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Abstract: Foot strike detection is important when evaluating a person’s gait characteristics. Ac-
celerometer and gyroscope signals from smartphones have been used to train artificial intelligence
(AI) models for automated foot strike detection in able-bodied and elderly populations. However,
there is limited research on foot strike detection in lower limb amputees, who have a more variable
and asymmetric gait. A novel method for automated foot strike detection in lower limb amputees was
developed using raw accelerometer and gyroscope signals collected from a smartphone positioned
at the posterior pelvis. Raw signals were used to train a decision tree model and long short-term
memory (LSTM) model for automated foot strike detection. These models were developed using
retrospective data (n = 72) collected with the TOHRC Walk Test app during a 6-min walk test (6MWT).
An Android smartphone was placed on a posterior belt for each participant during the 6MWT to
collect accelerometer and gyroscope signals at 50 Hz. The best model for foot strike identification was
the LSTM with 100 hidden nodes in the LSTM layer, 50 hidden nodes in the dense layer, and a batch
size of 64 (99.0% accuracy, 86.4% sensitivity, 99.4% specificity, and 83.7% precision). This research cre-
ated a novel method for automated foot strike identification in lower extremity amputee populations
that is equivalent to manual labelling and accessible for clinical use. Automated foot strike detection
is required for stride analysis and to enable other AI applications, such as fall detection.

Keywords: 6MWT; foot strike detection; amputee; stride parameters; machine learning; decision tree;
deep learning; LSTM; artificial intelligence; smartphone

1. Introduction

Foot strike (FS) identification is necessary for human gait evaluation, providing insight
into a person’s activity levels, mobility, and gait pattern. For example, foot strikes identify
the start and end of a gait cycle and can be used to calculate the step time, stride time, and
double support time for each leg. Previously, FS identification was completed by visual
analysis with video-tracking systems (Vicon, etc.), ground reaction force analysis with
force plates, or 3D accelerometer and gyroscope signal analysis from sensors placed at
the foot/ankle or shank. While these methods have been successful for both able-bodied
and disease populations [1–3], they can be expensive, difficult, and timely to set-up. More
recently, 3D signals collected from a smartphone located at the pelvis have provided a
more accessible analysis of the movement status [4–6]. While these models can identify
FS with a high accuracy, the FS identification models were typically based on able-bodied
participant data.
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Lower limb amputee populations can present with a high variability and inconsistent
walking patterns that put them at a high risk of injury and falls [7]. Instability, an asymmet-
rical gait, or using a walking aid can make it difficult to automatically detect steps from
sensor data. Algorithms for gait phase detection for microprocessor controlled prostheses
are frequently trained on input data from able-bodied individuals wearing a single sensor
on the thigh, shank, or foot, or on signals from multiple sensors on the body [8]. While this
may be effective for research purposes, using a single sensor location would facilitate use
in clinical environments, where the time is not available to configure multisensory systems
on a patient.

Recently, a rule-based foot strike identification algorithm for lower limb amputees was
developed using anterior–posterior (AP) linear acceleration collected from a smartphone
affixed to the posterior pelvis during a a six-minute walk test (6MWT) [9]. This approach
achieved 87% FS detection accuracy, with error correction. When analyzing lower limb
amputee gait data for clinical use, manual FS labelling would be needed to ensure appro-
priate stride timing. For example, recent research by Daines et al. [10] used smartphone
data during a 6MWT and manually labelled FS to predict the fall risk for people with lower
limb amputations with 81.3% accuracy. While these results are promising, manual labelling
is time-consuming and impractical for clinical use, where immediate results reporting is
desirable to support decision making at the point of patient contact.

Artificial intelligence (AI) algorithms have been proposed as an alternative method
for gait analysis in populations that have a more variable gait, such as cerebral palsy or
Parkinson’s disease [11–14]. Machine learning is a subset of artificial intelligence where
algorithms make predictions by evaluating structured data over time. Machine learning
models are simple to build, easy to interpret, and require shorter training times than more
complex models. A popular supervised machine learning algorithm is the decision tree.
Decision trees classify data based on a set of features for each input. The model splits the
data based on feature values and their corresponding class labels by determining the most
effective decision boundary. Decision trees have been used to diagnose coronary artery
disease [15] and to distinguish healthy tissue from cancerous tissue [16]. These models
have also been used to perform logistic regression analysis for gait phase recognition to
improve dynamic knee–ankle–foot orthosis control [17].

