithm is costly, and moreover, it still does not produce evenly distributed outputs.
Additionally, an edge-aware point cloud resampling method was proposed in [3]. This
method first resamples the farthest points from the edge by using the LOP operator and
gradually resamples the other points near the previously resampled points. Unfortunately,
it cannot uniformize the point cloud data effectively as it is based on the LOP algorithm.
Liao et al. [4] proposed a feature-preserving LOP (FLOP). They preserved spatial and
geometric features by bilaterally weighting them, and the speed of the algorithm was
improved by using kernel density estimates. However, it is based on the LOP and still
suffers from the limitation that the density of the resulting point cloud follows that of
the input point cloud. Preiner et al. [5] adopted a continuous expression of the LOP and
WLOP operators and achieved a remarkable reduction of the run time by using a Gaussian
mixture to describe the input point cloud density. However, this algorithm is developed as
a point cloud meshing method and cannot be used for point cloud resampling. In addition,
the centroidal Voronoi tessellation (CVT), which was originally proposed for remeshing
polygon meshes [6–9], was utilized for point cloud resampling by Chen et al. [10]. However,
this requires an explicit calculation of the restricted Voronoi cell (RVC) [11], which is
computationally more involved.

In view of these advances, we propose a resampling algorithm that is focused on
evenly distributing the point cloud. The first key contribution of this paper is the proposal
of a point cloud uniformization method based on a simple simulation of electrons on a
virtual metallic surface. Here, we consider the electric and damping forces in the simu-
lation. The damping formulation is similar to introducing momentum in mathematical
optimization [12], which can facilitate stable convergence. In this process, we compute
virtual local surfaces and restrict the repulsion forces to them to prevent movements in
the normal directions. When calculating the repulsion forces, we use the kd-tree-based
K-nearest neighborhood for each point, which is introduced for the speedy execution of
our algorithm. The second contribution is proposing a novel measure for quantifying the
uniformity of a point cloud. The intuition behind the measure is to evaluate the variance in
the local density of a point cloud.

The advantages of our algorithm are that it is simple and intuitive to implement and
exhibits outstanding uniformization performance. Furthermore, it exhibits fast and stable
convergence thanks to the damping term. From our experiments, one can confirm that
our algorithm demonstrates superior uniformity performance compared to the LOP and
WLOP algorithms. Furthermore, we provide experiments for various parameter settings,
which show that the proposed method is not very sensitive to the change of parameters.

The rest of the paper is organized as follows. Section 2 presents the proposed resam-
pling algorithm that can resample a uniformly distribute point cloud from an unevenly
distributed input. In Section 3, we report the experimental results of the proposed method.
The uniformity measure for quantifying the quality of the resampled point clouds is also
presented here. Section 4 provides the conclusion of the paper.

2. Proposed Method
2.1. Notations and System Overview of Point Cloud Resampling

The goal of this paper is to resample the input point cloud uniformly while retain-
ing the shape of the given point cloud. Before presenting the details of our algorithm,

Sensors 2021, 21, 7768 3 of 20

we define the notations used in this paper. The input point cloud is represented by
P = [P1, . . . , Pi, . . . , PNP] ∈ RNP×3. The input point cloud P is a matrix that has NP points,
and each point of the point cloud is represented by Pi ∈ R1×3, i ∈ 1, . . . , NP. Even though
the point cloud does not have any order, we consider P as a matrix by stacking the points.
In addition, P is assumed to be that its centroid is at the origin, and it is appropriately
scaled to ease parameter tuning. Qt = [Qt

1, . . . , Qt
j, . . . , Qt

NQ
] ∈ RNQ×3 represents the

iteratively resampled result of the input point cloud P. It is a matrix with NQ points.
Vj

t ∈ R1×3, j ∈ 1, . . . , NQ represents the velocity of the iteratively moving point Qt
j. The

velocities determine the amount of movement from Qt
j to Qt+1

j , which is described in detail

in Section 2.3. NB
A denotes the normal vector (R1×3) of the point cloud B at query point A.

φ(·, ·, ·) represents a function that obtains the K-nearest neighbor points. The first
argument represents a query point, the second argument represents a reference point cloud
matrix, and the final argument represents K of the K-nearest neighbor points. For example,
φ(Qt

j , P, K) is the K-nearest neighbor points of query point Qt
j in the reference point cloud P.

Similar to the above terms, we represent these points as a matrix that has RK×3 dimensions
by stacking the points. In addition, to define the kth point of the neighbor points, we define
φk() as the kth point of the output neighbor points φ(). For example, φk(Qt

j, P, K) denotes
the kth neighbor point of the query point Qt

j, which is obtained from the reference point

cloud matrix P. This results in a vector with dimensions R1×3. We use these extracted
neighbor points to compute the electric force as well as the local tangent plane of the input
point cloud. In addition, a projection function ψ(·, ·) is also defined, which is used to
suppress surface approximation errors. We discuss this in detail in Section 2.2. In addition,
for our physical simulation system, we define an electric force Ft

q that mimics one between
electrons in real world, to move the points iteratively. Fq denotes the net repulsion force of
the query point Qq, which is an R1×3-dimensional vector. The detailed description of Fq is
discussed in detail in Section 2.2.

