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Abstract: Recently, robot services have been widely applied in many fields. To provide optimum
service, it is essential to maintain good acceptance of the robot for more effective interaction with
users. Previously, we attempted to implement facial expressions by synchronizing an estimated
human emotion on the face of a robot. The results revealed that the robot could present different
perceptions according to individual preferences. In this study, we considered individual differences
to improve the acceptance of the robot by changing the robot’s expression according to the emotion
of its interacting partner. The emotion was estimated using biological signals, and the robot changed
its expression according to three conditions: synchronized with the estimated emotion, inversely
synchronized, and a funny expression. During the experiment, the participants provided feedback
regarding the robot’s expression by choosing whether they “like” or “dislike” the expression. We
investigated individual differences in the acceptance of the robot expression using the Semantic
Differential scale method. In addition, logistic regression was used to create a classification model by
considering individual differences based on the biological data and feedback from each participant.
We found that the robot expression based on inverse synchronization when the participants felt
a negative emotion could result in impression differences among individuals. Then, the robot’s
expression was determined based on the classification model, and the Semantic Differential scale
on the impression of the robot was compared with the three conditions. Overall, we found that
the participants were most accepting when the robot expression was calculated using the proposed
personalized method.

Keywords: robot; robot facial expression; emotion estimation; biological signals; EEG; HRV; affect
analysis; human-robot interaction; virtual agent

1. Introduction

In recent years, the use of robot services has expanded in commerce and welfare
facilities due to the declining birthrate and aging society [1]. In situations that require
human–robot communication, such as communication with older adults in welfare facilities,
communication with customers in commercial settings, or other services that require
communicate with robots, it is necessary for the robot to maintain a good impression. The
impression, or acceptance, of a robot can be enhanced through facial expression, nonverbal
expression, voices, etc. [2].

To enhance human–robot interaction, the robot must be able to recognize, interpret,
and respond effectively to the human’s social cues. That is, in human–human communica-
tion, a person often displays his/her emotion through conscious and unconscious means,
such as facial expression and nonverbal behavior [3]. A robot that can interpret such infor-
mation will be able to respond and assist more effectively based on the human’s emotion [4].
This would result in more effective and engaging interactions with users, which would
lead to better acceptance of these robots [5]. It is now possible to automatically detect
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such affect information via facial expressions [6–8], body language [8,9], voice [6,8] or a
combination of facial expressions and voice recognition [6], and biological signals [10,11].

In this study, we focused on improving the acceptance of the robot’s facial expression
for better human–robot communication by changing the robot expression according to the
emotion information of its interacting partner. We did not consider any specific situation for
the human–robot communication in our experiment. We hypothesized that some people
may prefer when the robot expresses similar emotions, whereas others may not. Therefore,
we investigated whether individual differences affect the personal preferences for robot
expression. To clarify our hypotheses, we developed a machine learning model to define
the relationship between personal preference and emotion estimated from the biological
information. Accordingly, we developed a logistic regression model that predicts the
personal preference for robot facial expression. As a result, it was found in the experiment
that our proposed personalization method is effective for improving the acceptance of the
robot facial expression based on the increase in the impression rating score and the increase
in the frequency of “Like” clicked during the experiment.

2. Background

Several studies have investigated the emotion estimation function of robots for bet-
ter human–robot communication. Some studies have estimated human emotions using
biological signals analysis methods, such as voice recognition and facial expression recog-
nition. A study by Yamano et al. performed an emotion estimation from the human
voice using emotional voice analysis software. The estimated emotion was used to deter-
mine the robot facial expression in order to investigate people’s acceptance of the robot
based on the emotion synchronization effect. The results of the study suggested that
emotional synchronization boosted the positive impression of the robot [12]. In addition,
Li et al. used facial expression recognition in their study of the emotional synchronization
effect for human–robot communication. They compared the impressions of the robot
between the synchronization and non-synchronization of the emotion, which was esti-
mated from the participants using facial expression recognition. They found that emotional
synchronization-based communication resulted in better impressions of the robot com-
pared to non-synchronization, thus increasing people’s willingness to communicate with
the robot in a favorable manner [13].

