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Abstract: The real-time monitoring of the flow environment parameters, such as flow velocity and
direction, helps to accurately analyze the effect of water scour and provide technical support for the
maintenance of pier and abutment foundations in water. Based on the principle of the Fiber Brag
Grating sensor, a sensor for monitoring the flow velocity and direction in real-time is designed in this
paper. Meanwhile, the theoretical calculation formulas of flow velocity and direction are derived.
The structural performance of the sensor is simulated and analyzed by finite element analysis. The
performance requirements of different parts of the sensor are clarified. After a sample of the sensor is
manufactured, calibration experiments are conducted to verify the function and test the accuracy of
the sensor, and the experimental error is analyzed. The experimental results indicate that the sensor
designed in this paper achieves a high accuracy for the flow with a flow velocity of 0.05–5 m/s and
the flow velocity monitoring error is kept within 7%, while the flow direction monitoring error is
kept within 2◦. The sensor can meet the actual monitoring requirements of the structures in water
and provide reliable data sources for water scour analysis.

Keywords: fiber Bragg grating; flow velocity and direction; simulation analysis; calibration experiment

1. Introduction

In the long-span bridge construction and operation process, the construction platform
and pier foundation are affected by water scouring and other factors [1–4]. This can cause
dynamic softening of pier foundation [5], material erosion and aging, and attenuation
of structural components and overall resistance, thus affecting the safety and durability
of the structure [6,7]. Real-time monitoring of flow velocity and direction is essential to
effectively analyze and control the scour of water flow on the construction platform and
pier, reasonably maintaining the pier foundation and abutment in water and ensuring
safety during construction and operation [8,9].

At present, the monitoring instrument of ocean flow environment parameters, such as
flow velocity and flow direction, mainly imports the parameters to the Acoustic Doppler
Current Profiler (ADCP). Based on the well-known physical principle of Doppler frequency
shift, the ADCP instrument obtains the velocity of the corresponding point by measuring
the Doppler frequency shift. However, this instrument has the drawbacks of high cost and
complex circuit integration, and it is easily affected by the external environment. Sensors
that exploit electromagnetic waves and the acoustic Doppler principle to measure the flow
velocity and direction have become popular [10]. The measurement accuracy of these
sensors is relatively high, but the manufacturing cost is high. Meanwhile, the sensors are
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vulnerable to electromagnetic environment interference, and the measurement result is not
ideal, which limits the application scenarios of these sensors [11].

In recent years, Fiber Bragg Grating (FBG) has been gradually used as a measuring
element of various sensors because of its advantages such as being not easily interfered with
by the external electromagnetic environment [12,13], high measurement accuracy [14,15],
small volume, good wavelength selectivity [16], and not being affected by nonlinear effects.
However, considering the fiber Bragg grating sensing technology, most scholars still study
the flow velocity monitoring of directional fluid [17]. For specific bridge piers, there are
few reports on the application of this technology to the nondirectional monitoring of flow
velocity and direction [18–22]. At present, FBG sensors have been widely accepted in
China, and the project client has designated the use of FBG sensors. Therefore, an FBG
sensor for flow velocity and flow direction monitoring is proposed in this paper to provide
technical support for bridge construction and operation.

Sensor Structure

The proposed sensor consists of two parts: the upper part and the lower part. The
upper part is mainly composed of sensing elements such as frame base, cam, spring, and
metal wire. The lower part is mainly composed of a cardan plate and a steering shaft.
As shown in Figure 1, the components of the sensor are listed as follows: (1) venturi, (2)
sliding connection, (3) eccentric wheel, (4) washer, (5) closed push rod, (6) displacement
conduction shaft, (7) displacement top shaft, (8) strain grating, (9) wire, (10) nut, (11)
steering shaft, (12) simple beam, (13) support frame, (14) frame base, (15) rolling bearing,
(16) coding plate of shaft sleeve, (17) water turbine, (18) lever, (19) universal plate, (20)
coding plate of shaft sleeve and (21) optical fiber Grating.
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2. Principle of Sensor Measurement
2.1. Flow Direction Measurement Principle

The sensor performs flow direction measurements in the following three steps.

