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Abstract: Paving thickness and evenness are two key factors that affect the paving operation quality
of earth-rock dams. However, in the recent study, both of the key factors characterising the paving
quality were measured using finite point random sampling, which resulted in subjectivity in the
detection and a lag in the feedback control. At the same time, the on-site control of the paving
operation quality based on experience results in a poor and unreliable paving quality. To address
the above issues, in this study, a novel assessment and feedback control framework for the paving
operation quality based on the observe–orient–decide–act (OODA) loop is presented. First, in the
observation module, a cellular automaton is used to convert the location of the bulldozer obtained by
monitoring devices into the paving thickness of the levelling layer. Second, in the orient module,
the learning automaton is used to update the state of the corresponding and surrounding cells.
Third, in the decision module, an overall path planning method is developed to realise feedback
control of the paving thickness and evenness. Finally, in the act module, the paving thickness
and evenness of the entire work unit are calculated and compared to their control thresholds to
determine whether to proceed with the next OODA loop. The experiments show that the proposed
method can maintain the paving thickness less than the designed standard value and effectively
prevent the occurrence of ultra-thick or ultra-thin phenomena. Furthermore, the paving evenness
is improved by 21.5% as compared to that obtained with the conventional paving quality control
method. The framework of the paving quality assessment and feedback control proposed in this
paper has extensive popularisation and application value for the same paving construction scene.

Keywords: paving; quality control; quality assessment; OODA loop; cellular learning automaton;
dynamic path planning; GNSS

1. Introduction

The paving operation is an important part of the construction process of earth-rock
dams [1]. Generally, bulldozers and dump trucks constitute the construction machinery
for the paving of earth-rock dams for meeting the tight construction schedule. The paving
work involves a series of varied operations such as cutting, carrying, spreading, and
simple grading. In each stage, there are specific requirements for the operation mode,
driving path, and paving parameters of bulldozers and dump trucks. Failure to meet
these requirements may result in unqualified paving results such as uneven paving, thus
affecting the compactness quality of the final earth-rock dam and reducing the service life
of the dam [2–4]. Therefore, the quality evaluation and feedback control of the bulldozer
paving operation is of great significance for ensuring the paving quality [5].

Levelling is a process of spreading soil or earth-rock materials evenly in the work
area. Effective levelling quality control plays a crucial role in increasing the productivity
of earth-rock dam construction [5]. At existing earth-rock dam construction sites, the
bulldozer is used for levelling work, which frequently comprises a series of operations
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such as cutting, carrying, spreading, and simple grading [6]. A typical levelling method is
presented in Figure 1. The compacted layer is followed by a levelling layer. Dump trucks
transport earth-rock materials from stockyards over the edge of the levelling area. The
bulldozer operator then performs spreading by continuously changing the blade position
while moving in order to complete the levelling work. This study is focused on such
levelling work.
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Figure 1. Paving construction process scene in core wall area of earth-rock dam.

At present, in practice, the quality control of paving is mainly dependent on traditional
methods such as on-site monitoring of the paving process and random sampling after
paving, which is time-consuming and laborious and provides unreliable results and limited
coverage. When the levelling layer is too thick, there is a serious separation of coarse and
fine materials, which results in the unstable and unsafe operation of earth-rock dams [3,4].
Furthermore, in the majority of cases, the operation path that allows bulldozers to cut
and move earth-rock materials is planned based on the operators’ work experience. Most
importantly, conventional levelling quality control is mainly dependent on the random
spot test that is conducted after the levelling work is complete [4]. Thus, there are many
problems associated with this levelling quality control method, such as delayed feedback,
low productivity, and high dependence on human experience.

In this paper, we propose a novel assessment and feedback control framework for
improving the levelling quality of earth-rock dams. The OODA loop, invented by Boyd
and widely used in military operations, is the foundation of our framework [7]. The OODA
loop is a closed-loop tactical concept that comprises the use of information interaction to
optimise tactics in real time and includes observing, orienting, deciding, and acting [8].
By specifying the composition of each model of the OODA loop, we demonstrate that,
in addition to being a very simple framework, it can be used to comprehensively and
effectively evaluate the levelling quality during the construction process and provide
timely guidance for levelling quality control.

The contributions of this paper are the following:
(1) The OODA loop is used to build a feedback framework that is applied to the

paving process through the improvement of each module to realise dynamic assessment
and control during the paving process. (2) A cellular learning automaton (CLA) model
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that improves the observe module to decode the partition, store paving information, and
perceive real-time information during the paving process during the actual paving process
is established. (3) A dynamic path-planning method that is embedded in the decision
module of the OODA framework to guide the bulldozer is proposed for optimising the
paving quality indexes. (4) The proposed methodology exhibits excellent performance in
the paving of earth-rock dam construction.

The rest of this paper is organised as follows. A literature review of related works
is presented in Section 2. The overall research framework of the study is presented
in Section 3. In Section 4, a detailed discussion of the proposed methodology is presented.
A case study of the assessment and feedback control of levelling work is presented in
Section 5. This section also presents a research discussion. Finally, the conclusions and
future work of this study are presented in Section 6.

2. Related Work

At present, in the field of automatic control systems for bulldozer equipment, with
the progress of wireless communication technology, feedback control, and data analysis
technology, a computer physics system has been developed, which provides a new means
of controlling automated vehicles to improve production efficiency and equipment life.
An increasing number of related studies are aimed at developing a powerful method for
facilitating the development of autonomous bulldozer systems. In general, an autonomous
navigation system should comprise terrain mapping, path planning, and navigation [9].