Jimenez et al. associated a learning-supported robot with an emotional expression. A
model was proposed in which the robot facial expression changed according to the correct
response for a given task and the time spent while studying. This model allowed the
robot to synchronize the emotion with the participants. The learning effect and intimacy
between the robot and participants were examined. As a result, it was suggested that
the synchronized emotional expression of the robot may improve the performance of
the participants, and tend to generate intimacy between the robot and participants [14].
Another study by Tanizaki et al. [15] also implemented a learning-supported robot that
was able to express emotions. The participants in this experiment undertook the Synthetic
Personality Inventory (SPI) test. The SPI test is a multiple-choice aptitude test that is usually
undertaken by graduates in Japan as part of the process of finding employment. In the
experiment, the robot expressed emotions, depending on the participants’ answers on the
test, by manipulating its facial expressions and gestures, such as arm movements, to show
a happy emotion. As a result, it was suggested that the combination of facial expression
and physical movements could give the participants a favorable impression of intimacy
and kindness.

However, the emotion estimation methods used in previous studies were solely based
on controllable expressions. Face expression and voice intonation can be controlled, and
may thus conceal the real emotion. Therefore, Kurono et al. [16,17] compared the impres-
sion of the robot based on the emotion estimated from controllable and uncontrollable
expressions. The controllable expressions were derived from facial expression recognition,
whereas the uncontrollable expressions were analyzed from brain waves and heart rate
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measurement. Brain waves and heart rate measurements may indicate an involuntary activ-
ity that usually occurs unpredictably. The authors measured the biological signals within a
certain period of time to determine the estimated emotion and presented an image of the
facial expression to be used as the robot expression. Then, the estimated emotions from con-
trollable and uncontrollable expressions were compared. As a result, it was suggested that
the emotion synchronized with the uncontrollable expression, rather than the controllable
expression, provided participants with an impression of the robot’s intelligence.

In studies by Kurono et al. [16,17], the authors compared the impression rating of robot
facial expression, which was synchronized from the emotion of the participant. In their
work, the emotion was estimated from facial expression and biological signals (heart rate
and brain waves). They found that the emotion estimated from biological signals, which
was derived from uncontrollable expressions, resulted in a high concordance rate. Subse-
quently, Kajihara et al. [18] expanded the work to determine a suitable synchronization
method for the robot expression and the emotion estimation approach of uncontrollable
expressions. In Kajihara et al.’s later work [19], they compared the participant impression
rating of the robot facial expression under two conditions: synchronized and inversely
synchronized with the estimated emotion. The synchronized condition is the traditional
version, in which the robot shows an expression similar to the estimated emotion. For
the inversely synchronized condition, the robot shows the opposite emotion (based on
Russel’s circumplex model of affect) to the estimated emotion. The results suggested that
participants can develop the impression of intimacy and other aspects of the robot through
emotion synchronization, but individual differences can affect the impression. They specif-
ically noted that the interpretation of reverse synchronization differs individually. For
example, some participants found it undesirable when the robot showed a happy expres-
sion when the participant was feeling sad, whereas others found it to be encouraging. It
can be implied that people have different impressions of the same robot’s facial expression.
Therefore, these individual differences must be taken into account when evaluating the
robot’s facial expression.

In this study, we aimed to investigate a method to obtain a positive impression of the
robot’s expression by considering individual differences. For this purpose, we validated the
following factors in a preliminary experiment: 1. The type of robot facial expression; and 2.
conditions for selecting the robot’s facial expression. Then, we evaluated the individual
differences regarding the impression of the robot’s expression by applying a machine
learning method for individual preference classification based on biological signals.

3. Proposed Method

Kajihara et al. suggested that real-time emotion estimation at an interval of 2.5 s
produced the highest rating of the impression of a robot [18,19]. Therefore, in this re-
search, we used the approach proposed by Kajihara et al. to estimate the emotions using
biological signals, and thus regularly determine the robot facial expressions under three
conditions: synchronize, reverse synchronize, and funny facial expressions. We used brain
waves and the heart rate, for which changes cannot be controlled and are arbitrary, for
the measurement of biological signals used to estimate the emotions. The robot facial
expression is displayed for a short period in different conditions based on the estimated
emotions. Then, the participants answered a subjective evaluation questionnaire to deter-
mine the individual differences in the impression of the robot. The relationship between
the measured biological signals and the answers to the subjective evaluation questionnaire
was investigated.