The overview of the proposed method is shown in Figure 1. The input point cloud is
first preprocessed to be zero-centered and have a proper scale. Subsequently, we initialize
the resampled point cloud Q0 to the preprocessed input point cloud P and the velocity of
each point V0

q to zero. Then, the local tangent surface normal vector NP
Q0

q
is initialized by

the principal component analysis (PCA) [13] of the K-nearest neighbor of Q0.
In each iteration, the neighbor points of each query point Qt−1

q are used to calculate
the net electric repulsion forces. To mimic the physical characteristics of an electron moving
on a metallic surface, we need to restrict the net electric force upon Qt−1

q to lie on the local
tangent plane. This is achieved by projecting the net force based on the local surface normal
NP

Qt−1
q

. The projected electric repulsion force has only a tangential component on the local

plane of each query point. The induced electric repulsion force between the neighbor
points and query point causes the query point to move away from its neighbors. Using
the induced electric force and a damping term based on the previous velocity V t−1

q , the
new acceleration at

q and velocity V t
q are derived. Using V t

q, we move the query points Qt−1
q

to Qt
q.
However, approximating the virtual local surface as a plane rather than a curved

surface makes the moved points Qt
q shift away from the nearest local surface. This ap-

proximation error is demonstrated in Figure 2. As we can see here, it is simply solved
by projecting Qt

q to the nearest surface. For this projection, we use the K-nearest neigh-
bors of Qt

q in the input point cloud P to calculate the normal vector NP
Qt

q
. To reduce the

computational burden, this normal vector is recycled in the next iteration to project the
repulsion force.

Sensors 2021, 21, 7768 4 of 20

Figure 1. Overview of point cloud resampling algorithm. The input point cloud P is assumed to be
zero-centered and rescaled. First, the resampled point cloud Q0, velocity V0, and the normal vectors
NP

Q0 of the local tangent plane are initialized. In each iteration, we perform the following procedures:

We compute the K-nearest neighbors from Qt−1 to calculate the net electric force. Then, the normal
vectors of the local tangent planes, calculated in the previous iteration, are used to project the forces
to the local surfaces. The next velocities and the new query point cloud Qt are computed based on
the forces additionally modified with damping terms. Then, we obtain the K-nearest neighbor for the
updated point cloud Qt and calculate the local tangent planes. To prevent Qt from diverging, we
project it using these new tangent planes. These planes can be reused in the next iteration to project
electric forces for efficiency. After the iteration converges, the final output point cloud is rescaled to
the original scale and is relocated to have the original center point.

This whole process is repeated iteratively until convergence. After completing
the above iterations, the output point cloud is rescaled to the original size and is relo-
cated to have the original center points. The details of each step are explained in the
following sections.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

Input point cloud

Local tangent plane of query point

Moved Query point

Query point (before moved)

Calculated repulsion force

local tangent plane of nearest point

Reprojection

Figure 2. PCA projection restrains the surface approximation error when moved points shift away
from the input point cloud’s surface. By using the PCA projection, we project the moved points to
the nearest local plane.

2.2. Suppressing Normal Components in Repulsion Forces

In this section, we discuss the repulsion force of electron points lying on the surface
of the input point cloud. As mentioned above, we mimic the fact that when electrons are
placed on a metallic surface, the electrons cannot escape from the metallic surface. They
move based on the repulsion between each other and eventually spread evenly. To simulate

Sensors 2021, 21, 7768 5 of 20

this situation, we need to restrict the repulsion forces of the query points to possess only
the tangential component along the local plane.

To achieve the above requirement in this paper, any given repulsion force is projected
to the local tangent plane based on the projection function ψ(·, ·). The first argument of the
projection function ψ(·, ·) represents the force vector of the query point, and the second
argument denotes the normal vector that represents the corresponding local tangent plane.
The normal vector is computed using the PCA of the K-nearest neighbors of the query
point in the input point cloud P. We signify the normal vector of point cloud B at query
point A as NB

A. Figure 3 shows an example of the PCA surface approximation.

Figure 3. Conceptual image of PCA-based local surface extraction. In a 3D space, the normal vector
of the plane is the 3rd eigenvector of the PCA result.

To calculate the tangent plane (i.e., the corresponding normal vector, in fact) given a
query point Qt−1

q , we first compute the deviations of the K-nearest neighbor points from
the center of the neighbor points as follows:

∆t−1
q,k = φk(Qt−1

q , P, K)− 1
K

K

∑
k=1

φk(Qt−1
q , P, K). (1)

Then, we compute the covariance matrix C using Equation (2).

CP
Qt−1

q
=

K

∑
k=1

∆t−1
q,k
>

∆t−1
q,k . (2)

The computed covariance matrix is decomposed using singular value decomposition
by Equation (3), and we obtain the normal vector NP

Qt−1
q

of the local tangent plane of the

query point Qt−1
q , i.e., the transposed version of the third column of WP

Qt−1
q

.

CP
Qt−1

q
= UP

Qt−1
q

DP
Qt−1

q
WP

Qt−1
q

>
. (3)

Finally, Equation (4) projects a given net repulsion force Ft
q of query point based on

the normal vector NP
Qt−1

q
:

ψ(Ft
q, NP

Qt−1
q

) = Ft
q − Ft

q NP
Qt−1

q

>
NP

Qt−1
q

. (4)

Sensors 2021, 21, 7768 6 of 20

2.3. Moving Points Using Physical System of Electric Forces

In this section, we discuss the simulation system for manipulating electrons. The net
electric force of the query point Qt−1

q is defined by Equation (5). Here, ke is the electric
force constant.

Ft
q = ke

K

∑
k=1

Qt−1
q − φk(Qt−1

q , Qt−1, K)

|Qt−1
q − φk(Qt−1

q , Qt−1, K)|3
. (5)

As explained in the previous section, we project the repulsion force to the local tangent
plane to restrain the electric point on the virtual metallic surface using Equation (6).