Deep learning is a more complex subset of machine learning. Deep learning models
require more training time, but often provide a higher accuracy [18] because they can
perform automated feature extraction and classification concurrently, whereas a feature
selection process is required prior to training a machine learning algorithm. Deep learning
methods also require less time during testing than machine learning techniques if the data
set is large.

Recurrent neural networks (RNN), a deep learning approach, are a class of artificial
neural networks that contain both feed-forward and feedback loops, making it possible to
loop relevant information back into the network. RNNs perform well on sequential data,
such as handwriting recognition [19], and have been implemented for gait segmentation,
recognizing heel-strikes and toe-offs by training on data from in-shoe sensors [20]. Long
short-term memory (LSTM) is a popular RNN architecture that, like RNN, has both feed-
forward and feedback components, and has the addition of a forget gate that sorts data
into short-term and long-term memory cells. This process helps to regulate information
flow by determining what data should be remembered and what data can be forgotten,
making them ideal for data sets that have gaps between relevant events. For example, there
is constant movement during gait but a FS only occurs once every 0.4–0.6 s, depending on
the walking speed [21]. Recently, LSTM networks have been trained on smartphone sensor
data for human activity recognition [22] and gait cycle detection [23].

The effectiveness of machine learning and deep learning algorithms to classify FS in
lower limb amputee populations using smartphone signals has not yet been evaluated
or compared. This research developed a novel method for automated FS detection using
filtered acceleration and gyroscope signals collected from a smartphone during a 6-min
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walk test, using both decision tree and LSTM approaches. A viable model will provide
the basis for automated stride parameter calculation and stride segmentation, which is
essential for using new fall risk and health status AI models within clinical environments.

In this paper, Section 2 details the methodology and experimental design. Section 3
details the results obtained from this research. Section 4 provides a discussion of the results
and their implications. Section 5 provides a conclusion and details future research.

2. Materials and Methods

Section 2 is structured as follows. Section 2.1 details participant recruitment and
characteristics. Section 2.2 describes the experimental setup and data collection process.
Section 2.3 discusses pre-processing, with Section 2.3.1 covering signal filtering and pro-
cessing and Section 2.3.2 detailing the manual labelling of the ground truth foot strikes.
Section 2.4 describes the construction of the classification models, where Section 2.4.1 de-
scribes the decision tree classifier and Section 2.4.2 describes the LSTM classifier. Section 2.5
details the evaluation metrics for classification. Section 2.6 presents the post-processing
error correction.

2.1. Recruitment and Participants

A convenience sample of 93 transtibial, transfemoral, and bilateral lower limb am-
putees were recruited from the University Rehabilitation Institute (Ljubljana, Slovenia).
The inclusion criteria were: transtibial or higher amputation; ability to walk with single
cane, 2 crutches, or without any walking aids; minimum of 6 months post-amputation;
had a functional prosthesis; no wounds on the residual limb; and was willing to partic-
ipate. Only participants who completed the full 6 min were included in this analysis.
Excluded trials were due to incomplete trial (15), cell phone affixed to the side of the hip
instead of lower back (5), and use of a non-rolling walker (1). Therefore, 72 participants
(14 female, 58 male, age 62.3 ± 12.7) were included in this study. Participants included
63 transtibial, 5 transfemoral, and 4 bilateral transtibial amputees. Ten participants (13.9%)
completed the 6MWT with a single cane/crutch, 22 participants (30.6%) walked with
double crutches, and 40 participants (55.5%) walked without gait aids. All participants
provided informed consent.

2.2. Data Collection

An Android smartphone was placed on a belt at the lower back of each participant
before completing a 6MWT along a 20 m hallway (Figure 1). Accelerometer, gyroscope,
and smartphone orientation data were collected with the TOHRC Walk Test app at 50 Hz.
Each participant was video recorded for the duration of their 6MWT.

2.3. Pre-Processing
2.3.1. Filtering and Signal Processing

Once the test was complete, data were exported from the smartphone for pre-processing.
Raw accelerometer data, gyroscope data, smartphone orientation, and timestamps for each
recording were imported into MATLAB 2020b. Signals were filtered with a fourth-order
zero-lag Butterworth low pass filter with a cut-off frequency of 4 Hz. Smartphone orienta-
tion, XYZ coordinates for raw and linear acceleration (m/s2), and angular velocity (rads/s)
were the input data. Since smartphone signals are collected at a variable sampling rate,
each signal was re-interpolated at 50 Hz for a total of 18049 data points per participant
over the 6-min walk test.