Navigation relies on the advanced positioning technology of bulldozers. In recent
years, Chang [10] adopted a global navigation satellite system (GNSS), accelerometer, and
thermal scanner installed on the roller and paver measurement instruments for collecting
the construction-process information of location, thickness, temperature and other infor-
mation to achieve the quality control of asphalt concrete paving. With the help of these
measurement instruments, Chang reduced the influence of artificial factors and improved
the accuracy of the paving quality control. Yu [11] adopted the simultaneous paving tech-
nology in the construction process of the Hong Kong–Zhuhai–Macao Bridge and improved
the efficiency of the paving construction and the precision of quality control of paving
by improving the construction method. In the field of gravelly soil paving, Zhong [3]
proposed a real-time method for monitoring the paving construction of core earth-rock
dams, realised the real-time monitoring of the bulldozer position, and generated a graphic
report that reflected the construction quality after the paving. Zhong [4] used the k-nearest
neighbour algorithm to solve the thickness estimation problem of the uncontacted area of a
bulldozer in the paving process and, using the obtained mechanical equipment positioning
information, realised the thickness monitoring of an entire warehouse surface. However,
the existing research on the paving process is primarily focused on the asphalt paving field,
with more attention on quality control in the construction process and the use of advanced
measurement devices, improved construction technology, visual management, and other
methods for achieving high-precision in-process control.

However, gravelly soil paving remains at the level of construction parameter mon-
itoring, and still relies on manual experience for the bulldozer operation path selection,
which fails to provide effective control of the paving quality. Terrain mapping provides
a solution to the perception problem of real-time terrain information for bulldozers, and
Komatsu uses the method of taking into consideration motion compensation and polygon
approximation for updating the terrain [9].

However, all mechanical actions in the paving process are construction-quality ori-
ented, and merely relying on the monitoring of machinery is insufficient for ensuring the
quality of the entire warehouse. Cellular automata (CAs) have the characteristics of regular
state transitions and discrete update storage. In addition, precise real-time positions and
grid partitions are essential for calculating and storing lift thickness information [12] CLA,
which is a hybrid of cellular automata (CA) and learning automata (LA), and outperforms
CA in terms of learning ability, making it more environment adaptable [13]. CLA is also
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preferable to LA because significant amounts of CA can induce more complicated phenom-
ena than LA [14]. CLA integrates the benefits of CA in that the phenomena are mimicked
by intelligible behavioural norms mixed with the learning capabilities of LA, rather than
coupled functions [15], making computer simulations easier to execute. Since the introduc-
tion of CLA [16], this model and its extensions have proven their performance in solving
problems, such as gas diffusion [17], land use evolution [18], urban development [19] and
flood evolution [20] community detection [21], wireless sensor network [22], resource allo-
cation [23], and emergency evacuation management for updating pedestrian location status
information updates. So far, CLA has been mainly used to solve optimisation problems and
has rarely been used to model the self-organising behaviour of automated equipment [24].
The action of mechanical equipment such as bulldozers can be transformed into quality
information such as the thickness and flatness of the entire warehouse surface using the
advantages of CLA for state transfer rule conversion, which provides a reliable information
source for the path planning of a bulldozer.

At present, in the field of path planning, global–local path planning has attracted the
attention of many researchers because it can be used to determine the approximate path by
comprehensively considering the conditions of the entire field via global path planning and
handle unexpected situations (such as dynamic obstacles) in the process of path planning
using local path planning. Wang [25] established a hybrid path planning scheme with a
global–local structure while considering the dynamic constraints of an autonomous surface
vehicle (ASV) using global path planning to generate optimal sparse waypoints and using
local path planning at each waypoint to control the ASV in order to avoid obstacles and
move to the next waypoint. Osmankovic [26] designed a multi-stage technique for dealing
with path planning problems in the case of poorly traversable and partially unknown
rough terrains based on the fast D* lite algorithm for global path cost-to-go computation
while employing the model predictive control (MPC) planning paradigm for solving
constrained optimal control problems for the purpose of local planning. Among the global
path planning algorithms, the popular algorithms mainly include the rapidly-exploring
random tree algorithm (RRT), artificial potential field method, and A* algorithm.

Each algorithm has different characteristics and is suitable for different types of path
planning. The A* algorithm is widely used because of its fast calculation speed and
optimal path trajectory length. However, the local path-planning algorithm focuses more
attention on the processing of the operation processes in a small range [27]. Shi [28]
proposed a rolling motion model that meets the construction principles of the lap joint
method and alternate distance method for the path planning of sub-operation surfaces to
realise local operation path planning. In summary, the hybrid path planning method can
comprehensively consider the global trend of path planning and local dynamic adjustment
for achieving good results.

It is thus apparent that it is necessary to establish a method for coupling dynamic
assessment and control for gravelly soil paving. The following three issues are required to
be addressed: (1) a method of improving the timeliness of the quality assessment is required
to be developed and used to guide the paving process [29]; (2) a method of perceiving the
paving quality information in the work area in real time during the construction process is
required to be developed [2]; and (3) the influence of artificial factors should be eliminated,
and stable control of the paving quality should be realised.

