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Abstract: Predicting the rail temperature of a railway system is important for establishing a rail
management plan against railway derailment caused by orbital buckling. The rail temperature, which
is directly responsible for track buckling, is closely related to air temperature, which continuously
increases due to global warming effects. Moreover, railway systems are increasingly installed with
continuous welded rails (CWRs) to reduce train vibration and noise. Unfortunately, CWRs are
prone to buckling. This study develops a reliable and highly accurate novel model that can predict
rail temperature using a machine learning method. To predict rail temperature over the entire
network with high-prediction performance, the weather effect and solar effect features are used.
These features originate from the analysis of the thermal environment around the rail. Precisely, the
presented model has a higher performance for predicting high rail temperature than other models.
As a convenient structural health-monitoring application, the train-speed-limit alarm-map (TSLAM)
was also proposed, which visually maps the predicted rail-temperature deviations over the entire
network for railway safety officers. Combined with TSLAM, our rail-temperature prediction model
is expected to improve track safety and train timeliness.

Keywords: intelligent transportation system (ITS); machine learning; rail temperature; buckling;
XGBoost; structural health monitoring

1. Introduction

Rail temperature is important for rail safety. High rail temperature is a direct cause
of buckling on railway tracks. Buckling is the result of excessive deformation in a high
rail-temperature environment. When severe, it can derail the train. Although train de-
railment by buckling is an infrequent event, it causes catastrophic casualties of human
lives and property [1–4]. Moreover, the air temperature, which is closely related to rail
temperature, is continuously increasing under global warming effects, further enhancing
the risk of buckling.

The recent expansion of high-speed trains has increased the demand for continuous
welded rails (CWRs), which reduce vibration and noise to offer a comfortable riding
experience. Unfortunately, CWRs are also vulnerable to buckling because they are welded
together and lack the space to expand. Therefore, controlling the buckling and monitoring
the rail temperature is imperative for railway safety management. To prevent buckling-
induced train derailment, current railway companies issue train-speed-limit orders based
on the rail temperature, which is monitored in real time.

Train-speed-limit orders are directly related to the track safety and train timeliness. If
the orders for preventing track buckling (for example, limiting the train speed or spraying
the tracks with water) are implemented without planning, the sudden adjustment of the
train-operating schedule might cause bottlenecks or traffic congestion. For example, during
the hottest July day on record in the UK, there were 12,800 heat-related delay minutes
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and an additional 23,700 min caused by unplanned train-speed restrictions [5,6]. If the
rail temperature in an area can be predicted beforehand, schedulers can preplan the speed
limit of the train, adjust the intervals between trains, or cool the rail by water spraying,
thereby improving train timeliness and track safety. To achieve this goal, researchers have
developed rail-temperature-prediction models (RTPMs) that predict the rail temperature
based on the local weather conditions around the rail.

The previous RTPMs are classified into three types: empirical equation-based models,
multivariate regression models, and thermal analysis models [7–13].

RTPMs based on empirical equations simply predict the rail temperature as a linear
function of air temperature. These models are easy to use because they predict the rail
temperature from a single parameter, but deliver lower performance (R2 = 0.9021, root
mean square error (RMSE) = 5.866 ◦C) than other RTPMs [8,9].

Multivariate regression RTPMs predict the rail temperature not only from the air tem-
perature, but also from other weather conditions such as wind speed and cloud cover. Such
RTPMs generally outperform those based on empirical equations. Wu et al. developed a
multivariate regression RTPM called the Bureau of Meteorology (BoM) prediction equation
(1–24 h), which delivers the highest performance to date (R2 = 0.9630, RMSE = 2.560 ◦C)
but requires 24 features. Therefore, this model is applicable only to specific countries or
environments, and is not easily generalized [10].