3.1. Emotion Estimation Method Using Biological Signals

In this study, the emotions were estimated from biological signals based on the brain
wave and heart rate measurement analysis of Ikeda et al. [10]. Because the brain waves and
heart rate can be measured continuously in real time [20–22], it is possible to change the
robot facial expressions based on the estimated emotions by applying the methods from
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both Kajihara et al. [18,19] and Ikeda et al. [10]. If the robot is able to change and express
emotions in real time during communication, the situation will more closely resemble
human–human communication.

The emotion estimation methods in [10,18,19] correlate the values obtained by two
physiological sensors, i.e., the brain waves (EEG) and heart rate variability (HRV), to the
Arousal and Valence axes, respectively, in Russell’s circumplex model of affect [23]. The
EEG can be used to measure the state of concentration and is reported to be negatively
correlated with the subjectively evaluated level of arousal [24,25]. The HRV is a relatively
reliable index for detecting stress and negative emotions [26]. Numerous studies have
shown that the emotions estimated using these methods are closely related to the subjective
evaluation results obtained in the experiments. These approaches have been used in nu-
merous applications, such as social network feedback analysis, audience reaction analysis,
and robot hospitality analysis [27–30].

For the EEG, we used the Attention and Meditation indexes provided by NeuroSky
brainwave mobile™. The Attention and Meditation indexes are calculated on a relative
scale of 0 to 100. For both indexes, the computation algorithms are based on both temporal
and frequency domains. According to [31], the exact algorithm for computation has not
been published, but the manufacturer indicates that the Attention index emphasizes beta
waves and the Meditation index emphasizes alpha bands. Here, the arousal axis is defined
as the difference between Attention and Meditation (Attention – Meditation). The valence
axis is defined using the pNN50, which can be calculated from HRV. The pNN50 is the
index typically used to measure the state of autonomic nerves via measurement of the
valence level from the vagal tone intensity [32]. The pNN50 shows the rate at which the
difference between the 30 adjacent R-R intervals (RRI) is greater than 50 milli seconds.

Each measured index can be plotted as shown in Figure 1, which is based on Russell’s
circumplex model to classify the emotion [23]. The y-axis shows the arousal level, whereas
the x-axis represents the valence level.
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3.2. Robot Facial Expression

The study of Kajihara et al. examined four types of robot facial expression based on
the four basic emotions [18]. In addition to the four basic emotions, we added another type
of expression to clarify the individual differences in the impression of facial expressions.
According to the article by Akita Mami [33], the bright and cheerful expression obtained the
highest rating, of around 37%, as the expression that improved people’s first impression.
Therefore, the “funny expression” was added as the representative of the bright and
cheerful expression.

Because the “funny expression” may be favored or rejected, this kind of expression can
be used to investigate individual differences. Figure 2 shows five robot facial expressions
used in this work: happy, angry, sad, relaxed, and funny. For each type of expression,
there are five levels of emotional intensity. These are calculated from the emotion values
obtained from the length to point x,y in Figure 1 based on Kajihara et al.’s approach [18,19].
The higher the emotional values, the higher the emotional intensity, as shown in Figure 2.
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To determine the robot’s facial expression, Kajihara et al. investigated the method for
synchronizing the robot’s expression with the estimated emotion. They found that the best
impression was achieved when the robot’s facial expression was synchronized with the
estimated emotion calculated cumulatively at an interval of 2.5 s.

3.3. Conditions for Selecting Robot Expression

The robot facial expression was determined differently according to the following
three conditions:

1. Synchronized—robot expression is the same as the estimated emotion;
2. Inversely synchronized—robot expression is opposite to the estimated emotion;
3. Funny expression—the robot displays a funny expression regardless of the

estimated emotion.