To address the aforementioned problem (1), the OODA (observe–orient–decide–act)
loop fits well with the idea of dynamic assessment and control in this process; it was
invented by Boyd and used in the field of military operations [6]. This concept only
distinguishes and sorts the modules in the process but does not specify the composition
of each module in detail [30]. The OODA loop is used to build a feedback framework
that is applied in the paving process, through the improvement of each module, to realise
dynamic assessment and control during the paving process [31]. To address problem
(2), it is necessary to divide the entire work area into grids and record the position and
thickness of each grid. However, the thickness of the corresponding position must be
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updated according to the movement of the machine. CLAs have the characteristics of
partition analysis, partition storage, and corresponding updates, which coincide with the
aforementioned requirements [24]. A CLA model that describes the actual paving process
has been established [20,32]. A CA is used to improve the observation module to decode the
partition, store paving information, and perceive real-time information during the paving
process [33,34]. The learning automaton (LA) is used to improve the orientation module to
analyse the relative position of the machine [35,36]. To solve problem (3), the experience
of the bulldozer operator must be categorised as mechanical operation experience and
thinking experience. However, differences in the mechanical operation experience have
little effect on the paving quality, and thus, the method of planning the operation path of the
bulldozer is of greater significance. By summarising the experience of skilled manipulators
in an abstract manner in combination with the on-site construction method, a dynamic
path-planning method is proposed for optimising the paving quality indexes. This method
is embedded in the decision module of the OODA framework for guiding the bulldozer. In
this manner, the intelligent guidance method can be used to realise the feedback control
of the paving quality [37]. The practical application of a 300 m high earth-rock dam in
Southwest China validates the effectiveness and superiority of the proposed framework.

3. Research Framework

In this study, a dynamic quality assessment and control of paving gravelly soil under
the OODA framework coupled with a CLA is proposed, which includes two parts: the
dynamic quality assessment and control and the engineering application.

The dynamic quality assessment and control part mainly refers to the OODA frame-
work coupled with the CLA. The OODA framework contains four modules: observe,
orient, decide, and act. In the observation module, a CA is used to sense the information
of the entire paving area in real time. In the orient module, an LA is used to interact
with the environment to realise the orientation of the bulldozer. In the decision module,
paving-quality goal-oriented dynamic path planning is used to determine the optimal
travel path of the bulldozer. In the act module, the bulldozer is operated according to the
navigation, and the current paving quality is assessed dynamically.

The engineering application part is a demonstration of the effects and characteristics
of this method when applied to engineering applications. The experiments and an analysis
of their results show that this method provides a superior performance as compared
to manual work. The composition and application of this framework are presented in
Figure 2. The OODA framework consists of four modules: observe, orient, decide, and
act. In the observe module, the dozer senses information about the entire paving area in
real time based on a CA. In the orient module, the LA helps the dozer to interact with the
environmental information to achieve the adjustment of the dozer. In the decide module,
a dynamic path planning algorithm is used to plan the optimal path for the bulldozer
in order to achieve the paving quality target adjustment. In the act module, the dozer is
executed by navigation and the current paving quality is dynamically evaluated.
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4. Methodologies
4.1. OODA Framework Coupled with CLA
4.1.1. OODA Loop

The OODA loop is a closed-loop tactical concept that uses information interaction to
optimise tactics in real time and includes the stages of observe, orient, decide, and act [8],
as shown in Figure 3. The observation stage mainly comprises the collection of data and
information related to the problem; the orient stage is used to analyse and process the
information obtained via observations and make adjustments according to the specific
conditions; the decision stage is used to propose solutions and measures for addressing
the problem to form a solution and is the key module for realising feedback control; the
act stage is used to implement the solution. This method can be used to simulate the
development and operation of agents [38].
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However, OODA is only a theoretical framework and does not provide detailed
provisions on the content of each module [39]. When applied to the paving process, the
content details of each module must be formulated according to the characteristics of the
paving process.

4.1.2. Cellular Learning Automaton

The CLA comprises a CA and an LA. A CA is a system based on cells that are
presented in a grid-like structure [40,41]. Each cell is a discrete individual that contains
certain information and rules. Its own condition is only affected by its own state and the
state of the surrounding cells [42]. The corresponding formula is as follows:

A ∼ (S, T, V) (1)

A represents a cell comprising rules; T represents its rules, which can be executed
spontaneously by the cell or triggered from the outside (such as by the learning automaton);
S represents the state information of A, including the coordinate position, elevation, and
thickness; and V represents the status information of the neighbours around A.

The LA is an abstract model that randomly selects an action from a limited set of
actions and executes it in the environment. Every behaviour selected by an individual cor-
responds to a change in the environment [43]. After the environment changes, individuals
are encouraged to produce new behaviours, thus forming a closed loop and promoting
the operation of the entire system [44]. The environment can be abstracted into an array of
three quantities.

E = {α,β,c} (2)

α represents the input of the environment (the impact of the machine on the envi-
ronment), β represents the output of the environment (feedback after the environment is
affected), and c represents the probability that each element in c corresponds to each action.
Figure 4 presents the relationship between the LA and the environment.
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There is an LA in each cell of the CLA. The LA in this cell generates behaviour
according to the state of the surrounding neighbour cells, and this behaviour affects the state
of the neighbour cells. Thus, a cycle is formed, which promotes the continuous operation
of the system [45]. On this basis, a synchronous CLA and an asynchronous CLA (ACLA)
are developed. The former has a common time point for all the cells, and the calculation
and update are synchronised. The latter is based on the time or specific behaviour built
into each cell to activate, calculate, and update in batches [14]. As only dump trucks,
bulldozers, and a small number of on-site management personnel are present during the
actual construction, it can be assumed that the thickness and elevation information in the
cells are only affected by the dump trucks and bulldozers. CLA can convert the real-time
position information of bulldozers and the unloading information of dump trucks into the
dynamic paving quality information of the storehouse surface.