Finally, thermal analysis RTPMs thermodynamically model the environment around
the actual rail. Since thermodynamic models consider the laws of nature, they are more
generalizable than RTPMs based on statistical methods, which tend to require specific data.
However, to guarantee high performance (R2 = 0.9334, RMSE = 3.799 ◦C), such models
require precise knowledge of the rail properties, such as the reflectance and emissivity
properties [7,10–14].

The previous RTPMs are hampered by two limitations. First, their performance in
predicting the rail temperature is too low for practical use. In previous RTPMs based on
thermodynamic principles (R2 = 0.9334, RMSE = 3.799 ◦C), the predicted rail temperature
deviated by up to 15 ◦C from the measured rail temperature [7]. Since the main goal of
RTPMs is preventing buckling on hot days, this difference is unacceptable in practical
use. Furthermore, the criteria of train speed limits are shifted to a 4–5 ◦C change in rail
temperature, seriously weakening the reliability of RTPMs [15,16].

Second, the previous RTPMs predicted the rail temperature at a single point. This
approach is not meaningful because actual rails are continuously interconnected over
several hundred kilometers. To develop RTPMs for practical uses, the range of the rail-
temperature prediction must be broadened, for example, from small-town connectivity
(local networks) to state- or country-wide connectivity (entire network).

The next generation of RTPMs for practical uses will require high performance RTPM
and mapping applications, and will quickly present the rail temperatures from small
networks to entire networks.

Recently, machine learning approaches such as artificial neural network (ANN), sup-
port vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost)
have attracted great interest by developers of high-performance regression models. Ma-
chine learning allows a computer to learn the relationship between the data (the input) and
the results (the output). For instance, a regression model that predicts the room tempera-
ture and daily maximum air temperature by machine learning delivers higher prediction
performance than other types of methods [17,18].

Herein, we propose a machine learning-based rail temperature prediction model
(RTPM) with the highest performance to date (maximum R2 = 0.9984, RMSE = 0.518 ◦C)
that can predict the rail temperature over an entire network. The method, called Chungnam
National University RTPM (CNU RTPM), outperforms the previous RTPMs for predicting
high rail temperatures (over 40 ◦C). The CNU RTPM performance is due to the selected
features obtained by analyzing the thermal environment around the rail. With these
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features, the CNU RTPM can predict the rail temperature over the entire network using
weather forecast data alone.

Additionally, a structural health-monitoring application, called the train-speed-limit
alarm-map (TSLAM), was developed, which shows the deviation of the predicted rail
temperature over the entire network, enabling quick searching of danger regions. This
application is easily combined with the CNU RTPM. TSLAM is also available worldwide
because it uses the global weather forecast data, not merely a particular region’s data.

2. Measurement
2.1. Measurement of Rail Temperature and Local Weather Conditions

Direct sampling of the actual rail environment during train operation is impractical for
safety reasons. Rail temperatures are usually measured indirectly within a measurement
station that simulates the environment of the railway installation [7,10,11,13,19]. As in
previous work, we collected the rail temperature and weather data every 10 min at a
measurement station from August of 2016 to May of 2017 [7,20]. The constructed measure-
ment station consisted of a 500-mm long KS 50n rail, a data acquisition system (DAQ), a
weather station, and K-type thermocouples. The station was installed at a low-traffic site
of Chungnam National University (CNU). CNU is located in Daejeon in Korea (latitude:
36.36◦, longitude: 127.34◦). A schematic of the constructed measurement station is shown
in Figure 1 and a photograph of the installed measurement system is shown in Figure A1.
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Figure 1. Schematic of the measurement system.

The rail of the measurement system was installed on a ballast-and-concrete sleeper
oriented in the south–north direction, which is minimally influenced by shadow. As
the actual rail is shadowed by mountains, trees, soundproof walls, and other objects, its
temperature is lower than that of the test rail [21]. By minimizing the influence of shadows,
a higher temperature is guaranteed in the measurement system than in the shaded area
of the real system. Since the purpose of this study was to improve the safety of train
operation, we deliberately constructed a conservative measurement system. A model
based on conservative measurement data makes conservative predictions.