2.1.1. Universal Plate for Adaptive Water Flow

To solve the problem of non-orientation flow direction, the sensor needs to adapt
to the change of flow direction. The adaptive function of the sensor is supported by the
universal board. Specifically, one side of the universal board is fixed on the rotating shaft
so that the board can rotate with the rotating shaft, and the rotating bearing is fixed on the
frame. When the sensor works, the rotating shaft is vertical and the cardan plate rotates in
the horizontal plane with the change of the flow direction. In this way, the cardan plate
drives the rotating shaft to rotate together. When the flow direction is parallel to the plane
of the cardan plate and the flow is from the near shaft end to the far shaft end, the cardan
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plate will be in the balance state and will not rotate; otherwise, it will continue to rotate to
the balance state. The schematic diagram of the universal plate is shown in Figure 2. The
universal plate is in the same plane as the water flow to enable the sensor to adapt to the
change of flow direction.
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2.1.2. Flow Direction Conversion Principle

(1) The flow direction is converted to the rotation of the shaft.
The cardan plate is fixedly connected with the rotating shaft. In the process of rotation,

the cardan plate drives the rotating shaft to rotate together. Thus, the problem of fluid flow
direction can be transformed into the problem of turning the shaft.

(2) The rotation direction of the rotating shaft is converted into the displacement of
the closed push rod.

As shown in Figure 3, eccentric wheel 1 is installed on the rotating shaft. The distance
from the edge of the eccentric wheel 1 to the center of the rotating shaft corresponds to
the turn of the rotating shaft. When the instantaneous eccentric wheel 1 rotates clockwise
with the rotating shaft, the closed push rod 1 moves horizontally to the right; when the
rotating shaft rotates normally, the rotation direction is uncertain, but the closed push rod 1
only moves left and right at the position shown in Figure 3. When rotating, the eccentric 1
pushes the closed push rod 1 at different distances away from the center of the shaft, and
different distances correspond to different directions.
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2.1.3. Realizing 360◦ Flow Direction Monitoring

(1) Setting of eccentric 2 and closing push rod 2.
The sensor can only distinguish the direction of 180◦ based on the single eccentric

wheel 1 because the axis passing through the center of the shaft is symmetric. In the
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monitoring process, the sensor needs to accurately identify the direction of water flow and
distinguish the flow direction of 360◦ on a certain plane. Therefore, an eccentric wheel
2 and a closed push rod 2 are added to the sensor, as shown in Figure 4. The assembly
position of the eccentric wheel 2 deviates 90◦ from that of the eccentric wheel 1 (the eccentric
wheels 1 and 2 have the same size and shape). In this way, when the eccentric wheel 1
causes the same displacement of the closed push rod 1 in the symmetrical position, another
displacement of the closed push rod 2 caused by the eccentric 2 can help distinguish the
symmetry of the eccentric 1.
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(2) Flow direction conversion principle of cam push rod mechanism
Figures 5 and 6 illustrate the diagrams of the two groups of eccentric wheels and

closed push rods in the sensor. O1 and O2 are the rotation centers, while O′1 and O′2 are
the centers of the two eccentric wheels with the same size and shape. The assembly is
conducted by passing the rotating shaft through the eccentric wheel.
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The shaft and the eccentric wheel are fixed by the key in the keyway, and the upper
part and lower part of the eccentric wheel are separated by washers. During the installation,
the assembly position of the eccentric wheel 1 and the eccentric wheel 2 deviates 90◦. As
for the eccentric wheel 1 at position 1 and position 2, it can be seen from the symmetry
that the displacement of the closed push rod 1 is the same as that of position 2, and the
corresponding direction of the eccentric wheel 1 at position 1 and position 2 cannot be
distinguished. By contrast, the displacement of the closed push rod 2 caused by the eccen-
tric wheel 2 at position 1 is smaller than that caused by the eccentric wheel 2 at position 2.
Therefore, the displacement of the closed push rod 2 can be exploited to distinguish the
flow direction of 360◦.
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(3) Transformation of closed push rod displacement into FBG strain [23].
The spring is connected with the metal wire at both ends of the closed push rod and

the frame. As shown in Figure 7, the FBG is pasted on the metal wire to sense the tension
and compression of the beam. Two metal wires and three FBGs are, respectively, set at the
left and right of the metal wire. By measuring the wavelength change of the FBGs at both
ends, the water flow within the direction of 360◦ can be monitored.
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2.2. Principle of Velocity Measurement

The sensor performs velocity measurements in the following four steps.