Figure 3 shows the simulation for all conditions. In the figure, the participant is feeling
sad. In the synchronized condition, the robot shows a sad expression, whereas it shows a
happy expression in the inversely synchronized condition. Finally, in the case of the funny
condition, the robot expresses a funny facial expression regardless of the estimated emotion.
In addition, emotion intensity is derived from the estimated emotion for all conditions.
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4. Preliminary Experiment

The purpose of the preliminary experiment was to investigate individual differences in
the impression of the robot’s expression. The participant was required to wear an EEG and
a pulse sensor throughout the experiment. In each trial, the participant listened to music
that evoked a happy or sad emotion. For later analysis of the individual preferences, the
participant was asked to provide feedback regarding the impression of the robot, according
to the estimated emotion in each of the three experimental conditions: synchronized,
inversely synchronized, and funny. The order of the conditions was random.

4.1. Participant

Three male students (age range 18–25) voluntarily participated in the experiment with
signed consent.

4.2. Stimuli

The stimulus used in the experiment was an emotive music clip with a length of 75 s.
Two types of emotion-evoking music were prepared: happy and sad. The music clips
were created by combining four music clips selected from the emotion-evoking music
database [34] of the Finnish Center of Excellence in Interdisciplinary Music Research at the
University of Jyvaskyla. The database was constructed from the study of music-mediated
emotions. This database contains 110 film soundtracks, each of which is approximately
15 s long. All music is categorized by professional musicians based on the dimensional
and discrete emotion model into several emotions, such as valence, energy, tension, anger,
fear, happy, sad, beauty, etc. For each quadrant of the Arousal–Valence space model, we
selected two songs based on the highest scores for the corresponding emotions. From this
database, we selected the top ten music clips in the “happiness” and “sadness” category to
create happy and sad emotion-evoking music clips, respectively.

4.3. Procedure

The participants were asked to wear an EEG, pulse sensor, and earphones during
the whole experiment. A monitor to show the robot’s expression was set in front of
the participant. After confirming that all data was being retrieved from all sensors, the
experimental procedure for the participant was as follows:

1. Stay still (rest) for 60 s for a baseline measurement.
2. Listen to the 75 s emotion-evoking music clip. At the same time, the monitor showed

a robot’s expression. While listening to the music, the participant could click the
mouse to indicate whether he/she liked or disliked the robot expression at any time.

3. Rest for 60 s.
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4. Repeat steps 2 and 3 for the three experimental conditions for happy and sad
stimuli, respectively.

4.4. Results

Figure 4 shows the comparison of average EEG values (calculated from the difference
of Attention and Meditation) for each experiment condition, while being exposed to happy
and sad stimuli. Each participant’s data is shown using different colors. The solid and
dotted lines show the data obtained when the participant listened to happy and sad
music, respectively. The positive value shows that the Attention value is higher than the
Meditation value (Attention predominates), whereas the negative value shows that the
Meditation value is higher than the Attention value (Meditation predominates). From
the figure, it is interesting to note that the changes in EEG in the inversely synchronized
condition and funny expression are large when the participants listened to sad music,
but small or unnoticeable when the participants listened to happy music, compared to
the baseline.
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Figure 5 shows the comparison of the average valence (pNN50) value between the
baseline and the conditions of synchronized, inversely synchronized, and funny expres-
sion for all participants. The figure shows that valence was highest in the synchronized
condition for all participants when listening to happy music. While listening to happy
music, all participants’ valence tended to decrease when the expression was changed from
synchronized to inversely synchronized. Furthermore, the changes were very small when
the participants listened to sad music. It can be seen from the figure that valence was
highest at the different conditions for each participant, thus showing individual differences
when exposed to the sad stimulus.

4.5. Discussion and Points to Be Improved

From the result, it can be inferred that the biological signals showed individual
differences in the robot’s facial expressions. The implications of the result are summarized
as follows:

1. When the participant has a positive emotion, a robot showing a synchronized emotion
can create pleasure.

2. When the participant has a negative emotion, the good impression of the robot’s
expression varies depending on the individual.
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In this experiment, the valence values were often low for all three participants, so the
participants were likely feeling frustrated or bored during the experiment. In addition, the
results of the subjective evaluation may not be consistent with the results of the biological
signal data (e.g., I like the robot’s facial expression, but the valence value is low). Thus,
further consideration is required of the experimental environment.
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Figure 5. Comparison of average HRV (valence) values for all participants. (P1 Happy: The value
when participant 1 listened to happy music).