2.2. Measurement of Local Weather Conditions

Around the world, weather forecasts report the air temperature, relative humidity,
rainfall amount, wind speed, and cloud cover. Using these weather factors as features,
we can construct a globally available rail-temperature-prediction model. As confirmed in
previous studies, the weather factors provided by weather forecasts are decisive predictors
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of rail temperature. Indeed, a conventional empirical RTPM predicts the rail tempera-
ture from the air temperature alone [8,9]. The air temperature and rail temperature are
highly correlated.

The weather station (Vantage Pro2, Davis, CA, USA) installed in the measurement
system measures the local weather data (air temperature, relative humidity, rainfall amount,
and wind speed). The measured local weather data are transmitted to the DAQ. The
measured environmental data were acquired once at every 10-min intervals, because it
takes about 10-min to achieve thermal equilibrium in the rail measurement system [7].
The rainfall amount is difficult to measure at a specific moment, so it was obtained by
summing the values measured over 10 min. The cloud cover, which cannot be measured
by the measurement system, was borrowed from the data of the Korea Meteorological
Administration (KMA), located 2.4 km from the measurement station.

2.3. Measurement of Rail Temperature

To develop our novel RTPM, measuring the rail temperature in summer when rail
buckling usually occurs is needed. However, in summer, the internal and surface rail
temperatures can differ by as much as 7 ◦C, because the sun rises to a higher altitude than
in winter, and the rail surface receives a large amount of solar radiation [7,19,22]. Such
deviations in rail temperature constitute a noise in the predictive regression model. We
overcome this problem by setting a representative point as follows.

Recently, we showed that the deformation of the KS 50N rail at 74 mm from the bottom
of the rail represents the average deformation of the whole rail [20]. In this study, the
rail temperature at the point of average deformation of the KS 50N rail was taken as the
representative temperature of the whole rail. To measure the rail temperature at this point,
K-type thermocouple probes were inserted by drilling.

3. Feature Study: Feature Selection Based on the Thermal Analysis
3.1. Modeling of the Thermal Environment around the Rail

The rail is exposed to complex conduction, convection, and radiation processes that
depend on the weather factors (such as the air temperature, wind speed, and cloud) and
solar factors (such as solar irradiance) (see Figure 2) [7,11,12]. RTPMs based on the thermal
analysis typically predict the rail temperature by balancing the heat transfers [7,11–13].
The energy balance equation is given as

.
Esun −

( .
Econv +

.
Erad

)
= 0, (1)

where
.

Esun is the heat flux of the global solar irradiance and
.

Econv and
.

Erad are the heat
fluxes of convection and radiation, respectively.
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.
Esun is a major determinant of rising rail temperature and must be modeled in de-

tail [23]. When solar irradiance moves through the atmosphere, it is partially lost to
absorption, reflection, and diffusion by moisture, dust, and clouds [24]. If the RTPM is built
without considering the detailed solar irradiance, it may predict high rail temperatures
inaccurately during the daytime. The poor performance of high rail-temperature prediction
is a fatal weakness because high rail temperatures cause rail buckling, especially during
the summer daytime.

.
Econv is closely related to wind speed [7,13]. Generally, the higher the wind speed, the

better the heat exchange between the atmosphere and rail surface, considering that the
wind speed is high and the air and rail temperatures are similar.

.
Erad is closely related to the air temperature above the cloud and rail surface emis-

sivity [7]. Based on the Stefan–Boltzmann law,
.