2.3.2. Manual Ground Truth Labelling

Ground truth steps were manually identified and labelled by two assistants prior to
model training as label 0 (no foot strike present) and label 1 (foot strike present) using the
following procedure. Linear acceleration signals over time were graphed. In a typical gait
cycle, AP acceleration peaks coincide with FS events, followed by a vertical acceleration
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peak. Therefore, AP signal peaks immediately followed by a vertical signal peak were
identified and the timestamp recorded as a FS event. Participant video was used to confirm
timestamps. In cases where the AP peak was not well defined (e.g., gait irregularity, insta-
bility, etc.), a consensus of the two assistants was made and the most appropriate location
was selected. All other timestamps were consequently labelled as “no foot strike present”.
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2.4. Classification Models
2.4.1. Decision Tree

Models were written and evaluated in Python 4.1. The decision tree classifier and
evaluation metrics were imported from scikit-learn library. Training data included the
12 smartphone signals and the corresponding ground truth labels for each data point. Hy-
perparameters evaluated included maximum tree depth and class weighting (1:2, 1:5, 1:10,
1:20). The default options in the scikit-learn library were used for all other training parameters.

2.4.2. LSTM

The LSTM model was imported from Keras. Smartphone signals were formatted into
data windows prior to model input. Each window spanned 15 frames (0.3 s) before the
class label to 15 frames after the label. For the first 15 data points, 30 frames after the class
label were used. Similarly, the previous 30 frames were used for the final 15 data points.
The 31-frame window size (i.e., 15 before, labelled frame, 15 after) minimized the likelihood
of more than one FS event occurring within the same window. Several hyperparameter
combinations were evaluated, including batch size (32, 64, 128), number of hidden LSTM
and hidden dense nodes (25, 50, 75, 100), dropout (0.3, 0.4, 0.5), and class weighting (1:2,
1:5, 1:10, 1:20). Since this was a binary classifier, binary cross-entropy was used as the loss
function. Dense layer activation functions included ReLU in the input layer and sigmoid
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in the output layer. To evaluate the model, a confusion matrix module was imported from
the scikit-learn library.

2.5. Classifier Evaluation

Five-fold cross validation was used to evaluate performance of both AI models. A
temporal tolerance of ±2 frames (±0.04 s) was used to match ground truth manually la-
belled FS labels with predicted class labels. The results were evaluated based on sensitivity,
specificity, accuracy, and precision.

Stride parameters were calculated using both manually labelled ground truth and
predicted FS. The difference between these ground truths and predicted values for step
time, stride time, and cadence were compared to the minimal detectable change (MDC)
for each value. Since MDC was not available for lower limb amputee gait, MDC of stride
parameters for healthy older adults was used [24–26].

2.6. Post-Processing

FS predictions and linear acceleration signals over time were graphed to evaluate
preliminary model performance. Typically, a single FS event would correspond with the
AP signal peak. However, upon visual examination of the initial test results, periods of
multiple consecutive predictions of the “FS present” class label corresponding to a single
AP peak were observed. The predictions were often located prior to, at the FS instance,
and immediately following the AP signal peak, causing a “banded” appearance on the
graph. In order to correct for this “banding”, instances where two or more FS classifications
occurred consecutively were identified in MATLAB. The timestamps of the start and end
of each period of multiple FS and the corresponding AP acceleration signal for this period
were recorded. The peak AP acceleration within the period was identified. The FS label at
this timestamp replaced all other FS labels in that period (Figure 2).
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to correction. Blue lines indicate ground truth labels for foot strikes. Orange lines indicate adjusted
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To correct for missed steps, a method similar to Capela et al. [4] was employed.
A locking period specific to each participant’s trial was defined from a 5-s sample of
the filtered vertical acceleration signal from the beginning of the 6MWT trial. The time
between positive zero-crossings for the vertical acceleration signal in the sample was used
to calculate the locking period based on three procedures:

• The default locking period was half the maximum time between zero crossings;
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• If the maximum time between zero crossings was greater than 0.6 s, the locking period
was half the mean time between zero crossings;

• If the maximum time between zero crossings was less than 0.3 s, the maximum time
between zero crossings was multiplied by 2.