2.2.1. Cardan Plate Flow Direction Adaptation

According to the adaptive water flow of the Cardan plate introduced in Section 2.1, when
the water flow direction is parallel to the plane of the Cardan plate and flows from the near
shaft end to the far shaft end, the cardan plate will finally be in the balance state and will not
rotate; otherwise, it will continue to rotate to the balance state. The schematic diagram of the
universal plate for adaptive water flow is shown in Figure 8.
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2.2.2. Velocity Sensitization and Amplification of Venturi

After the water flow adapts itself, the water flows in from the venturi inlet and
out from the contraction outlet. According to the principle of equal flow, the accurate
measurement of low flow velocity can be achieved by enlarging the flow velocity and
increasing the measurement sensitivity.

2.2.3. Conduction Velocity of Water Turbine under Stress

The water flows out from the contraction port and contacts the water turbine. In this way,
the water turbine is driven to rotate, and the lever transmits the rotation change of the water
turbine to the displacement conduction shaft, driving the displacement top shaft to move
up and down and filter out the rotation direction of the displacement conduction shaft. As
shown in Figure 9, the change of the water flow velocity causes the frequency of the periodic
reciprocating motion of the displacement top shaft to change.
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Figure 9. Principle of velocity measurement.

2.2.4. Transmit Velocity into Grating Frequency

The displacement conducting shaft passes through the hollow steering shaft, and it is
connected with the upper rotating bearing and the displacement top shaft. The upper end
of the displacement top shaft is also connected with the simply supported beam. The FBG
is pasted on the middle span of the upper end of the simply supported beam with a special
flexible material (e.g., epoxy resin). To eliminate the influence of temperature on measurement,
a temperature compensation grating is connected in series. As shown in Figure 10, the
reciprocating driving force of the displacement top axis causes the simply supported beam to
vibrate, which results in the change of the wavelength frequency of the grating. Besides, the
upper structure is installed into the circular protective cylinder as a whole. Based on this, the
water infiltration that affects the test in the measurement process can be avoided.
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2.2.5. Grating Frequency Identification Method

In the experiment, the FBG demodulator is exploited to set the sampling frequency
and collect the wavelength data of the FBG and the temperature compensation grating. The
initial central wavelength is subtracted from the collected wavelength, and the obtained
wavelength variations are denoted as ∆λ1 and ∆λ2. Then, a difference between ∆λ1 and
∆λ2 that is greater than 0.1 nm is the frequency value corresponding to the flow rate.

2.3. Calculation Formula, Measuring Range and Accuracy of the Sensor
2.3.1. Theoretical calculation and accuracy of flow direction

(1) Theoretical calculation of flow direction.
The theoretical calculation of the wavelength variation and strain transformation of

FBG is presented in Formula (1):

∆λB = λB(1− Pε)ε, (1)

where ∆λB is the wavelength change of the FBG (mm); λB is the original center wavelength
of the FBG (nm); Pε is the effective elastic optical coefficient (0.22); and ε is the strain of the
tested object.

Based on this, the following two formulas can be obtained:

ε1 =
∆λB1

(1− Pε)λB1
, ε2 =

∆λB2

(1− Pε)λB2
, (2)

where ε1 and ε2 are the strain measured by the FBG attached to the wires 1 and 2, respec-
tively; ∆λB1 and ∆λB2 are the wavelength changes of the FBG; λB1, and λB2 are the original
center wavelengths of the FBG (nm).

The position changes of the eccentric wheels 1 and 2 are shown in Figure 11.
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The displacement of the push rod caused by the eccentric wheels 1 and 2 can be
obtained from the geometric relationship:

X1 = e(1− cos α), X2 = e sin α, (3)

where is the eccentricity of eccentric (mm); is the angle of eccentric rotation (◦); and are the
horizontal displacement produced by the two push rods.