Erad increases to the fourth power of the
absolute temperature [25]. In the study of rail temperatures,

.
Erad is of less importance

compared to other heat transfer mechanisms. Typically, rail temperatures range from
−10 to 60 ◦C. In this temperature range,

.
Erad is negligible compared to that of other heat

transfer mechanisms.
Previous RTPMs based on the regression analysis focused only on the weather factors

and did not properly reflect the relationship between solar irradiance and rail temperature,
which is critical for rail-temperature prediction. For precise rail-temperature prediction,
the rail–sun relationship (solar-effect features) was treated as important while developing
the RTPM based on machine learning. Based on the thermal analysis and preliminary
studies, the features were classified into weather (air temperature, rainfall amount, wind
speed, cloud cover, and relative humidity) and solar effect (azimuth, altitude, and total
solar irradiance (TSI)) features.

3.2. Weather Features

Most previous regression analysis-based RTPMs predicted rail temperatures consider-
ing only weather conditions [8–10]. The Hunt models predicted the rail temperature using
a single feature (air temperature), whereas the BoM prediction equation used 24 features,
including the temperature of the Earth’s surface and pressure [8,10].

When building machine learning-based RTPMs, including many weather-features
account for various weather situations, but risks the curse of dimensionality and increases
the difficulty of data acquisition. To avoid these problems, the relevant features mainly
affecting rail temperature must be selected from several weather factors.

Among the weather features, we selected the air temperature, rainfall amount, wind
speed, cloud cover, and relative humidity. The effects of the above weather features on the
rail temperature were reported in previous studies, and are summarized below.

Air temperature: A change in the air temperature will always change the rail tem-
perature [12]. As mentioned earlier, the simplest RTPM (Hunt models) uses only the air
temperature as a feature [8].

Rainfall amount: Moisture is crucial in suppressing the maximum rail temperature
because of the high specific heat of water (4.184 J·g−1·K−1)) [13].

Wind speed: As mentioned earlier, wind speed is closely related to convection. When
the wind speed increases, the difference between the air temperature and rail temperature
decreases. This effect is enhanced in summer, when the difference between the rail and air
temperatures is already large [11,13].

Cloud cover: Cloud cover is closely related to solar irradiance. On cloudy days with
high cloud cover, the portion of lost solar irradiance increases and the ratio of diffuse
horizontal irradiance (DHI) to global solar irradiance (GHI) increases accordingly [13].

Relative humidity: A change in the relative humidity slightly changes the rail temper-
ature [13]. In Chapman’s model, the relative humidity is assumed to be closely related to
the minimum rail temperature [13].

The suggested weather features were measured as described in Section 2 and are easily
obtainable worldwide because they are common components of global weather forecasts.



Sensors 2021, 21, 4606 6 of 24

By virtue of the weather features, the CNU RTPMs built by the suggested features can
predict the rail temperatures over an entire network.

3.3. Solar Effect Features

The sun is the main heat source of the rail and causes a high rail temperature during
the daytime. Therefore, the influence of the sun must be considered in the rail temperature
prediction. To predict the rail temperature over the entire network, we here define the
solar effects (azimuth, altitude, and TSI) as new features that can be simply calculated
in terms of time (year, month, day, hour, minute, and second) and location (latitude and
longitude). By using the solar effect features in the RTPM-building, the CNU RTPM can
account for the influence of solar irradiance on rail temperature. The solar effect features
release the temporal and location dependencies of the RTPMs, because they are physical
variables that change in time and space. Since the rail temperature has increased under
global warming effects, RTPMs that depend on a specific time and location cannot predict
the rail temperature in the coming decades or at other locations. In future RTPMs that
predict the rail temperatures of entire networks, the solar effect features are essential.

3.3.1. Modeling of Solar Irradiance

The GHI is closely related to rail temperature, so it must be considered in the rail-
temperature prediction. The measured rail temperature and GHI data during the summer
of 2016 at the measurement station are compared in Appendix B. Note that the rail tem-
perature and GHI exhibited similar temporal dynamics (Figure A2a) and were positively
correlated (Figure A2b; R2 = 0.6870). The phase difference in Figure A2a is attributable to
the heat transfer delay caused by the heat capacity of the rail.