5. Analysis of Individual Preference Using Machine Learning

As confirmed in the results presented above, the biological information when a subject
looks at the robot’s facial expressions differs from person to person. We hypothesized that
if the robot’s facial expression can be synchronized with human emotions, human emotions
will not be positive; rather, the expression will be positive or negative depending on the
person’s emotions and other factors.

We thought it necessary to model and discuss the features that affect the emotions
of human–robot facial expressions. For this purpose, we aimed to identify the complex
reactions of these people using biological information to represent the features of the indi-
vidual differences, which are based on personal preferences. To clarify this, we constructed
a model from the features using a simple supervised machine learning method.

First, we constructed a simple preference model that reflected the biological informa-
tion. To construct this model, it was necessary to collect data by executing an experiment.
The experiment was constructed such that a person looked at a robot’s facial expression,
and was asked to provide feedback in real time about whether he/she “liked” or “disliked”
the robot’s facial expression. The robot facial expression changed based on the participant’s
emotion. Because the features of the biological information were changed dynamically
according to the stimulation, we collected the feedback from mouse clicks as the personal
preference data. The personal preference data was used as the response variable, and the
unconscious biological, arousal, and valence data were used as the explanatory variables,
in the training data. To achieve this, two procedures were undertaken, as explained in the
following sub-sections: Model and Data Collection.

5.1. Model

We made assumptions about the relationships between the participant’s personal
preference data (feedback from mouse click) and his/her biological data (EEG and HRV)
used in this research; the model was required to express the relationship between the
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personal preference data and multiple biological parameters. If these are simple linear
relationships, multiple regression analysis is generally used to explain the objective vari-
able with multiple explanatory variables. However, because it is assumed that people’s
preference for evaluating the facial expression of a robot will be predicted, we used logistic
regression. Logistic regression can be used to stochastically predict the objective variable,
it is relatively simple, and the relationship between features is easy to understand.

Logistic regression is expressed by the following equation, where l is the logit of
probability p:

l =
(

p
1 − p

)
= β0 + β1x1 + · · ·+ βpxp, (1)

p = (1/(1 + exp(−l)) =

(
1

1 + exp
[
−
(

β0 + β1x1 + · · ·+ βpxp
)]
)

)
, (2)

where p is the objective variable represented by the probability, β0 is a constant, and β0 − βp
is the partial regression coefficient. Here, we use p that predict the “like” and “dislike”
feedback. The explanatory variables used here are the EEG and the HRV values (PNN50),
which correspond to the two indices (arousal and valence) used to classify emotions using
biometric information.

5.2. Data Collection

The datasets were prepared for the construction of the personal preference model via
machine learning, as explained previously. This sub-section describes the method used
for preparing the dataset for the machine learning model using the data collected from the
experiment. The experiment methods, including the procedure and selection of stimuli,
are described in the preliminary experiment section.

From the experiment, we determined sections (start/stop timestamps) when each
music stimulus was presented to collect EEG and HRV data for the analysis. Because
the EEG sensor and pulse sensor were unsynchronized, the data were obtained from the
most recent EEG and HRV data, each second. Because each of the music stimuli was
presented for about 75 s, approximately 75 entries of EEG and HRV were generated for
music clip. Subjective evaluation results were also assigned to the physiological data
of the corresponding music. Finally, we constructed a dataset as an input for machine
learning-based classification models using EEG and HRV indexes as input features.