The horizontal displacement of the two push rods is theoretically equal to the change
of the spring and the wire. Thus, the external force on the two wires can be calculated
through Formula (4). By applying Formulas (3) and (4) to Formula (2), Formulas (5) and (6)
can be obtained.

F1 =
∆λB1EA

λB1(1− Pε)
, F2 =

∆λB2EA
λB2(1− Pε)

(4)

X1 =
∆λB1l

λB1(1− Pε)
− ∆λB1EA

λB1(1− Pε)K
(5)

X2 =
∆λB2l

λB2(1− Pε)
− ∆λB2EA

λB2(1− Pε)K
, (6)

where F1 and F2 are the spring force on the two wires; K is the spring stiffness (N/mm2);
l is the wire length (mm); and E is the modulus of elasticity of the wire (Kpa). A is the
stress section area of the wire (mm2).

Based on Formulas (2) to (6), it can be obtained that:

cos α = 1− (
∆λB1l

λB1(1− Pε)e
+

∆λB1EA
λB1(1− Pε)Ke

) (7)

sin α = (
∆λB2l

λB2(1− Pε)e
+

∆λB2EA
λB2(1− Pε)Ke

) (8)

α = arctan
λB1(EA + Kl)∆λB2

λB2[Ke(1− Pε)λB1 − (EA + Kl)∆λB1]
(9)

Finally, the flow direction α is determined by values of sin α and cos α.
(2) Theoretical accuracy of the flow direction.
The theoretical strain of the FBG is ε = F

EA . Meanwhile, the sum of the spring
deformation and wire deformation is equal to the displacement of the push rod. Thus,
X = ∆λB l

λB(1−Pε)
− ∆λBEA

λB(1−Pε)K
. According to Formulas (4) and (5), the accuracy of the flow

direction measurement is as follows:

S1 =
∆λB1

sin α
=

Ke(1− Pε)λB1

EA + Kl
(10)

S2 =
∆λB1

1− cos α
=

Ke(1− Pε)λB2

EA + Kl
, (11)

where S is the sensor accuracy.
It can be seen from the above formulas that there are two expressions for the theoretical

accuracy of the sensor, but they all depend on the parameters of the material. Therefore,
the maximum value of the two expressions should be taken as the final accuracy.

2.3.2. Velocity Calculation, Range, and Accuracy

(1) Velocity calculation.
Considering the fluid flowing into the venturi at a velocity of V1, according to the

hydrodynamics and the principle of equal flow rate, we have:

V1 × S1 = V2 × S2 (12)
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It can be seen that the velocity of the fluid magnified by the venturi is V2. As for the
fluid flowing through the blades at this speed, the speed of the contact point between
the water flow and the turbine is also V2. According to the principle of the equal an-
gular velocity of coaxial rotation, it can be known that the linear velocity of the pinion
rotation is V3.

It is assumed that the number of pinion teeth is N. Since one gear corresponds to a
reciprocating movement of the displacement top axis, the movement of the displacement
top axis causes the simply supported beam to vibrate. The FBG demodulator can obtain
the frequency f of the wavelength change of the FBG caused by the vibration of the simply
supported beam. According to f = 1/T, the time interval T of a reciprocating vibration of
the displacement top axis can be calculated. Thus, we have:

T × N ×V3 = 2πR2. (13)

The relationship between the primary vibration of the displacement top shaft and the
arc length of pinion rotation can be seen in Equation (13). Finally, the calculation formula
of flow velocity V1 is derived as follows:

V1 =
2πR1S2

NS1
× f . (14)

In Formulas (12)–(14), V1 is the velocity of the fluid flowing into the venturi (m/s);
R1 is the radius of the water wheel (mm); V2 is the velocity of the fluid flowing out of
the venturi (m/s); R2 is the radius of the pinion (mm); V3 is the cog speed (m/s); T is the
vibration period of the cam push rod (s); S1 is the initial cross-sectional area of the fluid
flowing into the venturi (mm2); N is the number of the pinion gears (individual); S2 is the
cross-sectional area of the fluid flowing out of the venturi (mm2); and f is the vibration
frequency of the displacement top shaft (Hz).

Based on the established mathematical model, the corresponding flow velocity can be
calculated by monitoring the wavelength change frequency of the grating, thus realizing
the dynamic measurement of the flow velocity.