Clearly, the GHI is an important predictor of rail temperature and would improve
the performance of RTPM. As this variable is not provided in the weather forecast, it was
replaced by the TSI on the Earth’s upper atmosphere. The TSI includes the solar power
over all incident wavelengths per unit area and changes slowly as the Earth elliptically
orbits the sun [25,26]. As the TSI depends on the distance between the Earth and the sun, it
can be predicted accurately. The GHI can then be predicted from the TSI and the weather
factors [26–29].

The TSI, DNI, and DHI are geometrically defined in Figure 3a. Upon entering the
atmosphere, the TSI is scattered and absorbed by weather factors such as humidity and
clouds. At noon on a clear day, approximately 25% of the TSI is scattered and absorbed [30].
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The DNI is the solar irradiance directly arriving from the sun. The DNI is measured
as the flux of the beam radiation through a plane perpendicular to the sun’s direction [23].
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The DHI represents the solar irradiance scattered by the atmosphere. The DHI is
measured on a horizontal surface, assuming that the radiation (excluding the circumsolar
radiation) enters from all points in the atmosphere.

The GHI is the total irradiance from the sun on a horizontal surface on Earth [27]. It is
computed by summing the DNI and DHI.

In summary, since the TSI is the reduced GHI by weather factors, simultaneously
adopting the weather factors and TSI as features in the RTPM produces the same effect as
directly adopting the GHI as the feature. The TSI is calculated as described in Appendix C.

3.3.2. Direction of Solar Position

As the Earth is spherical, the TSI enters the atmosphere at an oblique angle, so the GHI
(the summed DNI and DHI) varies in each region. The DNI is oriented along the direction
of the sunlight, which is defined by its azimuth and altitude. The changing direction of
sunlight alters the sites at which the rails receive energy directly from the sun. Therefore,
even when the GHI remains constant, the rail temperature changes with azimuth and
altitude [7].

In the horizontal coordinate system, the direction of the sun is expressed by its azimuth
and altitude, as shown in Figure 3b [30]. The azimuth (Φsun) is the angle between the
projected vector and the north (N) vector. The altitude (αsun) is the angle between the
sunlight vector and its projected vector on the perpendicular plane.

The azimuth and altitude are calculated in terms of time (year, month, day, hour,
minute, and second) and location (latitude and longitude). The temporal terms are astro-
physically meaningful for predicting the rail temperature. If the time is directly applied to
the model without any post-processing, the model’s performance is not guaranteed after
decades or longer, and its reliability is severely degraded.

In this study, the altitude and azimuth were computed from the local latitude, longi-
tude, and time by the Michalsky’s method [31].

4. Building the CNU RTPMs

CNU RTPMs are based on machine learning and various statistical methods: extreme
gradient boosting (XGBoost), support vector machine (SVM), random forest (RF), artificial
neural network (ANN), and polynomial regression of order 2 (PR2). Their hyperparameters
were optimized by tuning. The performances of the various CNU RTPMs were compared
and the best-performing CNU RTPM was clarified. We built the models using the Python
libraries: XGBoost, Scikit-learn, random forest, and Tensorflow.

4.1. Machine Learning and Statistical Methods
4.1.1. Extreme Gradient Boosting (XGBoost)

XGBoost is popularly chosen by contestants in data and machine learning competi-
tions, owing to its higher performance than other methods [32–37]. XGBoost is suitable for
regression and classification problems. At each step, the algorithm generates a weak learner
and accumulates it into the total model. If the weak learner follows the gradient direction
of the loss function, the learning method is called a gradient boosting machine [37].