The storehouse surface can be divided into a 1 m × 1 m square grid, each grid
corresponds to a cellular, and the location coordinate, elevation, thickness and other
information of the corresponding grid are stored in the cellular, and each state information
of the cellular corresponds to its state transition rule. The transfer of each state in the
cellular is carried out in the following order:
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1. The cellular coordinates will not change after the storehouse surface division stage
is obtained.

2. The cellular activation value is determined by obtaining real-time monitoring data and
the activation status information of the surrounding cells. The inactive state value is 0,
when the bulldozer spatial position coordinates coincide with the cellular coordinates,
the activation value is 1, when the activation value of the surrounding cell is 1, the
activation state value of the cell becomes 1.1. When the spatial position coordinates of
the dump truck coincide with the cellular coordinates (x, y), the activation value of
the cell is changed to 2, and the activation values of the cellular coordinates (x, y− 1)
and (x, y + 1) are changed to 2, thus determining that the activation values of the
cells existing on the width of the mound are all updated to 2. In order to ensure
that all the cells on the length of the mound are activated according to position, the
activation value of cellular coordinates (x + 1, y) can be changed to 2.01, and so on.
The other activation value of the cell is 2 + 0.01n(0 < n < 16), then the activation
value of the cells on both sides of the y direction is also changed to 2 + 0.01n, the
activation value of the cell at the x + 1 position becomes 2 + 0.01(n + 1).

3. The elevation can be obtained in different ways according to the activation value of
the cell, when the activation value is 1 or 2, the elevation is equal to the elevation
value in the real-time monitoring data of the bulldozer or dump truck. When the
activation value is 1.1, because the cell is under the bulldozer, the elevation value is
equal to the elevation value of cell with activation value of 1 at this time. When the
activation value is 2 + 0.01n(0 < n < 16), each cell corresponds to each position of
the unloading pile. Elevation updates should be made according to Equation (3)

H =


Hold + 0.15n 0 ≤ n ≤ 4
Hold + 0.6 4 < n < 12

Hold + 2.4− 0.15n 12 ≤ n ≤ 16
(3)

where, H is the updated elevation of this cell, m; Hold is the pre renewing elevation
of this cell, m; n is the distance from the starting unloading position as shown in
Figure 5, m.

4. The thickness is generally updated according to the elevation value in the cell, and
because the thickness update is the last step of the cell state update, the active state
value is set to 0 after the thickness update. Thickness state transfer should satisfy the
Equation (4).

d = La − Lb (4)

where, d is the thickness, m; La is the updated elevation of the cell, m; Lb is the
elevation before updated of this cell, m.
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To sum up, the cellular automata model of gravelly soil paving quality is established,
the storehouse surface is divided into grids, and the real-time monitoring data are obtained
by using cellular automata. Then, according to the state transition rules, the paving quality
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information of each location is transformed and stored in the corresponding cell. As a
result, the action of construction machinery is connected with the paving quality, which
provides a high-precision and real-time data source for path planning.

In addition, each time it is only affected by a few cells in the area of the machine
and nearby, there is no need to update all the cells, and thus, the ACLA that is updated
according to the behaviour is selected.

4.1.3. OODA Framework Coupled with CLA

In the OODA framework, the ACLA mainly optimises the first two modules. Because
an ACLA has the characteristics of an asynchronous update, and CA and LA have dif-
ferent update mechanisms and rules, they can be placed in two modules to optimise the
OODA framework.

In the observation module, according to the characteristics of the CA, the work block
is divided into equal-sized square grids, where each grid corresponds to a cell, and the
cell stores the location coordinates, elevation, thickness, and other information of the
corresponding grid [46]. As shown in Figure 6, the GNSS installed on the bulldozer
records the position information in real time. After the paving of the storehouse surface
is completed, the fitted elevation of the storehouse surface is obtained by extracting the
paving trajectory information of the storehouse surface as shown in Figure 6a. When
starting construction on a new layer, the system fits and updates the elevation map by
acquiring the trajectory of the bulldozer in real time as shown in Figure 6b. Figure 6c shows
the superimposition of the elevation maps of two paving thin layers. The thickness d at
an arbitrary location can be obtained by calculating the height difference between the two
planes, as shown in Figure 6d. In this manner, the simulated work block is established, and
the cells can update their internally stored information by means of an external input (see
Section 4.3 for parameter acquisition details). This completes the perception of the paving
quality parameters in the observation module [47].
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Figure 6. Calculation process of paving thickness of storehouse surface: (a) elevation of the previous
storehouse; (b) elevation of storehouse in construction; (c) superimposition of (a,b); (d) calculation of
paving thickness of storehouse surface.

In the orient module, the influence of the machine is driven by the LA on the simulated
work block. On receiving the discharge signal, the LA at the corresponding position is
activated, and the LA then drives the update of the state of the cell in the corresponding
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area. On receiving the positioning data of the bulldozer, the LA at the corresponding
position is activated and then drives the update of the state of the cell that contains the
active LA and simultaneously drives the cell information in the surrounding area to change
according to the course of the bulldozer.

4.2. Dynamic Assessment and Control
4.2.1. Dynamic Assessment

In the two modules of the aforementioned OODA framework, quality-information
perception has been implemented, and it is necessary to embed the dynamic assessment
in the act module to evaluate the results. The two indicators of thickness and flatness are
primarily used for quality assessment [48].

Thickness detection is used to evaluate the average thickness of the entire working
block. Its formula is similar to Equation (5):

avg_t = ∑N
i=1 ti

N
(5)

where avg_t represents the average value of the paving thickness in the entire work block
and is measured in meters, N represents the total number of cells in the work block, and ti
represents the thickness of the i-th cell in meters. From this, the average thickness of the
entire working area can be obtained. According to engineering experience, for gravelly soil,
the average thickness reaches 0.26 m but does not exceed 0.30 m, which indicates that the
thickness reaches the standard value [3,11,23].