(2) Sensor range and accuracy analysis.
According to the theory of hydrodynamics, when the fluid flows through the turbine

blade at the speed V, the blade will rotate under the friction resistance Ff . The calculation
of Ff is shown in Formula (15).

Ff = C f × p× V2

2
× B× L. (15)

Applying Formula (12) to Formula (15), Ff can finally be obtained, as shown in
Equation (16).

Ff = C f × p× V1
2S1

2

2S2
2
× B× L (16)

In Formulas (15) and (16), Ff is the friction resistance of the turbine blade (N), and p
is the density of the flow (1000 Kg/m3); C f is the dimensionless resistance coefficient of
flow viscosity, and an empirical value of this coefficient is 1.3 × 10−6; B is the width of the
turbine blade (mm); and L is the length of a single blade of hydraulic turbine along the
direction of fluid movement (mm).

The minimum speed of water turbine rotation, that is, the minimum range of flow
velocity measured by the sensor, can be obtained from Formula (16). However, due to the
different processing technology of the sensor, the formula can only be used to calculate
the theoretical minimum flow rate, and the actual minimum flow rate should be obtained
through the actual calibration experiment.
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According to Formula (14), the measurement accuracy of the sensor for the flow rate is:

S =
∆ f
∆V

=
NS1

2πR1S2
. (17)

It can be seen from Equation (17) that the measurement accuracy of the sensor depends
on the ratio of the cross-sectional area of the venturi inlet end to the outlet end and the
radius of the water wheel as well as the number of teeth of the pinion. The smaller the
ratio, the higher the measurement accuracy of the sensor. However, the actual accuracy
should be based on the sensor performance calibration experiment. According to the above
theoretical analysis and theactual monitoring requirements of the sensor, the dimensions
of the venturi and water wheel are shown in Figures 12 and 13, respectively.
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3. Simulation Analysis of Key Parts of the Sensor
3.1. Finite Element Stress Analysis of the Sensor Hydraulic Structure

Finite element stress analysis of water turbine is conducted to select the water turbine
materials reasonably [24]. Specifically, the center of the water turbine is fixed. Then,
according to Formula (17), a fluid load interface of 10 N is constructed at the bottom gear.
Though the fluid load interface has a calculated value of 8.65 N, a value of 10 N is used to
simplify the model. After the gear on the water wheel starts to rotate, the stress and strain
of the wheel are extracted, which are illustrated in Figures 14 and 15, respectively.
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According to the stress and strain diagrams of the water wheel, the connection between
the gear and the water wheel has obvious stress and large strain, and there is almost no
stress on other parts of the water wheel. Considering the processing difficulty, the same
material should be selected for the overall structure of the water turbine, especially the
material with high strength and sensitive response. If the water wheel needs to be immersed
in water for a long time, the material with excellent corrosion resistance should be selected.

3.2. Fluid–Solid Coupling Analysis of the Venturi in the Sensor

The water flowing through the venturi has an impact on the venturi. If the impact
force of the water flow is too large, the necking section of the venturi will be deformed.
Thus, it is necessary to analyze the internal stress and strain of the venturi. The venturi has
certain friction to the flow and reduces the flow velocity. Therefore, it is also necessary to
analyze the magnitude of the friction of the venturi and the reduction of flow velocity.

Firstly, a venturi model is established in gambit. Then, the fluid–solid coupling
analysis is conducted in the finite element analysis software to obtain the change of the
stress–strain and flow velocity of the venturi. Subsequently, the interaction between
these two factors is found [25,26]. The results of stress and strain are illustrated in
Figures 16 and 17, and the change of flow velocity is shown in Figure 18.
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It can be seen from Figures 16 and 17 that the stress at the necking section of the
venturi is the largest and the strain obviously changes. According to the design size and
amplification principle of the venturi, the flow velocity of the fluid flowing through the
venturi is increased by 13.3 times. It is observed from Figure 18 that the final flow velocity
is 11.71 times greater than the initial one.