To identify missed steps, periods where the duration between two consecutive steps
was greater than 1.5 times the previous step were identified. The start of the period was
increased by half the locking period, and end of the period was decreased by the same
amount (i.e., so that the missed step was not inappropriately located at the start or end of
the original selected period). FS was inserted at the timestamp for the peak AP acceleration
in this period (Figure 3).Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 
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3. Results

A total of 39,561 foot strikes were identified and labelled in the ground truth data,
accounting for 3.04% of total output labels (1,299,528). Table 1 displays confusion matrices
for the decision tree and LSTM models. The best performing decision tree model had
a maximum tree depth of 10 and class weighting of 1:20 (label 0: label 1). The decision
tree classification accuracy was 98.7%, sensitivity was 82.8%, specificity was 99.2%, and
precision was 78.6%. The LSTM model with the best performance had a batch size of 64,
dropout of 0.4, one LSTM layer with 100 hidden LSTM nodes, one dense layer with 50 hid-
den dense nodes, and a class weighting of 1:2 (label 0: label 1). The LSTM classification
accuracy was 99.0%, sensitivity was 86.4%, specificity was 99.4%, and precision was 83.7%.

Table 1. Confusion matrices.

Decision Tree LSTM

Foot Strike No Foot Strike Foot Strike No foot Strike

Foot strike 32,849 6712 Foot strike 34,200 5361
No foot strike 10,410 1,244,508 No foot strike 7165 1,246,603

Differences in stride parameter outcome measures between manual and automated
FS for each model are displayed in Table 2. The step time and stride time differences were
within the MDC for both models, whereas the differences in cadence were outside the
MDC for both models. The LSTM model had smaller differences overall.
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Table 2. Average and standard deviation (in brackets) difference between manual and auto-
mated foot strike stride parameter outcome measures for LSTM and decision tree (DT) models.
MDC = minimum detectable change.

LSTM DT MDC

Step time (s) 0.0010 (0.29) −0.0139 (0.22) 0.042
Stride time (s) −0.0006 (0.26) −0.0149 (0.20) 0.772

Cadence (steps/min) 29.47 (39.87) 56.04 (53.35) 8.44

The automated band and missed step corrections were essential (Table 3). The LSTM
results improved by 8.2% for sensitivity, 3.7% for specificity, 3.9% for accuracy, and, the
most notable increase, 61.9% for precision.

Table 3. Evaluation metrics before and after automated corrections.

Sensitivity Specificity Accuracy Precision

After correction 86.4% 99.4% 99.0% 83.7%
Before correction 78.2% 95.7% 95.1% 21.8%

The FS identification error was 13.6%. Contributions to this error rate included auto-
mated FS labelled within +/− five frames of manually labelled FS (Figure 4), automated
FS greater than five frames from manually labelled FS (Figure 5), steps missed by the AI
not corrected for (Figure 6), and extra steps inserted by the AI model (Figure 7).
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4. Discussion

This research successfully created an automated foot strike detection model that only
requires smartphone acceleration, angular velocity, and orientation data from a posterior
pelvis location. The LSTM model outperformed the decision tree in all areas of analysis
and is the recommended model for future applications.

Compared to the previous rule-based lower limb amputee FS detection model in [9],
the LSTM resulted in an improved FS classification. The algorithm described in [9] per-
formed FS identification by using either AP acceleration or vertical acceleration; whichever
provided a smoother signal. The LSTM model was trained on all 12 signals collected during
the 6MWT. The inclusion of additional signals may have resulted in a more accurate FS
identification by identifying patterns in all signals where a FS occurred. In addition, the
increased complexity of the LSTM architecture may have been better suited to lower limb
amputee gait variability.

Previous research [10] demonstrated that clinically relevant outcomes, such as fall risk,
can be identified in amputees using 6MWT data and a random forest model. However,
automated stride detection would be required to enable the system to automatically run
the model, since data features are calculated for each stride. Implementation on a smart-
phone would allow any clinician to complete a 6MWT assessment and view the stride
parameter outcome measures and fall risk status immediately after completing the trial
(i.e., instant reporting).