The flatness can be tested after the thickness is qualified. The fatness is also defined
for the entire work block, for which the formula is as follows:

F =
∑N

i=1(ti − avg_t)2

N
(6)

where F represents the variance of the elevation values in all cells in the entire work area.
When the thickness is qualified and the flatness is lower than a certain value, it can be

considered that the entire work block has been paved. When this condition is not met, it is
considered that the paving is incomplete, and a new round of the stages of observe, orient,
decide, and act is implemented under the OODA framework.

4.2.2. Feedback Control

The travel of the bulldozer is controllable and affects the distribution of gravelly
soil in the work block. However, the decision module is a key module that affects the
trend of OODA, and the path-planning algorithm can be embedded in this module to
achieve quality control. To cooperate with the real-time perception of the paving quality
information in the observation module, the use of dynamic path planning is proposed for
realising dynamic control [49].

At the construction site, the occupation method is generally used for paving gravelly
soil. This method involves pushing the soil from a high level to a low level, such that
the bulldozer is on a higher surface for a longer time. Based on the summarised work
experience of skilled operators, we know that the mound closest to the bulldozer will be
levelled first, and the other mounds will then be levelled [50]. Accordingly, the state of
the bulldozer can be categorised as a state of work and movement. In the work state, the
bulldozer flattens the mound and uses the local quality assessment method to determine
the thickness and flatness of the affected area; in the move state, the bulldozer finds and
approaches the nearest mound according to the distance measurement function [51]. To
facilitate the state transition, the cell at the end of each mound is set as the starting cell.

The work state is the main state of the bulldozer. The bulldozer determines its
direction of travel according to its own coordinates and the elevation, thickness, and other
information of the surrounding cells. In combination with the method of construction in
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the occupation method, the following action cycle can be performed. Firstly, during the
forward process, on considering the large amount of soil in the front shovel and the large
engine load, the effect of adjusting the direction is poor, and it is easy for the local area
to become too thick, such that the bulldozer is guided in a straight line [52]. Secondly,
the bulldozer leaves the higher layer in the process of moving in a straight line, and thus,
there is no soil in the front shovel. At this time, the coordinate elevation of the bulldozer
changes, and it can be determined that the bulldozer should start to retreat according to
this change. Then, on considering the role of the scraping surface of the front shovel during
the retreating process and facilitating the subsequent forward bulldozing, the bulldozer
can be guided to retreat to the thicker cell according to the thickness of the rear cell. Finally,
when retreating to a thicker area, the bulldozer moves backwards in a straight line until the
coordinates of the bulldozer are close to the height of the paving layer, and the bulldozer
can then start the next advance of bulldozing. A bulldozing process includes multiple
forward and backward operation cycles. In this process, a local quality assessment is
performed by determining whether the calculated average thickness and flatness of the
affected area meet the standard values. Thus, an in-process feedback control mode is
developed to guide the bulldozer’s operation. Equations (5) and (6) present the thickness
assessment and flatness assessment functions, respectively. When the working area of the
bulldozer meets the required flatness and thickness requirements, the state of the bulldozer
changes from the work to the move state.

In the move state, it should first be determined which mound’s starting cell is closest
to the bulldozer, and the bulldozer should then be guided to travel to this starting cell
position. According to the action model of the bulldozer, it is more inclined to move
in a straight line than to turn in a large angle. Therefore, it is unreasonable to use the
Euclidean distance to measure the distance between the bulldozer and the starting cell.
The relative positional relationship between the starting cell and bulldozer and the course
of the bulldozer should be comprehensively considered, a distance measurement function
should be established, the angle measurement weight should be added on the basis of the
Euclidean distance measurement, and the composite distances should then be compared to
obtain the optimal solution. The specific formula for this is as follows:

dE =

√
(x2 − x1)

2 + (y2 − y1)
2 (7)

θ = arccos

 (x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)√[
(x3 − x1)

2 + (y3 − y1)
2
][
(x2 − x1)

2 + (y2 − y1)
2
]
 (8)

d = dE + α
(π

2
−
∣∣∣θ − π

2

∣∣∣)dE (9)

Equation (7) presents the Euclidean distance formula, Equation (8) presents the for-
mula for the assessment of the angle between the head of the vehicle and the specified
stack angle, and Equation (9) presents the distance measurement function. (x1, y1) are the
coordinates of the bulldozer; (x2, y2)are the coordinates of the specified starting cell; (x3, y3)
are the coordinates of the cell pointed at by the head of the bulldozer; dE is the Euclidean
distance in metres from the bulldozer to the designated pile; θ is the angle between the
course of the bulldozer and the specified starting cell; α is the angle weight; and d is the
composite distance in metres.

In the process of guiding the bulldozer to the starting cell, as there are no obstacles in
the work block, the bulldozer can only move in a straight line to the starting cell. When it
travels to the starting cell, the move state changes to the work state, as shown in Figure 7.
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4.3. Parameter Acquisition Based on Real-Time Monitoring

The OODA framework coupled with the CLA is required to be driven by the paving
process parameters and the initial information of the dam storehouse surface. Based on
the functionality of the CLA introduced in Section 4.1.2, the CLA can convert the real-time
position information of bulldozers and the unloading information of dump trucks into
the dynamic paving quality information of the storehouse surface. Thus, the following
method is used to complete the collection of these two types of information. Paving process
parameters are also the real-time construction information that is required to be obtained
during the construction. The architecture of the real-time acquisition method for the paving
operation parameters is presented in Figure 8.
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To provide accurate and dynamic paving-quality information, it is necessary to accu-
rately locate the real-time position of the bulldozer with the comprehensive use of GNSS
technology, general packet radio service technology, and real-time kinematic technology;
establish a differential base station in the construction area; and install a global positioning
system (GPS) receiver, controller, and other monitoring equipment on the bulldozer [2].
The bulldozer can obtain the satellite positioning in real time and also perform real-time
differential positioning on the base station by acquiring the positioning signal of the base
station, thereby improving the positioning accuracy and timeliness [37].