According to the above analysis, the stress of the flow at the necking section of the
venturi changes due to the necking of the section, and the increase of the flow velocity
causes a large strain change at the necking of the inner wall of the venturi. Meanwhile,
the flow velocity is affected by the friction from the inner wall of the venturi, resulting in
the reduction of the flow velocity by 1.59 times. As for selecting the material of venturi,
the material with high strength, low friction resistance, and corrosion resistance should
be selected. In the later improved design, the necked section of the venturi should be as
smooth as possible with small friction resistance to avoid the sudden change of the section.

4. Experimental Analysis

The sensor is processed by combing 3D printing technology and precision machining.
The real object is shown in Figure 19, and the calibration scheme shown in Figure 20 is
used for the experiment.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 19. Sensor for monitoring flow direction and velocity. 

 
Figure 20. Experimental scheme of the sensor to monitor flow direction and velocity. 

In this experiment, the latest NSZ-FBZ-A06 dynamic fiber grating demodulator from 
China Nanzhi Sensor Technology Co., Ltd. was used for monitoring. The 8-channel meas-
urement frequency was 5 KHz, and the single channel measurement frequency was 50 
KHz. Five uniform FBGs were used as strain measurement and temperature compensa-
tion gratings. The parameters of these FBGs are listed in Table 1. 

Table 1. The parameters of the FBGs. 

Number 
of Grat-

ing 
Purpose 

Central 
Wavelength 

(nm) 

3db 
Bandwidth 

(nm) 
Reflectivity 

The Length 
of  

Grating 
1 Direction text 1533.00 0.26 93.834% 10 mm 
2 Direction text 1550.96 0.27 91.946% 10 mm 

3 
Direction tem-
perature com-

pensation 
1539.90 0.22 91.290% 10 mm 

4 Velocity text 1544.93 0.26 93.347% 10 mm 

5 
Velocity tem-
perature com-

pensation 
1554.97 0.22 90.450% 10 mm 

Figure 19. Sensor for monitoring flow direction and velocity.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 19. Sensor for monitoring flow direction and velocity. 

 
Figure 20. Experimental scheme of the sensor to monitor flow direction and velocity. 

In this experiment, the latest NSZ-FBZ-A06 dynamic fiber grating demodulator from 
China Nanzhi Sensor Technology Co., Ltd. was used for monitoring. The 8-channel meas-
urement frequency was 5 KHz, and the single channel measurement frequency was 50 
KHz. Five uniform FBGs were used as strain measurement and temperature compensa-
tion gratings. The parameters of these FBGs are listed in Table 1. 

Table 1. The parameters of the FBGs. 

Number 
of Grat-

ing 
Purpose 

Central 
Wavelength 

(nm) 

3db 
Bandwidth 

(nm) 
Reflectivity 

The Length 
of  

Grating 
1 Direction text 1533.00 0.26 93.834% 10 mm 
2 Direction text 1550.96 0.27 91.946% 10 mm 

3 
Direction tem-
perature com-

pensation 
1539.90 0.22 91.290% 10 mm 

4 Velocity text 1544.93 0.26 93.347% 10 mm 

5 
Velocity tem-
perature com-

pensation 
1554.97 0.22 90.450% 10 mm 

Figure 20. Experimental scheme of the sensor to monitor flow direction and velocity.



Sensors 2021, 21, 4925 14 of 19

In this experiment, the latest NSZ-FBZ-A06 dynamic fiber grating demodulator from
China Nanzhi Sensor Technology Co., Ltd. was used for monitoring. The 8-channel
measurement frequency was 5 KHz, and the single channel measurement frequency was
50 KHz. Five uniform FBGs were used as strain measurement and temperature compensa-
tion gratings. The parameters of these FBGs are listed in Table 1.

Table 1. The parameters of the FBGs.

Number of
Grating Purpose

Central
Wavelength

(nm)

3db
Bandwidth

(nm)
Reflectivity The Length

of Grating

1 Direction text 1533.00 0.26 93.834% 10 mm
2 Direction text 1550.96 0.27 91.946% 10 mm

3
Direction

temperature
compensation

1539.90 0.22 91.290% 10 mm

4 Velocity text 1544.93 0.26 93.347% 10 mm

5
Velocity

temperature
compensation

1554.97 0.22 90.450% 10 mm

Note: In this paper, two temperature compensated FBG sensors were set up. One
sensor was used to compensate for the effect of temperature on the wavelength change,
i.e., compensation in the flow direction measurement. When the metal strip is pulled and
pressed by the spring, the sensing force of the FBG pasted on the metal strip changes,
and the temperature compensated grating pasted on other fixed positions without force
compensates for the wavelength change caused by the sensing temperature of the fiber
Bragg grating. The other sensor was used to investigate the effect of temperature on the
wavelength frequency when measuring the flow rate. It was found that the temperature has
little effect on the frequency, so the other temperature compensation grating has little effect.