During the experiment, the participant was instructed to freely provide feedback
regarding the robot expression. The participant was able to provide the feedback by
clicking the left or right button on the mouse, indicating “dislike” or “like”, respectively
(Figure 6). Here, the biological data used in the model was captured for 30 s before the
first mouse click. For the target variable of the logistic regression, we utilized mouse click
patterns from the subjective evaluation data, where the value of 1 indicates “like”, and
0 indicates “dislike”. Here, we utilized the equation to identify the biological data obtained
when the subjective evaluation indicated “like” or “dislike” for each subject. Then, we
plotted the distribution of the biological data for each subjective evaluation to classify the
subjects’ individual preferences.

5.3. Model Accuracy

In this study, we verified the classification model by computing the model accuracy,
ACC, as follows,

ACC = (TP + TN)/(TP + FP + FN + TN) (3)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.
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5.4. Fitting the Model to Data from Preliminary Experiment

Figure 7 shows the results of the classification model applied to the data of two
participant (A and B) from the preliminary experiment. As shown in the figure, from the
model of Participant A, “like” was correctly classified eight times (the number of orange
circles on the right-hand side of the green dotted line) and incorrectly classified two times
(the number of orange circles on the left-hand side of the green dotted line). By comparison
“dislike” was correctly classified eight times and incorrectly classified two times. A similar
result was obtained from the data of Participant B. Therefore, we can conclude that, for
both participants, an accuracy of 80% was obtained using our method.
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From the EEG (arousal) and HRV (valence) value distribution obtained when the
subjects clicked like/dislike in response to the robot facial expression, as shown in Figure 7,
it can be seen that Participant A’s HRV showed a positive value when he/she clicked
like, which shows the preferences of Participant A. By comparison, both Participant B’s
EEG and HRV were in the middle range when he/she clicked like for the robot facial
expression. From these observations, we can infer that individual differences can be clearly
indicated by the distribution of the EEG and HRV values of the biological data based on
the preferences of the classification model.

6. Main Experiment

The purpose of this experiment was to evaluate the individual differences in the
impression of the robot expression in terms of a subjective evaluation. Here, we only used
sad music as the emotion-evoking stimulus because, based on the preliminary experiment,
sad music is more prone to individual differences. The subjective evaluation using a
questionnaire in the seven scales of semantic differential (SD) format was conducted at the
end of each condition (synchronized, inversely synchronized, and funny).

6.1. Participant

Ten volunteers (six males and four females, age range 18–35 years) participated in the
experiment with signed consent.

6.2. Stimulus

The stimulus used in the experiment was a 75 s sad emotion-evoking music clip.
The music was selected and created in the same manner as the stimuli used in the
preliminary experiment.

6.3. Subjective Evaluation

To evaluate the participant’s impression of the robot expression, we utilized the
12 adjective pairs that comprise the Japanese property-based adjective measurement
method [35]. The impression rating on adjective pairs is undertaken using Osgood’s
Semantic Differential (SD) [36] method. We defined the three attributes as “intimacy”,
“sociability”, and “vitality”, and selected four corresponding property-based adjectives for
each attribute, as shown in Figure 8. Finally, a total of 12 property-based adjectives were
evaluated using the seven-rating scale.
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6.4. Procedure

The method for conducting the experiment was similar to that of the preliminary
experiment presented in Section 4.3. The experiment procedure is as follows:

1. Baseline measurement for 60 s.
2. The participant listened to a 75 s music clip while looking at the robot’s expression,

which changed in real time. During this step, the participant could freely click “Like”
or “Dislike”.

3. Answer the subjective evaluation questionnaire.
4. Rest for 60 s.
5. Repeat steps 2 to 4 for all three conditions.

6.5. Result and Discussion
6.5.1. Impression Rating Score

Figure 8 shows the impression rating score result for each item. It can be seen from
the figure that, when the robot expression is in the funny expression condition (blue line),
the rating scores for all items in the sociability group were highest. By comparison, the
rating scores for three of the four items in the vitality group were highest when the robot
expression was in the synchronized condition (orange line).

From these results, it can be inferred that the effect of encouragement can result in
impression differences. Regarding the reason that sociability resulted in a lower impression,
it can be considered that this may be due to the effect of the “sarcasm” perception, which
differs for each individual.