It is necessary to obtain the discharge time and location to understand the dynamic
pavement quality situation [53]. This can be realised by installing a BeiDou satellite
positioning terminal and discharge sensor on the dump truck. The discharge sensor can
sense the rise of the hopper and send the discharge signal to the BeiDou positioning
terminal. The BeiDou positioning terminal can edit the position information and time
information at this moment into a short message and send it to the server, which thereby
obtains the discharge-related information.

5. Engineering Applications

The method proposed in this study was applied to a high earth-rock dam in southwest
China. The dam is a core-wall earth-rock dam having a height of 295.0 m, total fill volume
of 41.6 million m3, and a core wall area of 348 m length and 55.6 m average width. The
field experiment of this study was conducted in the core wall area, and the bulldozer
model used was SD32, manufactured by Shantui Construction Machinery Co., Ltd., Jining,
China. A tablet equipped with an intelligent guidance program for the paving process
was installed on the front windscreen of the bulldozer, such that the operator could see the
arrow indication without any obstruction to the view from the windscreen.

5.1. Real-Time Acquisition Process of Paving Operation Parameters

As shown in Figure 9, using GPS + RTK technology, the monitor terminal is installed
on the bulldozer, by receiving BeiDou, GPS, GLONASS satellite positioning system, and the
difference back to the base station of the differential positioning data coupling calculation
of the bulldozer real-time location data, the error location information within 2 cm, to meet
the needs of paving process control [54].
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This data can be represented by the following collection:

Dbul = {x, y, H, v, t} (10)

where Dbul is the real-time spatial position data of the bulldozer; x is the longitude; y is
the latitude; H is the elevation in meters; v is the instantaneous speed of the bulldozer in
m/s, and t is the time for obtaining the positioning in seconds.

By installing the BeiDou positioning device and unloading sensor on the dump truck,
the unloading process can be sensed, and the positioning data can be sent back to the
server through the conductor to achieve the acquisition and transmission of the unloading
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position information of the dump truck. The dump truck location information can be
represented by the following set:

Ddump = {x, y, H, t, S} (11)

where Ddump is the location information of the dump truck, and S is the state of the dump
truck (0 is the loaded condition, and 1 is the unloaded state).

The initial storehouse surface information should be determined by the field manage-
ment personnel before construction begins, and the coordinates of the boundary points of
the storehouse surface are determined using a measuring rod. The smoothness and average
elevation of the pre-rolling process are then obtained according to the real-time monitoring
system of the rolling quality [2] in order to obtain the position, size, smoothness, and other
information of the storehouse surface of the dam before the construction.

In this study, to verify the superiority of the proposed framework, six sets of exper-
imental data were constructed. First, three operators were each made to complete one
paving operation, and the corresponding data were collected from the paving real-time
monitoring system using these three sets of data as a comparison group. Then, one of the
operators completed the work according to the instructions of the arrows; three experi-
ments were conducted, and the data thus obtained were used as the experimental group.
Finally, the six sets of data obtained were processed and analysed.

5.2. Dynamic Assessment

Dynamic assessment is applied to the action module of the OODA framework to
evaluate the paving quality of the entire area. Therefore, the effect of applying dynamic
assessments in engineering applications are also presented in a dynamic form.

The dynamic assessment comprises the evaluation of the paving quality at all times
during the construction process. The Number 2 Test experiment set is considered as an
example. Three stages are selected for the assessment: 10 min after the start of the paving,
25 min after the start of the paving, and after the completion of the paving. A three-
dimensional colour map that reflects the elevation of the entire working area can be created
based on the elevation information stored by each cell in the CA, as shown in Figure 10.
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The various stages of the bulldozer operation can be clearly distinguished in the figure.
In the beginning, as there are many unpaved places, it can be clearly observed that the
paved and unpaved layers are connected in a stepped manner. Furthermore, owing to the
existence of a mound in the area, red protrusions can be clearly observed in the colour
map. At this time, the average paving thickness is generally below the standard value;
thus, there is no need to consider the flatness. After approximately 25 min, similar features
can still be observed, but the area of the paved portion becomes significantly larger, and
the unpaved portion decreases. At this time, the average thickness may have reached the
standard value, but it can be intuitively determined that the flatness has not yet met the
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requirement. When the paving is completed, it can be observed that the entire area is
yellow in the map, and the elevation difference is small, indicating that the paving has been
completed. This is when the average thickness and flatness have met the requirements.