4.1. Analysis of Flow Direction
4.1.1. Relationship between the Test Wavelength and the Theoretical Flow Direction

After the test of the two experimental wavelengths was processed and analyzed, the
relationship between the wavelength and flow direction is shown in Figure 21. In this
experiment, a one dimensional parameter orthogonal wavelet was used to denoise the
vibration signal and remove the variation of wavelength caused by temperature change.
Meanwhile, the flow direction from the steering shaft end to the cardan plate is regarded
as 0◦, and the clockwise rotation as positive. This study of the cardan plate was in the
direction of parallel and positive vertical water flow (0–90◦). According to the positive
and negative values of sin α and cos α, the flow direction of another 270◦ can be obtained,
which will not be described here.

It can be seen from Figure 21 that the wavelength increment of the four fiber gratings
increases gradually with the flow direction, which is consistent with the fact that the two
metal wires are pulled to increase the wavelength during the measurement of the flow
direction from 0◦ to 90◦. For test 1, when the angle of the flow direction is small, the change
of wavelength 1 is greater than that of wavelength 2; when the flow direction increases
gradually, it turns out just the opposite. For test 2, when the angle of the flow direction
is small, the change of wavelength 1 is larger than that of wavelength 2; when the flow
direction increases, the initial change of wavelength 1 is smaller than that of wavelength 2,
but the final change of wavelength 1 is larger than that of wavelength 2.
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Figure 21. Wavelength increment and flow direction.

When the sensor is applied to monitor the change of water flow direction, the left wire
in the sensor begins to be pulled, so the change of wavelength 1 is slightly greater than that
of wavelength 2 at the beginning; when the flow direction increases gradually, the change
of the two wavelengths tends to be the same. However, due to the pasting technology
and the pretension strength of the FBGs, when the flow direction increases to 70–90◦, the
changes of the two wavelengths are different.

4.1.2. Relationship between the Test Wavelength and the Theoretical Flow Direction

The error between the theoretical values and the experimental standard values was
calculated, and the error percentage is shown in Figure 22.
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It can be seen from Figure 22 that the error of test 2 fluctuates more than that of
experiment 1, but the error percentage of the two flow direction experiments is always
kept within 2◦, showing better experimental accuracy. The error also decreases gradually
with the increase of the flow direction change. The test error of the sensor meets the
requirements of the existing flow direction specification.
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4.2. Experimental Analysis of Velocity

A fitting analysis was conducted on the flow velocity monitoring, and the result
was compared with the theoretical frequency, which is shown in Figure 23. Referring to
the monitoring range of common flow velocity sensors and the flow velocity monitoring
requirements of the cross-sea bridges in world, the experiment reduced the noise of the
vibration signal and then extracted the experimental data of 0.05–5 m/s following the
method in Section 2.2.5.
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It can be seen from Figure 23 that the frequency values of the two experiments are
mainly distributed above the theoretical ones, and the fitting analysis of the experimental
data obtains a linear line, that is, y = 0.0006x. Thus, there is a linear relationship
V = 0.0006 f between the monitoring data of the sensor and the actual measured flow rate.
Since it can be seen from Formula (14) that the theoretical relationship between the flow
rate and the frequency is V = 0.0005895 f , there are some errors between the experimental
curve and the theoretical curve.