6.5.2. PCA on Impression Rating Score

A principal component analysis (PCA) was performed on the impression rating
score of the robot expression. Figure 9 shows the PCA on the impression score for all
three conditions. For the synchronized condition (Figure 9, circle), it can be seen that
all items have positive factor loadings for the first principal component. This suggests
that the first principal component is an index for evaluating the robot impression of
all of the evaluation items. In the second principal component, all items in the vitality
group had positive factor loadings. By comparison, among the sociability items, the item
“serious” showed a particularly strong negative factor loading. This suggests that the
second principal component influences the vitality-seriousness rating when the robot
makes facial expressions that are synchronized with negative emotions.

For the inversely synchronized condition (Figure 9, square), the first principal compo-
nent shows that all of the social attributes, with the exception of “serious”, had positive
factor loadings. This also suggests that the first principal component is an index for evalu-
ating the robot’s impression of the entire set of evaluation items. For the second principal
component, the positive factor loadings are “good-natured”, “kind”, and “friendly” in
the intimacy attribute; “serious”, “reliable”, and “sincere” in the sociability attribute; and
“confident” and “sociable” in the activity items. This suggests that the second principal
component affects the evaluation of positive emotions and seriousness when the robot
expresses an emotion opposite to the participant’s negative emotions.

In the funny expression condition (Figure 9, triangle), all of the social items, with the
exception of “serious” and “intelligent”, had positive factor loadings for the first principal
components. From the figure, “humorous” showed a strong positive factor loading. In
contrast, “serious” showed a particularly strong negative factor loading. This suggests that
the first principal component affects the evaluation of humor-seriousness when the robot
makes funny facial expressions. The second principal component showed strong positive
factor loadings for all of the sociability attributes. However, negative factor loadings
were found for all of the activity items, with the exception of “positive”, “upbeat”, and
“sociable”. This suggests that the second principal component influences the evaluation of
sociability-vitality when the robot makes funny expressions.
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6.5.3. Classification Model

By fitting the data to a logistic regression model based on the method discussed in
Section 5, it is possible to divide the results of the ten participants from the main experiment,
based on the relationship of their biological signals and their mouse click behavior, into
five groups, as shown in Figure 10. It can be observed that the participants in each group
tended to click “like” for the robot expression when their biological signals were as follows:

- Group 1—High arousal state, regardless of pNN50. This indicates that the participants
may be concentrating and nervous, which led to excitement.

- Group 2—Relaxed state, regardless of pNN50.
- Group 3—High pleasure and relaxed state.
- Group 4—Low pleasure and concentration state.
- Group 5—Others; most of the observed models indicated the middle range of pleasure.

The participants in group 1 and 4 were found to prefer the feeling of excitement,
whereas those of group 2 and 3 appeared to prefer feeling more relaxed. The data in group
5 most clearly showed the effects of individualism, and it was not possible to simply group
these participants.

The results of the classification model based on the machine learning of the biological
signals show that the influence of personality is significant. This confirms that there were
individual differences in the perception of robot expression under the three conditions.
Therefore, it is important to understand and analyze the individual differences to effectively
enhance human–robot interactions via the manipulation of robot expression.
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7. Follow-Up Experiment

We conducted a follow-up experiment with the same participants. In this experiment,
the participants listened to sad music for 75 s to evoke emotions. The goal of this follow-up
experiment was to clarify the difference in the impressions given by the robot’s facial ex-
pressions with and without the personalization function. Here, we analyzed and compared
the impressions from each of the three conditions (synchronized, inversely synchronized,
funny) with the personalized condition, which was built using the logistic regression from
the main experiment. We used the robot’s facial expression obtained when the user clicked
the “Like” button in the main experiment.

7.1. Selection of Robot Expression

The robot expression was selected based on the personalization function, which was
analyzed from the classification model, as discussed in the main experiment’s results. The
following points were considered for the personalization function:

1. The expression condition (synchronized, inversely synchronized, or funny expression)
that yielded the highest average pNN50 value;

2. The time when the participant clicked “Like” was taken into account;
3. The robot expression at that timing was selected.

7.2. Participants

The participants for this experiment were the same individuals who participated in the
main experiment. However, two of the participants could not participate in this follow-up
experiment due to personal reasons. Therefore, the total number of participants was eight
(six males, two females).