In addition, the effect of the dynamic assessment can be compared horizontally with
the effect of traditional work methods. The Number 3 Test experiment set and Number
3 Contrast comparison set are considered as examples for the analysis. The two sets are
similar in size, shape, and elevation. The three-dimensional surface colour map can be
plotted according to the elevation at each position at the end of the paving of the two sets,
as shown in Figure 11. It can be clearly observed that the comparison set exhibits a serious
ultra-thin phenomenon, while the thickness of each area of the experimental set is relatively
average; thus, good results were obtained in the dynamic assessment [55].
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5.3. Feedback Control

The key point of the dynamic control method is the path planning algorithm, and with
the realisation of dynamic control, it is also necessary to take into consideration the method
for outputting the algorithm result. As shown in Figure 12, in the application process, an
intelligent guidance program for the paving process was compiled according to the above
method to guide the travel of the bulldozer. The program is installed on the navigation
tablet, and the tablet is installed on the windscreen. To avoid affecting the operator’s field
of vision, augmented reality technology is used for the visual processing [56]. A real-time
photograph obtained using the camera installed at the front of the bulldozer is used as a
base map, and the path-planning result is displayed in the form of an arrow in the centre of
the photograph. Thumbnails and real-time status information of the bulldozer are placed
at other positions on the screen to allow the operator to understand the current situation.



Sensors 2021, 21, 7756 16 of 22
Sensors 2021, 21, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 12. Real-time path optimisation based on feedback control. 

A rudimentary Paving Quality Feedback Control algorithm (Algorithm 1) is outlined 

as follows: 

Algorithm 1. Paving Quality Feedback Control 

(1) Initialisation: 

Input: target area coordinates, initial mounds, start_height, and target_height 

(2) Main cycle 

Parameters: 

Mound-the number of soil mounds in the dump area of the dump truck 

Endmain-the number of iterations 

Mounds.Add-the additive operator of the number of soil mounds 

Bulldozer.location-bulldozer coordinate variables; 

Get_location-position sensing operator 

Cell_Judge-LA judges behaviour according to the state of neighbouring cells 

PathPlanning-path planning operator 

Arrow-optimal path indicator variable 

Judge_quality-bulldozer paving quality evaluation operator 

1. Endmain = 0 

2. While Endmain == 0  Do 

3.     IF a new mound arises then 

4.     mounds.Add(new mound) 

5.     End 

6.    Bulldozer.location = Get_location() 

7.    Cell_Judge = get_arround(Bulldozer) 

8.    Arrow = PathPlanning(mounds, Bulldozer, Cell_Judge) 

9.    Show the Arrow on the Screen 

10. Update Bulldozer ‘s location and the cell that it passed just now 

11. Endmain = Judge_quality() 

12. End 

In the algorithm pseudo code, the initial work block coordinates, initial mound in-

formation, and initial and target elevation of the block are entered during the initialisation 

phase. mounds.Add(new mound) adds the information of the newly entered mound. Bull-

dozer.location = get_location() obtains the spatial coordinate information of the bulldozer. 

Cell_Judge = get_arround(Bulldozer) obtains the information of the cells around the bull-

dozer and stores it in Cell_Judge. Arrow = PathPlanning(mounds, bulldozer, Cell_Judge) 

indicates that the path planning algorithm analyses the information of the mound, bull-

dozer, and surrounding cells to obtain the current optimal path and presents it as an ar-

row. Endmain = Judge_quality() indicates that the paving quality (thickness and flatness) 

Figure 12. Real-time path optimisation based on feedback control.

A rudimentary Paving Quality Feedback Control algorithm (Algorithm 1) is outlined
as follows:

Algorithm 1. Paving Quality Feedback Control

(1) Initialisation:

Input: target area coordinates, initial mounds, start_height, and target_height

(2) Main cycle

Parameters:
Mound-the number of soil mounds in the dump area of the dump truck
Endmain-the number of iterations
Mounds.Add-the additive operator of the number of soil mounds
Bulldozer.location-bulldozer coordinate variables;
Get_location-position sensing operator
Cell_Judge-LA judges behaviour according to the state of neighbouring cells
PathPlanning-path planning operator
Arrow-optimal path indicator variable
Judge_quality-bulldozer paving quality evaluation operator

1. Endmain = 0

2. While Endmain == 0 Do

3. IF a new mound arises then

4. mounds.Add(new mound)

5. End

6. Bulldozer.location = Get_location()

7. Cell_Judge = get_arround(Bulldozer)

8. Arrow = PathPlanning(mounds, Bulldozer, Cell_Judge)

9. Show the Arrow on the Screen

10. Update Bulldozer ‘s location and the cell that it passed just now

11. Endmain = Judge_quality()

12. End

In the algorithm pseudo code, the initial work block coordinates, initial mound infor-
mation, and initial and target elevation of the block are entered during the initialisation
phase. mounds.Add(new mound) adds the information of the newly entered mound. Bull-
dozer.location = get_location() obtains the spatial coordinate information of the bulldozer.
Cell_Judge = get_arround(Bulldozer) obtains the information of the cells around the bull-
dozer and stores it in Cell_Judge. Arrow = PathPlanning(mounds, bulldozer, Cell_Judge)
indicates that the path planning algorithm analyses the information of the mound, bull-
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dozer, and surrounding cells to obtain the current optimal path and presents it as an arrow.
Endmain = Judge_quality() indicates that the paving quality (thickness and flatness) of
the entire work block is analysed to determine whether the paving is completed. If it is
completed, endmain becomes 1.

5.4. Discussion

The experimental data are listed in Table 1. The efficiency of the bulldozer in this
study is defined based on the volume of gravelly soil paved by the bulldozer per unit time.
The formula for calculating the efficiency is shown in Equation (12). The area in the table
represents the total area of the work block; the amount of paved gravelly soil is converted
according to the actual paving thickness and area (according to the site construction
requirements, the thickness is generally 0.27 m); and the effective time is the time used for
the paving operations (the time after neglecting the waiting time for parking, avoidance
caused by the dump truck unloading, etc.). Owing to the influence of the construction
progress on site, the size and shape of the work block cannot be guaranteed every time,
and thus, the standard deviation of the elevation in each cell is used as an indicator for
evaluating the flatness of the work block.