The analysis result of the error percentage between the experimental frequency and the
theoretical frequency is shown in Figure 24. According to the error range of flow velocity,
there is a certain error between the frequency calculated theoretically and the frequency
monitored actually, but the error is small and is always kept within 7%, indicating that the
sensor has a high-precision test in the flow velocity range of 0.05 m/s to 5 m/s.
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4.3. Experimental Error Analysis
4.3.1. Experiment Error of Flow Direction Calibration

The experimental error of flow direction calibration mainly comes from the
following aspects:

1. The lubrication degree between the two eccentric wheels: two eccentric wheels and
two closed push rods conduct the flow direction. Insufficient lubrication between
the eccentric wheels may cause the flow direction transmission to be blocked, thus
affecting the accuracy of the test.

2. The strength of the metal wire: the monitoring grating used in this sensor is pasted on
the metal wire. If the strength of the metal wire is not uniform enough, it will easily
weaken the FBG’s ability to sense strain change and cause errors. In the displacement
measurement of the push cam mechanism, the spring and wire are welded to avoid
the delay phenomenon in the process of force transmission. However, the connection
mode of the spring and wire may affect the accuracy of the measurement, and this
problem will be further studied in the future.

3. The pasting technology and pretension setting of FBGs: because the metal wire may
be pulled or pressed, stress and strain are on FBG at the same time. A better pasting
technology and enough pretension are needed to accurately reflect the strain change
on the metal wire. Therefore, the pasting technology and pretension setting of FBGs
also lead to experimental errors.

4.3.2. Experimental Error of Velocity Calibration

The experimental error of velocity mainly comes from the following aspects:

1. Sensitivity of the water wheel: the sensor senses force mainly by the rotation of the
water wheels. However, the transfer efficiency of the water wheels could not reach
100% of the ideal state. The more sensitive the water wheels, the more accurate the
sensor measurement data. The water wheel used in this experiment was processed
by 3D printing technology, and the sensitivity was not high enough. In this case, it
results in a low-precision test for a large flow velocity.

2. Machining accuracy of the sensor’s overall structure: the processing technology and
method used by the sensor seriously affect the test performance of the sensor. The
more precisely the sensor is processed, the better the measurement performance is.
So, the machining accuracy is one of the factors affecting the experimental error of the
sensor.

3. Sensitivity of the simply supported beam: the monitoring grating used by the sensor
was pasted on the simply supported beam. If the sensitivity of the simply supported
beam is not good enough, the intensity is not uniform enough, which will easily
weaken the FBG’s ability to sense the change of vibration frequency and produce
experimental errors. It will also be affected by the mechanical resonance of the simply
supported beam. If the measurement is kept at a high speed, the performance and the
measurement data of the sensor will be affected.

5. Conclusions and Prospect

Aiming at the demand for bridge piers and abutments, this paper designs a new
type of sensor to monitor the flow direction and velocity. This paper also introduces the
monitoring principle of the sensor in detail and deduces the theoretical calculation formulas
of the flow direction. Simulation analysis, calibration experiments and error analysis of the
designed sensor are conducted. The conclusions of this paper are drawn as follows:

1. Based on the FBG sensing technology, the sensor realizes 360◦ flow direction self-
adaptive monitoring and forward flow measurement. By enlarging the flow velocity,
the sensor realizes an accurate measurement for a low flow velocity of 0.05–5 m/s,
and the flow velocity monitoring error is kept within 7%, while the flow direction
monitoring error is kept within 2◦. Thus, the sensor can meet the requirements
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for monitoring the flow velocity and the direction of the water environment where
cross-sea bridges and other structures are located.

2. According to the stress analysis of the water wheel in the sensor by finite element
analysis, the materials with high strength, sensitive stress and strong corrosion re-
sistance should be selected to produce the water wheel; according to the results of
fluid–solid coupling analysis of the venturi by finite element analysis, it is concluded
that the inner wall of the venturi will have a friction effect on the flow, resulting in
a reduction of the flow velocity of the venturi outlet by about 1.59 times compared
with the theoretical value. Therefore, future sensor processing should improve the
smoothness of the necking section in the venturi.

3. According to the analysis of experimental error sources, the test accuracy is affected
by the following factors: insufficient lubrication of the eccentric wheel and closed
push rod, the machining accuracy of the sensor’s overall structure, the strength of the
metal wire, and the pasting technology and pretension setting of the FBGs [15,16].

Therefore, at a later stage, we will simplify the sensor design and adopt different types
of FBGs and pasting technology to improve the measurement accuracy of the sensor.
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