F′tq = ψ(Ft
q, NP

Qt−1
q

). (6)

In addition, the electron not only moves due to the electric repulsion forces of the
neighbor points but is also affected by the damping force. Therefore, the new repulsion
force with damping on Qt−1

q is defined as F′tq − δV t−1. δ denotes the damping ratio. The
acceleration of the query point at

q is defined by Equation (7).

mqat
q = F′tq − δV t−1. (7)

The updated velocity of Qt
q is calculated using Equation (8). It is simply computed

by combining the previous velocity of the query point Qt
q and the amount of change in

velocity due to the total force during the time interval ∆t.

V t
q = V t−1

q + at
q∆t. (8)

Using this velocity, the new position of the electron is calculated as

Qt
q = Qt−1

q + V t∆t. (9)

The above equations can be simplified to obtain concise update equations. By combin-
ing (7) and (8), we obtain

V t
q = (1− δ

mq
∆t)V t−1

q +
∆t
mq

F′tq . (10)

Here, if we define a new variable as V ′tq , V t
q∆t and assume that the initial velocity

V0
q is zero, Equation (10) becomes

V ′tq = (1− δ

mq
∆t)V ′t−1

q +
∆t2

mq
F′tq

= (1− δ

mq
∆t)V ′t−1

q + ke
∆t2

mq
ψ(

K

∑
k=1

Qt−1
q − φk(Qt−1

q , Qt−1, K)

|Qt−1
q − φk(Qt−1

q , Qt−1, K)|3
, NP

Qt−1
q

)

, αV ′t−1
q + βψ(

K

∑
k=1

Qt−1
q − φk(Qt−1

q , Qt−1, K)

|Qt−1
q − φk(Qt−1

q , Qt−1, K)|3
, NP

Qt−1
q

).

(11)

Note that all parameters are abbreviated into α and β. Similarly, Equation (9) becomes:

Qt
q = Qt−1

q + V ′tq . (12)

Equations (11) and (12) are the final forms of the proposed update equations. Note
that this corresponds to the momentum update form in mathematical optimization.

We set the parameters α and β to 0.9 and 10−8, respectively. The parameter α is
strongly related to the damping ratio δ, which indicates the extent to which the previous

Sensors 2021, 21, 7768 7 of 20

velocity V t−1
q is discounted. β is related to the electric force constant ke. The reason behind

the small β is that, due to the normalization preprocessing, the distances between points
become very small and thus 1/r2 becomes relatively high.

2.4. PCA Projection to Restrain Surface Approximation Error

As using local tangent planes for projecting the electric forces is an approximation of
local surface which is possibly curved, the points moved by this projected forces can shift
away from the surface. Therefore, it is necessary to project the relocated electron as well to
the nearest local plane. We approximate the nearest local tangent plane at the new location
with the K nearest points of the input point cloud. We demonstrate this concept in Figure 2.

The PCA projection for restraining the surface approximation error is similar to the
process that projects repulsion forces to each local plane, as described in Section 2.2. The
difference here is that the center of the local surface is also required in addition to the
normal direction, because we have to calculate the projected position of an electron unlike
the previous case where the projected directional component of the force is calculated.
Accordingly, we define another projection function ω(·, ·, ·) for this purpose. Similar to
ψ(), the first and the second arguments are the query point and the normal vector of the
local surface, respectively. The third argument is the center of the local surface, and we use
the mean of the K-nearest neighbor points for this argument.

By using Equations (13) and (14), we obtain the K-nearest neighbors of the moved
point Qt

q in the input point cloud P and calculate the corresponding covariance matrix.

Ξt−1
q,k = φk(Qt

q, P, K)− 1
K

K

∑
k=1

φk(Qt
q, P, K). (13)

CP
Qt

q
=

K

∑
k=1

Ξt−1
q,k
>

Ξt−1
q,k . (14)

Using SVD, the surface normal NP
Qt

q
is extracted. NP

Qt
q

is the transpose of the third

column of WP
Qt

q
.

CP
Qt

q
= UP

Qt
q
DP

Qt
q
WP

Qt
q

>
. (15)

Moreover, the center of the local plane is calculated as

bP
Qt

q
=

1
K

K

∑
k=1

φk(Qt
q, P, K). (16)

Finally, we project the query point on the approximated plane represented by NP
Qt

q

and bP
Qt

q
. The resampled point Qt

q is updated with the projected point.

Qt
q ← ω(Qt

q, NP
Qqt

, bP
Qt

q
) = Qt

q − (Qt
q − bP

Qt
q
)NP

Qt
q

>
NP

Qqt
. (17)

The detailed summary of the proposed method is presented in Algorithm 1.

Sensors 2021, 21, 7768 8 of 20

Algorithm 1 Proposed resampling algorithm.

1: Preprocess the input point cloud P, so that it is zero-centered and has a proper scale.
2: Initialize resampled point cloud Q0 using P.
3: Initialize V ′0 as zero and NP

Q0 based on the local PCA surface approximation of initial

point cloud Q0 by Equations (1)–(3)
4: Initialize t to one.
5: Find the neighbor points of Qt−1

q in Qt−1 and net repulsion forces Ft
q on Qt−1

q by using
the neighbor points by Equation (5)

6: Project the repulsion forces on the local surface by Equation (6)
7: Using the projected repulsion forces and V ′t−1, the new values of Qt and V ′t are

computed using Equations (11) and (12).
8: Project Qt to the input point cloud P for restraining surface approximation error by

Equation (17).
9: Increase t by one.