E f f i =
S·d

t
(12)

where E f f i is the bulldozer efficiency, m3/s; S is the total area of the pavingsite, m2; d is
average paving thickness, m; t is the effective time for paving operations, s.

Table 1. Experimental results.

Type Name Area (m2) Time (s) Efficiency (m3/s)
Average

Efficiency (m3/s) Flatness Average
Flatness

Experimental
group

Number 1 Test 1360 2989 0.1274
0.1174

0.0724
0.0746Number 2 Test 845 2178 0.1086 0.0749

Number 3 Test 960 2314 0.1162 0.0764

Contrast
group

Number 1
Contrast 1044 2081 0.1355

0.1152
0.0793

0.095Number 2
Contrast 666 1315 0.1367 0.0657

Number 3
Contrast 891 3276 0.0734 0.1401

The average value of the standard deviation of the comparison group is 0.095, and
that of the experimental group is 0.0746, which is 21.5% less than that of the comparison
group. In addition, from the longitudinal comparison within the group, the maximum
value of the comparison group is found to be 0.1401, the minimum value is 0.0657, and
the former is more than twice that of the latter. The maximum value of the experimental
group is 0.0764, which is less than 6% greater than the minimum value of 0.0724. It can be
observed that the use of this quality control method can stabilise and improve the quality
of paving construction. The efficiency and flatness results of each group of experiments are
shown in Figure 13.

Only by analysing the flatness of the standard deviation can we determine the thick-
ness difference of each area in the entire work block, and this method is not sufficiently
intuitive. Therefore, the elevation information of each cell at the end of the paving can be
collected and expressed using different colours according to the difference in elevation,
which comprises a graphical report. The graphical report can be used as another indicator
for evaluating the flatness of the entire working block. Figure 14 presents the trajectory of
each set and its corresponding graphical report, wherein the darker the colour, the greater
the elevation, and the lighter the colour, the lower the elevation. The graphical reports
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of the comparison group are analysed. It can be observed that, except for the Number 2
Contrast comparison set, there exist obvious areas with ultra-thickness or ultra-thinness in
the other sets. This indicates that uneven spreading of the material in the control group
is common. Therefore, this system can effectively improve the construction quality and
prevent the occurrence of uneven paving.
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On comparing the trajectory maps of the two groups, it can be observed from Figure 14
that the trajectory maps of the experimental group are relatively uniform and dense. This
is because the dynamic control method sets a strategy for levelling a mound and then
leaving, such that the location and other information of the mound can be approximately
inferred according to the density of the track. In addition, the ends of the trajectory of
the experimental group are bent downward or upward. This is because the logic of the
forward and backward movement in the work state, as designed in the program, is based
on the elevation change of the GPS data, such that the bulldozer is vertically angled during
downhill and uphill movements. Moreover, as the paving is performed along the horizontal
axis, the majority of the intersection points are intersections of the ‘move’ path and ‘work’
path, and the moving path is primarily straight. It can be observed that the bulldozers of
the experimental group work and move according to the path planning instructions.

In addition, the quality control method performs well in terms of efficiency, in the
study, the volume of gravelly soil paved by paver per second is used to characterise the
work efficiency. The minimum efficiency of the comparison group is 0.073 m3/s, and the
highest efficiency is 0.137 m3/s. The efficiency of the skilled operators is nearly twice
that of the novices. The gap between the experimental groups is significantly smaller: the
highest efficiency is 0.127 m3/s, while the lowest is 0.109 m3/s. The difference between the
maximum and minimum values is less than one-sixth. Therefore, the method proposed
in this study can maintain its efficiency at the upper-middle level. Under the premise of
ensuring construction efficiency, this method could play a role in improving and stabilising
construction quality.
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6. Conclusions and Future Research

Paving quality control is of great significance for ensuring the construction quality of a
gravelly soil core-wall earth-rock dam. In this study, a method for the dynamic assessment
and control of paving quality is proposed, and the following are the main results obtained:

1. The OODA framework coupled with the CLA is established to realise the dynamic
assessment and control of the paving quality. The CLA improves the observe and
orient modules in the OODA framework. The former converts the initial paving
information into quality information through CAs and performs partition storage and
partition updates. The latter interacts with the surrounding environment via LAs, such
that the cells can be processed more specifically according to the mechanical operation.

2. A dynamic path planning method for optimising the paving quality indicators is pro-
posed, and this method is embedded in the decision module for realising intelligent
guidance and control. The conducted experiments demonstrate that this method ef-
fectively reduces the dependence of the paving operations on manual experience and
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establishes a high-precision event feed control method, which improves the quality of
the paving and stabilises the construction efficiency at a high level.

3. The dynamic assessment method is embedded in the action module of the OODA
framework for dynamically evaluating the paving quality information of the entire
area updated in real time, which improves the comprehensiveness and timeliness of
the assessment. The experiments demonstrate that this dynamic assessment method
can be used to comprehensively and effectively evaluate the paving quality during
the construction process and provide guidance for quality control.

The dynamic quality assessment and control method adopted in this study not only
monitors and evaluates the quality situation during the paving process, but also realises
quality control via paving-path guidance. This feedback framework of the coupled assess-
ment and control has a certain reference significance for research in the field of hydraulic
engineering. In addition, because this method can significantly reduce the reliance on
manual experience in such applications, it introduces the possibility of realising unmanned
paving operations [57].
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