7.3. Experiment Method

In this follow-up experiment, the participant listened to the same sad emotion-evoking
music that was used in the main experiment The robot expression was selected differently
for each participant, as explained in Section 7.1. The subjective evaluation method and
experiment procedure were similar to those of the main experiment, as explained in
Sections 6.3 and 6.4.
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7.4. Results and Discussion

To clarify the impression effect of robot facial expressions for individuals, we compared
the impression rating scores and the frequency of “Like” and “Dislike” clicks under four
experiment conditions:

1. Synchronized;
2. Inversely Synchronized;
3. Funny;
4. Personalized.

The impression rating scores and frequency of “Like” and “Dislike” clicks of the
first three experiment conditions were obtained from the main experiment. For condition
4 (personalized), we obtained the impression rating scores and the frequency of “Like” and
“Dislike” clicks from the follow-up experiment.

7.4.1. Impression Rating Scores

The impression rating score results for each item are shown in Figure 11. The figure
shows that the scores from personalized expression were highest among all expression
conditions in most items in the intimacy and sociability groups.
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It can be inferred that, when the robot expression is shown using our proposed
personalized method, the participants felt more positive in terms of intimacy and sociability
towards the robot expression. However, the personalized expression did not affect the
impression of the vitality group.

7.4.2. Analysis of the Frequency of Clicking “Like” and “Dislike”

We also analyzed the frequency of clicking the “Like” or “Dislike” button during the
experiments. Because clicking “Like” or “Dislike” was able to be performed freely, the
number of clicks for each participant varied; we counted the frequency of the total number
of “Like” and “Dislike” clicks for each expression condition for the analysis. There was
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a significant association between the expression condition and whether the participant
clicked “Like” or “Dislike”, X2(3) = 17.29, p < 0.0001. Figure 12 shows the frequency of
clicks for each expression condition. It can be seen from the graph that the ratio for “Like”
clicking (blue to red ratio) was the highest in the personalized condition.
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8. Conclusions

The impression of the robot’s facial expression can be improved for better human–
robot communication by changing the robot expression according to the emotional in-
formation of its interacting partner. We hypothesized that some people may prefer that
the robot expresses an emotion similar to theirs, but some may not. In this work, we
investigated whether such individual differences exist, and if they can be identified us-
ing physiological signals and machine learning. As a result, we proposed a method for
personalization of robot expression based on the emotion estimated using an individual’s
physiological signals.

HRV and EEG data were used to map the biological information onto Russel’s circum-
plex model of affect for emotion estimation. The result of a preliminary experiment showed
that the participants felt pleasure when the robot facial expression showed a synchronized
emotion during the positive stimulus. However, when the participant felt negative emo-
tions, the impression of the robot’s expression varied depending on the individual. To
investigate individual preference, we used a logistic regression algorithm to develop and
evaluate a classification model based on biological data and feedback obtained during the
experiment regarding the robot expression. The classification model achieved an accuracy
of 80%, which suggested that this method can be used in determining the robot facial
expression by considering individual preference. The main experiment was conducted
to obtain biological and feedback data, in addition to a subjective evaluation using the
Semantic Differential scale method. The analysis of the subjective evaluation showed that
the effect of the inverse synchronization of emotion when the participant felt a negative
emotion resulted in impression differences, which differed between individuals. Finally,
we constructed a personalized method for selecting the robot facial expression based on
the obtained data. The comparison of the subjective evaluation results across all conditions
showed that the personalized condition achieved the highest impression rating in most
items in the intimacy and sociability groups. In addition, the ratio of the frequency of
“Like” clicks was the highest in the personalized condition.

To generalize our findings, we plan to evaluate our proposed method with a larger
number of participants. Furthermore, we plan to continue the study in detail by creating
the robot’s facial expression using an individual preferences model based on biological
signals measured from the user in real time. Thus, this model may be applied in human–
robot communication to improve robot services. Moreover, it is also essential to consider
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specific situations of human–robot interactions to acquire more details, and thus achieve
improved robot service development.
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