XGBoost is an ensemble of classification and regression trees (CART). An ensemble
method is a machine learning technique that combines the results of several submodels to
determine the best result. Consider a dataset D = {(X i, yi) : i = 1 · · · n, Xi ∈ Rm, yi ∈ R}
with n data, m feature spaces, a target value yi, and a predicted value ŷi Let ŷi be the result
of an ensemble represented as follows:

ŷi =
K

∑
k=1

fk(Xi), fk ∈ F, (2)

where K is the number of trees and fk is a function in the functional space F of all CARTs.
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Let L be the objective function, which consists of a training loss term and a regulariza-
tion term as follows:

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk), (3)

Ω( fk)= γT+
1
2
λ‖w‖2. (4)

The training loss term l measures the difference between ŷi and yi, and the regulariza-
tion term Ω penalizes the complexity of the model to avoid overfitting.

The objective function is optimized by tree boosting of Equation (3). Define ŷt
i as the

prediction of the i-th instance at the t-th iteration. To minimize the objective function, a
term ft is added to Equation (3), giving Equation (5). Equation (5) is then simplified by the
Taylor expansion to give Equation (6):

Lt =
n

∑
i=1

l(yi, ŷt−1
i + ft(Xi)) + Ω( ft) (5)

Ľt =
n

∑
i=1

[g i ft(Xi) +
1
2

hi f 2
t (Xi)] + Ω( f t),wheregi = ∂ŷt−1

i
l(yi, ŷt−1

i ), hi = ∂2
ŷt−1

i
l(yi, ŷt−1

i ). (6)

The loss reduction after the best split from a given node is given by Equation (7). Note
that this function depends only on the loss function and the regularization parameter γ.
Clearly, this algorithm optimizes any loss function that provides the first and second-order
gradients [32].

Lsplit =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ. (7)

4.1.2. Support Vector Machine (SVM)

The objective of the SVM is to find the optimal hyperplane in an N-dimensional space
(where N is the number of features) that maximizes the distance between the hyperplane
and the nearest data point on each side. The optimal hyperplane should distinctly classify
the data points [38]. SVMs are employed in regression and classification problems, and are
applicable to both linear and nonlinear data [39].

As in previous studies, our study employs an SVM for predicting the solar generation
from weather forecast data. The kernel function was a radial basis function with two
hyperparameters: the kernel coefficient γ and the penalty coefficient C.

4.1.3. Random Forest (RF)

An RF is a substantial modification of bagging that builds a large collection of de-
correlated trees, and then averages them [40]. Bagging is one of the ensemble meth-
ods. Like SVMs, RFs are applicable to both linear and nonlinear data in regression and
classification problems.

In previous studies, RFs have predicted the daily maximum air temperature from
the solar radiation, albedo, latitude, longitude, and other solar-related parameters. We
similarly adopt the solar effect features in temperature prediction. Here we optimize the
number of variables to be split at each node (Mtry) and the number of trees in each run
(Ntree) as the hyperparameters.

4.1.4. Polynomial Regression of Order 2 (PR2)

PR2 is a traditional statistical method applied in regression modeling. It is suitable
when the independent variable is a quadratic function of the dependent variable [38].
Additional hyperparameter settings are not required. The PR2 can be expressed as

yi = β0 + β1xi + β2x2
i + · · ·+ εi, (8)
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where yi is the dependent variable, xi is the independent variable, βi denotes the unknown
parameters, εi is an error term, and i denotes a row of data.

4.1.5. ANN (Artificial Neural Network)

ANNs are powerful connectionist systems vaguely inspired by biological neural
networks [41]. An ANN consists of multilayer perceptrons, and is suitable for solving
various problems such as computer vision, speech recognition, and regression analyses [42].

Previously, ANNs were applied to body-temperature prediction in wearable-device
studies [43]. In our study, an ANN predicts not the body (interior) temperature but the
skin (surface) temperature. Specifically, we employ a feed-forward neural network with a
rectified linear unit as the activation function and AdamOptimizer as the optimizer. The
learning rate and batch size were 0.05 and 100, respectively. We optimize the number of
nodes (one hidden layer) as the hyperparameter.