10: Repeat steps 5–9 until the maximum iteration is reached.
11: Rescale the last resampled result to the original scale and relocate the rescaled point

cloud to have the original center position.

3. Experimental Results
3.1. Parameter Settings

Here, we explain the parameter settings for the proposed method. As mentioned
earlier, α and β were set to 0.9 and 10−8, respectively. The number of neighbor points K
used for approximating the local tangent plane was set to 15. All the input point clouds
were preprocessed as follows: their centroids were translated to the origin, and they were
rescaled (uniformly in all directions) so that they had unit length on the x axis. The original
scale and translation were restored at the final stage of the proposed method.

In this paper, we used LOP [1] and WLOP [2] as the compared methods. The parame-
ters of each algorithm were fixed to the ones proposed by the corresponding authors. To
make a fair comparison, we fixed the parameters of our method for all the experiments.

All algorithms were executed for 50 iterations for fair comparison. All experiments
were conducted on an Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10 GHz.

3.2. Data Sets

We used five well-known point cloud data from Visionair [14]. To generate unevenly
distributed point cloud data, we perturbed these point clouds by adding white Gaussian
noise to all coordinates. (We call this omnidirectional noise, hereafter.) The power of
the white Gaussian noise was set to −55 dBW. The corrupted point clouds were used
as inputs to the compared algorithms. We also conducted a tangential noise experiment
by adding noise without any normal directional components. The resulting noisy point
clouds retained the shape of the original point cloud but differed only in terms of surface
uniformity. The tangential noise was created by first generating points with omnidirectional
noise and then projecting them to the local tangential plane. In addition, we also generated
cases where there were holes on the surface of the point cloud in order to test the algorithm’s
ability under extreme conditions. To generate holes, we selected 30 random points in the
input point cloud and removed all the points within a ball with radius 0.05. Additionally,
we tested our algorithm for real data. There are many point cloud data sets with real-world
3D scans, such as [15–17]. Here, we used the Washington RGB-D Scenes data set [15].
Among the samples in the Washington data set, we used Lemon and Flashlight for our
demonstration. These samples have many nonuniform regions as well as aliasing effects
due to the limitations of sensors or 3D scanning errors. Moreover, these samples contain
only a part of the scanned object because they were captured from one viewpoint.

Sensors 2021, 21, 7768 9 of 20

3.3. Proposed Uniformity Measure

To discuss surface uniformity, we must define a measure. We propose a new surface
uniformity measure in this paper. The measure is defined as the variation of the number
of neighboring points in the point cloud. Here, the neighbor points of a given point are
determined as the points within a certain radius. We also normalize the measure by the
total number of points in the point cloud. The detailed expression for the measure is given
as follows: let ρ(·, ·, ·) be the neighbor count function. Given a query point, a reference
point cloud, and a radius, which are the first, second, and third arguments of ρ, respectively,
this function returns the number of neighbor points of the query point within the radius in
the reference point cloud. Then, given a point cloud Q, the proposed uniformity measure u
is calculated as

u =
1
|Q|

√√√√(E[(ρ(Qq, Q, r)− 1
|Q|

|Q|

∑
q=1

ρ(Qq, Q, r))2]). (18)

3.4. Point Cloud Resampling Results

First, we conducted experiments for resampling cases where the numbers of points
in the input and output are the same. Figure 4 shows example results for data with
tangential noise. Here, we can confirm that the proposed algorithm generally have better
uniformization performance than the other algorithms.

Figure 4. Example results for the tangential noise cases. The first row is the input point cloud, the second row is the
resampling result of the LOP algorithm, the third row is that of the WLOP, and the final row is that of the proposed algorithm.
The odd columns are the resampled point cloud (from left to right, Horse, Bunny, Kitten, Buddha, and Armadillo), and the
even columns are the corresponding enlarged views.

Figures 5 and 6 show the quantitative and qualitative comparisons for the tangential
noise case. Here, the maximum ranges of radius (the x-axis) of plots in Figure 5 were deter-
mined as 2

√
S

π|Q| , where Q is the resampled point cloud and S is the corresponding surface
area. Since it is difficult to find the exact value of S, it was approximately calculated based
on the alphaShape function in MATLAB. Here, the proposed method shows considerably
better performance than WLOP and LOP, both quantitatively and qualitatively. In the
qualitative comparison, the results of LOP and WLOP are barely improved from the input.

Sensors 2021, 21, 7768 10 of 20

This shows the disadvantage of these methods, i.e., the results having strong dependence
on the input density.

0

0.0002

0.0004

0.0006

0.0008

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

0.000045

U
n
if
o
rm

it
y
 v

a
lu

e

bunny

OURS

LOP

WLOP

0 0.001 0.002 0.003 0.004

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

U
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 0.001 0.002 0.003

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

0.000045

U
n
if
o
rm

it
y
 v

a
lu

e

horse

0 0.2 0.4 0.6

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

U
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 0.2 0.4 0.6

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

U
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 5. Quantitative results for the tangential noise cases. Each column shows the results of
algorithms applied to Horse, Bunny, Kitten, Buddha, and Armadillo. The x-axes in the plots indicate
the radius of evaluating u. The ranges of the radius were determined proportional to the square roots
of the ratios between the surface areas of point clouds and the numbers of points.

Figure 6. Qualitative results for a tangential noise case (Horse). The second row shows the enlarged
views of the red boxes in the first row. The first column shows the input point cloud. The second
column shows the result of the LOP. The third column shows that of the WLOP. The last column
shows that of the proposed algorithm.