The LSTM model had a FS prediction error rate of 13.6%. When the temporal tolerance
was adjusted from ± two frames to ± five frames, as employed in Tan et al. [23], the
FS prediction error decreased to 12.6%, showing that a small percentage of errors were
within five frames (0.1 s) of the manually labelled FS. Interestingly, in some cases where
the automated FS was predicted to be more than five frames from the manually labelled
FS, the AI model may have selected a more appropriate peak. For example, in Figure 5, a
double peak is visible in the AP acceleration signal (green line). The manually labelled FS
at frame 1949 corresponds with the first peak and the automatically labelled FS at frame
1955 corresponds with the second and greater peak. Looking at the previous step and
the following step, the manually labelled FS corresponds with an AP acceleration peak
immediately prior to a vertical acceleration peak (red). Given this pattern in acceleration
signals prior to and after this timepoint, the predicted FS at frame 1955 is likely to be a
more appropriate placement than at frame 1949.

Other errors included manually labelled steps that were not identified by the LSTM
model that were not corrected for later, and extra FS inserted in an inappropriate location.
The use of walking aids, such as canes or crutches, can cause double peaks or abnormally-
shaped curves in the acceleration signal, which can lead to these FS identification errors.
In addition, steps that occur during a period of instability or if the person is walking
asymmetrically (which is common for lower limb amputees) can cause similar errors.
Another factor contributing to the error rate could be errors in manually identifying the
ground truth foot strike events, where the visual identification of a foot strike could be off
by one frame.

The error rate did not adversely affect the clinical outcome measures, where the
difference between the automated and manually labelled FS step time and stride time
was within the MDC. The difference in cadence was outside the MDC for both LSTM
and decision tree models. However, the MDC for these parameters was not available for
lower limb amputees; instead, values were compared with healthy older adult MDC. This
suggests that, when extracting stride parameters from the 6MWT in lower limb amputees,
clinical outcome measures from the automated FS are equivalent to measures calculated
from manually labelled events.

For both models, postprocessing to select one event within “banded” predictions
was necessary to improve the model performance. Repetitive series of FS predictions
surrounding the manually labelled ground truth FS resulted in a greater number of false
positives and fewer true negatives, affecting all classification results, and, in particular,
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there was a notable decrease in precision (Table 3). Band correction was very effective
in automatically selecting the appropriate acceleration peak, but would only be viable in
post-processing, and not for real-time FS detection.

This research had several limitations. Only those who completed the full 6MWT
were included in this research. While stopping to rest during the 6MWT is permitted, the
inability to complete the full 6 min is an indication of impairment that could be clinically
relevant. As such, excluding them from the training data could limit model generalizability,
reducing the accuracy for patients of decreased ability levels. A larger subset of people
not completing the 6MWT would be required to improve the model. In addition, while
participants with canes and crutches were included, those using non-rolling walkers were
excluded from this analysis. Further subgroup analyses should be completed to investigate
if the current model is also applicable to these groups. Since the study population sample
only included five people with transfemoral amputation and four with bilateral amputation,
further research could be performed to determine if the model would improve with more
participants with these characteristics in the training set.

5. Conclusions

FS identification is essential to define the gait cycle and calculate stride parameters.
AI tools for clinical analysis (e.g., fall risk classification) rely on proper gait segmentation
to calculate step-based features. In lower limb amputees, manual step identification was
required due to the high gait variability and irregularity, limiting the clinical viability
of such tools in this population [10]. This research developed a novel LSTM approach
for automated FS detection in lower limb amputee populations using smartphone sensor
signals at the posterior pelvis. A LSTM deep learning model was more effective for FS
identification in lower limb amputees than a decision tree machine learning model. Post-
processing further improved the classification results. Stride parameters calculated using
predicted FS were equivalent to those calculated from manually labelled FS, demonstrating
that the automated FS with smartphone sensor data could be viable for clinical analysis.
Future research could include a sub-group analysis of participants who did not complete
the full 6MWT and those using mobility aids, such as wheeled walkers, since using these
aids can provide signal characteristics that confuse AI classifiers. Additionally, this model
could be validated for use in other disability groups, such as Parkinson’s disease or cerebral
palsy. The implementation of this FS detection model on a smartphone, as an improvement
to the TOHRC Walk Test app, for example, would bring the advancements from this
research to daily clinical use and improve clinical decision making for the lower limb
amputee population.
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