In the cases with omnidirectional noise, the proposed method again shows outstanding
performance as we can see in Figure 7. Figure 8 shows the corresponding qualitative
comparison. Here, we can see that the result of the proposed method has significantly
smaller normal directional noise than the input and those of the other algorithms.

In addition, we conducted experiments for data with artificially generated missing
holes. As mentioned in Section 3.2, we generated missing holes in the point clouds with
tangential noise. As we can see in Figure 9, our algorithm exhibits better hole-filling ability
than the other algorithms.

Sensors 2021, 21, 7768 11 of 20

0

0.0002

0.0004

0.0006

0.0008

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

U
n
if
o
rm

it
y
 v

a
lu

e

bunny

OURS

LOP

WLOP

0 0.001 0.002 0.003 0.004

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

U
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 0.001 0.002 0.003

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

0.000045

U
n
if
o
rm

it
y
 v

a
lu

e

horse

0 0.2 0.4 0.6

Radius

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

U
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 0.2 0.4 0.6

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

U
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 7. Quantitative results for the omnidirectional noise cases. Each column represents different
input data (first column: Horse; second column: Bunny; third column: Kitten; fourth column:
Buddha; and fifth column: Armadillo).

Figure 8. Qualitative results for an omnidirectional noise case (Horse). First column: input point
cloud; second column: LOP; third column: WLOP; and fourth column: proposed method. The
second row shows enlarged views of the first row.

Figure 9. Hole-filling results for the tangential directional noise case (Horse). First column: input
point cloud with holes and tangential noise; second column: LOP; third column: WLOP; and fourth
column: proposed method. The second row shows enlarged views of the first row.

We also evaluated the performance of point cloud downsampling and upsampling. For
the downsampling experiment, we set the resampling ratio to 0.5. This is achieved by ini-
tializing Q0 to a randomly subsampled version of the input point cloud. Figures 10 and 11
show the tangential noise case. Similar to the previous experiments, the proposed method
shows superior performance to the other algorithms. In the case of omnidirectional noise,
there is no apparent winner between the proposed method and WLOP in Figure 12. How-
ever, it is clear that the proposed method shows much better performance values for
smaller radii. Evaluating u with a smaller radius indicates local density better; therefore,

Sensors 2021, 21, 7768 12 of 20

the performance for a smaller radius holds much more importance. In this regard, we
can say that the proposed method shows much better characteristics. This is apparent in
Figure 13, where our method qualitatively outperforms the compared methods.

0 0.0005 0.001

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

U
n
if
o
rm

it
y
 v

a
lu

e

bunny

OURS

LOP

WLOP

0 0.002 0.004 0.006

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

U
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 0.001 0.002 0.003 0.004

Radius

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

U
n
if
o
rm

it
y
 v

a
lu

e

horse

0 0.2 0.4 0.6 0.8

Radius

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

U
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 0.2 0.4 0.6 0.8

Radius

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

U
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 10. Quantitative results for the tangential noise cases with resampling ratio 0.5. Each column
represents different input data (first column: Horse; second column: Bunny; third column: Kitten;
fourth column: Buddha; and fifth column: Armadillo).

Figure 11. Qualitative results for a tangential noise case with resampling ratio 0.5 (Horse). First
column: input point cloud; second column: LOP; third column: WLOP; and fourth column: the
proposed method. The second row shows enlarged views of the first row.

0 0.0005 0.001

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

U
n
if
o
rm

it
y
 v

a
lu

e

bunny

OURS

LOP

WLOP

0 0.002 0.004 0.006

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

U
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 0.001 0.002 0.003 0.004

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

U
n
if
o
rm

it
y
 v

a
lu

e

horse

0 0.2 0.4 0.6 0.8

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

U
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 0.2 0.4 0.6 0.8

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

U
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 12. Quantitative results for the omnidirectional noise cases with resampling ratio 0.5. Each
column represents different input data (first column: Horse; second column: Bunny; third column:
Kitten; fourth column: Buddha; and fifth column: Armadillo).

Sensors 2021, 21, 7768 13 of 20

Figure 13. Qualitative results for an omnidirectional noise case with resampling ratio 0.5 (Horse).
First column: input point cloud; second column: LOP; third column: WLOP; and fourth column: the
proposed method. The second row shows enlarged views of the first row.

For upsampling experiments, we needed to generate an initial Q0 that has double the
size of the input point cloud. For this, we generated another instance of point cloud by
adding Gaussian noise to the input point cloud. Then, we concatenate this to the original
input to generate the initial Q0. The proposed algorithm stands out in the upsampling
case with tangential noise, as can seen in Figure 14. Compared to downsampling, there are
wider performance gaps. The qualitative results are shown in Figure 15. The qualitative
performance of proposed method is noticeably improved. Moreover, the results of LOP
and WLOP seem even more sparse than the input point cloud in this case. This artifact
comes from the fact that many of the resampled points are clustered together. These
algorithms’ strong dependence on the input density manifests in this phenomenon for
upsampling cases.

The upsampling results with the omnidirectional noise are shown in Figure 16. Again,
LOP and WLOP did not work well in this case. These results shows that LOP and WLOP
are not appropriate for upsampling. However, the proposed method still shows superb
performance. In addition, similar to the resampling cases with omnidirectional noise, the
proposed method has better ability to suppress normal directional noise, as shown in
Figure 17.

0 0.0002 0.0004 0.0006

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

U
n

if
o

rm
it
y
 v

a
lu

e

bunny

OURS

LOP

WLOP

0 0.001 0.002 0.003

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

U
n

if
o

rm
it
y
 v

a
lu

e

kitten

0 0.001 0.002

Radius

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

U
n

if
o

rm
it
y
 v

a
lu

e

horse

0 0.2 0.4

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

U
n

if
o

rm
it
y
 v

a
lu

e

buddha

0 0.1 0.2 0.3 0.4

Radius

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

U
n

if
o

rm
it
y
 v

a
lu

e

armadillo

Figure 14. Quantitative results for the tangential noise cases with resampling ratio 2.0. Each column
represents different input data (first column: Horse; second column: Bunny; third column: Kitten;
fourth column: Buddha; and fifth column: Armadillo).

Sensors 2021, 21, 7768 14 of 20

Figure 15. Qualitative results for an tangential noise case with resampling ratio 2.0 (Horse). First
column: input point cloud; second column: LOP; third column: WLOP; and fourth column: the
proposed method. The second row shows enlarged views of the first row.

0 0.0002 0.0004 0.0006

Radius

0

0.00005

0.0001

0.00015

0.0002

0.00025

U
n
if
o
rm

it
y
 v

a
lu

e

bunny

OURS

LOP

WLOP

0 0.001 0.002 0.003

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

U
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 0.001 0.002

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

U
n
if
o
rm

it
y
 v

a
lu

e

horse

0 0.2 0.4

Radius

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

U
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 0.1 0.2 0.3 0.4

Radius

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

U
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 16. Quantitative results for the omnidirectional noise cases with resampling ratio 2.0. Each
column represents different input data (first column: Horse; second column: Bunny; third column:
Kitten; fourth column: Buddha; and fifth column: Armadillo).

Figure 17. Qualitative results for an omnidirectional noise case with resampling ratio 2.0 (Horse).
First column: input point cloud; second column: LOP; third column: WLOP; and fourth column: the
proposed method. The second row shows enlarged views of the first row.

As we mentioned above, we have also experimented on real scanned data. In Figure 18,
our algorithm performs better than the other algorithms, as expected. In addition, the
qualitative results in Figure 19 show that our algorithm can provide a smooth surface to an
input with an aliasing problem.

Sensors 2021, 21, 7768 15 of 20

0 0.0005 0.001

Radius

0

0.0001

0.0002

0.0003

0.0004

0.0005

U
n

if
o

rm
it
y
 v

a
lu

e

lemon

OURS

LOP

WLOP

0 0.0005 0.001

Radius

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

U
n

if
o

rm
it
y
 v

a
lu

e

flashlight

OURS

LOP

WLOP

Figure 18. Quantitative result for real data sets. The first and second columns show the uniformity
results of each algorithm for Lemon and Flashlight.

Figure 19. Qualitative results for real data sets. The first row shows the resampled results of Lemon.
The second row shows enlarged views of the first row. The third row shows the resampled results of
Flashlight. The fourth row shows enlarged views of the third row. First column: input point cloud;
second column: LOP; third column: WLOP; and fourth column: proposed method.

3.5. Parameter Tuning

We conducted parameter tuning experiments for α and β. First, in Figure 20, the
results show that the case with no momentum (α = 0) has the worst results for all data.
Interestingly, we can see that the uniformization performance increases as α increases.
However, if we set α to one, V ′t

q diverges according to Equation (11). Therefore, in this
paper, we used α = 0.9. In Figure 21, we tested various values for β, and β = 10−8 was the
best for most cases.

Sensors 2021, 21, 7768 16 of 20

0 10 20 30 40 50

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

u
n
if
o
rm

it
y
 v

a
lu

e

bunny

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50

Iteration

0.00004

0.000045

0.00005

0.000055

0.00006

0.000065

0.00007

0.000075

0.00008

0.000085

0.00009

u
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 10 20 30 40 50

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

u
n
if
o
rm

it
y
 v

a
lu

e

horse

10 20 30 40 50

Iteration

0.000045

0.00005

0.000055

0.00006

0.000065

0.00007

0.000075

0.00008

0.000085

0.00009

u
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 10 20 30 40 50

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

u
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 20. Quantitative performance of the proposed method for various α. The horizontal axis
indicates the iteration, and the vertical axis indicates the uniformity value. Each column represents a
different input point cloud (first column: Horse, second column: Bunny, third column: Kitten, fourth
column: Buddha, and fifth column: Armadillo).

0 20 40

Iteration

0

0.00005

0.0001

0.00015

0.0002

0.00025

u
n
if
o
rm

it
y
 v

a
lu

e

bunny

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

0 20 40

Iteration

0

0.00005

0.0001

0.00015

0.0002

u
n
if
o
rm

it
y
 v

a
lu

e

kitten

0 10 20 30 40 50

Iteration

2

4

6

8

10

12

14

u
n
if
o
rm

it
y
 v

a
lu

e

10-5 horse

0 20 40

Iteration

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

u
n
if
o
rm

it
y
 v

a
lu

e

buddha

0 20 40

Iteration

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

u
n
if
o
rm

it
y
 v

a
lu

e

armadillo

Figure 21. Quantitative performance of the proposed method for various β. The horizontal axis
indicates the iteration, and the vertical axis indicates the uniformity value. Each column represents a
different input point cloud (first column: Horse, second column: Bunny, third column: Kitten, fourth
column: Buddha, and fifth column: Armadillo).

3.6. Running Time and Convergence Results

In this subsection, we tested the running time and convergence of the each algorithm.
The run times of 50 iterations for each algorithm are listed in Table 1 for three different
resampling ratios with inputs with tangential noise. We tested these algorithms 10 times for
all cases and reported the mean of the observed run times. Here, the LOP and the WLOP
consume more time because they have quadratic complexity for the pairwise distance
calculation. The proposed method is much faster than the other methods most of the time.

In addition, in Figure 22, we tested the convergence of each algorithm. The results
shows that our algorithm has superior convergence properties for the Visionair data. This
confirms that our algorithm is more stable for resampling input point clouds than the
other algorithms.

3.7. Discussion on More Complicated Geometries

In this section, we discuss more complicated cases and possible limitations of the
proposed method. The proposed method is a numerical method which relies on the local
plane assumption. This makes some parameters critical for the success of the algorithm or
determines the limitations of the method. Ideally, it is desirable to have small and accurate
local planes. Accordingly, there are two dominant factors: the density of the input point
cloud and the size of local neighborhoods. The latter is determined by K in our algorithm.
We might use points within a certain radius instead, but this sometimes can result in having

Sensors 2021, 21, 7768 17 of 20

no point at all; therefore, we stick to K-nearest neighbors. The above two factors being
critical is more or less shared with many other existing numerical resampling methods,
including the LOP and WLOP compared in this paper. Even though LOP and WLOP do
not directly use K-nearest neighbors in their formulations, their update equations still give
strong emphasis on the neighboring points.

Table 1. Running times of different algorithms for various input data and resampling ratios. The
best results are highlighted in bold.

Resampling Ratio Method Horse Bunny Kitten Buddaha Armadilo

0.5
(Subsampling)

LOP 112.35 s 57.81 s 96.84 s 108.57 s 112.89 s
WLOP 156.98 s 144.96 s 153.67 s 141.39 s 118.76 s

ours 73.97 s 75.52 s 74.73 s 55.61 s 54.96 s

1.0
(Resampling)

LOP 435.17 s 424.60 s 437.59 s 406.28 s 296.43 s
WLOP 585.16 s 559.99 s 584.19 s 549.82 s 428.72 s

ours 108.24 s 112.36 s 111.71 s 105.53 s 107.21 s

2.0
(Upsampling)

LOP 752.24 s 763.53 s 748.47 s 705.54 s 743.19 s
WLOP 1150.53 s 1030.98 s 1083.53 s 1101.86 s 1119.77 s

ours 284.78 s 219.58 s 237.51 s 254.56 s 280.32 s

0 20 40

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.0001

0.00011

u
n

if
o

rm
it
y
 v

a
lu

e

bunny

WLOP

LOP

OURS

0 20 40

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.0001

0.00011

u
n

if
o

rm
it
y
 v

a
lu

e

kitten

0 20 40

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.0001

0.00011

0.00012

u
n

if
o

rm
it
y
 v

a
lu

e

horse

0 20 40

Iteration

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.0001

u
n

if
o

rm
it
y
 v

a
lu

e

buddha

0 20 40

Iteration

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

u
n

if
o

rm
it
y
 v

a
lu

e

armadillo

Figure 22. Convergence results of compared methods for the resampling experiment with tangential
case. (first column: Horse, second column: Bunny, third column: Kitten, fourth column: Buddha, and
fifth column: Armadillo).

If the above assumption, i.e., local neighborhood being accurate and small, is violated,
then the proposed method might have some errors. A straightforward example is the input
point cloud being too sparse. In this case, we have to sacrifice either the accuracy or the
smallness of the local neighborhoods. Sacrificing the former might lose the stability of the
local plane estimates, while sacrificing the latter might lose high-frequency details. The
proposed method belongs to the latter case (i.e., using K-nearest neighbors with a fixed K).
To demonstrate such a characteristic, we generated sparse input point clouds with extreme
subsampling. We applied the resampling methods to these data and set the density of the
output identical to the input. In Figure 23, the results show that our algorithm is trying to
approximate more areas at fixed K as the density of the input point cloud decreases. As
a result, the output becomes more smoothed. This trend is less prominent for LOP and
WLOP; however, their overall quality is much worse than that of the proposed method.

Another possible scenario is the shapes of genus one or more. The proposed method
can handle shapes of genus one or more; however, this really depends on the size of the
local neighborhoods. If the size of a hole is smaller than that of the local neighborhoods,
then it is likely that this is considered as a surface with uneven density rather than a hole.
Such a case has been already demonstrated in the experiment of Figure 9. Hence, there is
a trade-off between the preservation of holes and the stability of resampling. In order to

Sensors 2021, 21, 7768 18 of 20

verify that the proposed method can handle a hole properly in the right circumstance, we
generated a doughnut-shaped genus one surface. In Figure 24, we can confirm that the
hole is well preserved in the resampling result. The obvious reason is that the density of
the input point cloud is high enough in this case so that the hole is much larger than the
local neighborhoods.

Figure 23. Resampling results of low-density inputs. The input point clouds were generated by
randomly subsampling the input data of Figure 5. The percentages in the parentheses represent the
amount of subsampling. First row: LOP, second row: WLOP, and third row: proposed method.

Figure 24. Resampling result of a genus-one shape. Left: LOP, middle: WLOP, and right: pro-
posed method.

Sensors 2021, 21, 7768 19 of 20

Finally, shapes with sharp regions or high-frequency details can be another source of
error for calculating the local neighborhoods. To demonstrate this, we used the Dragon
model from the Visionair data set [14]. The results are shown in Figure 25. Here, the
proposed method has a few points diverging at the end of sharp regions. For the LOP and
WLOP, there are fewer such diverging points, but the errors are more in the form of points
becoming scarce around the sharp regions: The density in parts such as the horns of the
dragon is much lower than that of the body. Meanwhile, our algorithm has the highest
level of uniformity for the given data among the compared methods. Fortunately, the
diverging points can be easily fixed through a simple algorithm such as an outlier removal;
therefore, we can say that our method is still relevant in these kinds of data.

Figure 25. Resampling results of Dragon. (Left): LOP, (Middle): WLOP, (Right): proposed method.

4. Conclusions

We proposed a novel point cloud resampling algorithm based on simulating electrons
on a virtual metallic surface. To mimic the movements of electrons on the metallic surface,
the proposed method suppresses the normal component of the repulsion forces on the local
surface. However, due to the use of a simple plane model for the surface approximation,
the points on a possibly curved surface may exhibit some approximation errors. This was
resolved by performing point projection to the nearest surface.

Author Contributions: Conceptualization, K.H., K.J. and M.L.; data curation, K.H.; formal analysis,
K.H. and M.L.; funding acquisition, M.L.; investigation, K.H., K.J. and J.Y.; methodology, K.H., K.J.
and M.L.; project administration, M.L.; software, K.H., K.J. and J.Y.; supervision, M.L.; validation,
K.H. and J.Y.; visualization, K.H.; writing—original draft, K.H. and K.J.; writing—review and editing,
M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-01343,
Artificial Intelligence Convergence Research Center(Hanyang University ERICA)), and was also
partly supported by the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2020R1C1C1012479).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: To obtain the data sets used in this paper, please refer to [14,15].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lipman, Y.; Cohen-Or, D.; Levin, D.; Tal-Ezer, H. Parameterization-free projection for geometry reconstruction. ACM Trans.

Graph. (TOG) 2007, 26, 22-es. [CrossRef]
2. Huang, H.; Li, D.; Zhang, H.; Ascher, U.; Cohen-Or, D. Consolidation of unorganized point clouds for surface reconstruction.

ACM Trans. Graph. (TOG) 2009, 28, 1–7. [CrossRef]
3. Huang, H.; Wu, S.; Gong, M.; Cohen-Or, D.; Ascher, U.; Zhang, H. Edge-aware point set resampling. ACM Trans. Graph. (TOG)

2013, 32, 1–12. [CrossRef]

http://doi.org/10.1145/1276377.1276405
http://dx.doi.org/10.1145/1618452.1618522
http://dx.doi.org/10.1145/2421636.2421645

Sensors 2021, 21, 7768 20 of 20

4. Liao, B.; Xiao, C.; Jin, L.; Fu, H. Efficient feature-preserving local projection operator for geometry reconstruction. Comput.-Aided
Des. 2013, 45, 861–874. [CrossRef]

5. Preiner, R.; Mattausch, O.; Arikan, M.; Pajarola, R.; Wimmer, M. Continuous projection for fast L1 reconstruction. ACM Trans.
Graph. 2014, 33, 1–13. [CrossRef]

6. Alliez, P.; De Verdière, É.C.; Devillers, O.; Isenburg, M. Centroidal Voronoi diagrams for isotropic surface remeshing. Graph.
Models 2005, 67, 204–231. [CrossRef]

7. Yan, D.M.; Lévy, B.; Liu, Y.; Sun, F.; Wang, W. Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram;
Computer Graphics Forum; Wiley Online Library: Oxford, UK, 2009; Volume 28, pp. 1445–1454.

8. Lévy, B.; Bonneel, N. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In Proceedings of the 21st
International Meshing Roundtable; Springer: Berlin/Heidelberg, Germany, 2013; pp. 349–366.

9. Lévy, B.; Liu, Y. L p centroidal voronoi tessellation and its applications. ACM Trans. Graph. (TOG) 2010, 29, 1–11. [CrossRef]
10. Chen, Z.; Zhang, T.; Cao, J.; Zhang, Y.J.; Wang, C. Point cloud resampling using centroidal Voronoi tessellation methods.

Comput.-Aided Des. 2018, 102, 12–21. [CrossRef]
11. Edelsbrunner, H.; Shah, N.R. Triangulating topological spaces. In Proceedings of the Tenth Annual Symposium on Computational

Geometry, New York, NY, USA, 6–8 June 1994; pp. 285–292.
12. Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]
13. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
14. Visionair. Available online: http://www.infra-visionair.eu/ (accessed on 30 March 2018).
15. Kasaei, S.H.; Shafii, N.; Lopes, L.S.; Tomé, A.M. Interactive open-ended object, affordance and grasp learning for robotic

manipulation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2019; pp. 3747–3753.

16. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. Shapenet:
An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012.

17. Wang, Y.; Herranz, L.; van de Weijer, J. Mix and match networks: Cross-modal alignment for zero-pair image-to-image translation.
Int. J. Comput. Vis. 2020, 128, 2849–2872. [CrossRef]

http://dx.doi.org/10.1016/j.cad.2013.02.003
http://dx.doi.org/10.1145/2601097.2601172
http://dx.doi.org/10.1016/j.gmod.2004.06.007
http://dx.doi.org/10.1145/1778765.1778856
http://dx.doi.org/10.1016/j.cad.2018.04.010
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://www.infra-visionair.eu/
http://dx.doi.org/10.1007/s11263-020-01340-z

	Introduction
	Proposed Method
	Notations and System Overview of Point Cloud Resampling
	Suppressing Normal Components in Repulsion Forces
	Moving Points Using Physical System of Electric Forces
	PCA Projection to Restrain Surface Approximation Error

	Experimental Results
	Parameter Settings
	Data Sets
	Proposed Uniformity Measure
	Point Cloud Resampling Results
	Parameter Tuning
	Running Time and Convergence Results
	Discussion on More Complicated Geometries

	Conclusions
	References