4.2. Hyperparameter Tuning by K-Fold Cross Validation

The performance of any model based on machine learning largely depends on the
value(s) of the hyperparameter(s), which must be determined before running the model.
In machine learning, the process of determining the hyperparameter(s) is called “tun-
ing.” [44–46]. The suitability of the value range of the hyperparameter(s) tends to depend
on the user’s intuition and experience.

In this study, the hyperparameters of XGBoost, SVM, and RF were optimized by K-fold
cross validation, which divides the samples into training and test samples. The model was
constructed using the training data and verified using the test data. K-fold cross validation
simply and effectively checks whether the model has overfitted the training data.

K-fold cross validation divides the samples into k uniform groups and performs k iter-
ations of cross validation. After cross validation based on the constructed hyperparameter
values, the optimal combinations of hyperparameters are found using the GridSearchCV
function in the Python library Scikit-learn. By default, GridSearchCV uses 3-fold cross
validation (k = 3); however, applying 5-fold cross validation is conducted to more accurately
optimize the hyperparameter combination.

The results of the hyperparameter tuning are provided in Appendix D.

4.3. Comparison Methods of Model Performance

In this study, 70% of the measured data were randomly selected as the training data
and the remaining 30% were reserved as the test data. To account for the randomness in
distributing the training and test data, the evaluation was performed five times on the test
data and individual performances were averaged to obtain the final performance value. As
the performances of the training and test data were not significantly different at the time of
the experiment, the results of the test data are presented. The performances were described
by the mean absolute error (MAE), coefficient of determination (R2), and RMSE.

MAE is the absolute value of the average error (average difference between the original
and predicted values). A lower MAE corresponds to a higher performance of the model.
The R2 measures how well the predicted values match the original values. Its value ranges
from 0 (no correlation between the actual and predicted values) to 1 (perfect correlation
between the two values). RMSE is another measure of the average error in the prediction.
As MAE is generally used in machine learning and RMSE is conventionally used in RTPMs,
both measures are computed in the present analysis. Similar to MAE, a low RMSE implies
a high model performance. Conclusively, a good prediction model is characterized by low
MAE, high R2, and low RMSE. MAE, R2, and RMSE measures are respectively expressed
as follows:

MAE =
∑n

i=1 |yI − yi|
n

, (9)

R2 = 1− ∑n
i=1 (yi − yi)

2

∑n
i=1 (yi − ŷi)

2 (10)
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RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2, (11)

where n is the total number of test data, yi and ȳi are the measured data and the model
predicted values, respectively, and ŷ is the average output value of the test data.

The features and measurement conditions determine the reliability and versatility
of the prediction model. As the model is built using the measured data, a small quantity
of measured data will degrade the model reliability. Meanwhile, if the model includes
an excessive number of features, it cannot easily adapt to different environments and the
measurement system requires many instruments. Accordingly, models with too many
features have low versatility.

5. Train-Speed-Limit Alarm-Map (TSLAM)

The actual rails are interconnected continuously for several hundred kilometers. There-
fore, predicting the rail temperature in a local region is meaningless. Our TSLAM frame-
work, developed by Python, visually presents the predicted rail temperature over the entire
network. TSLAM visualizes the predicted rail temperature deviations computed by the
CNU RTPMs with the selected features. Using TSLAM, train safety officers can quickly
map the rail-temperature deviations and order the train company to limit the train-speed
in advance.

The TSLAM can also forecast the rail temperature for up to 64 h based on the weather
forecast data alone. This forecasting reduces train delays owing to the imposed train-speed
limit because the train company can preadjust the train operation interval. Finally, the
TSLAM improves track safety and train timeliness.

The TSLAM operates via a four-step algorithm: data acquisition, data preprocessing,
rail-temperature-prediction, and data visualization (see Figure 4). The four steps of the
TSLAM algorithm are detailed below.
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Step (1): Web crawling of weather forecast data: The KMA divides the Korean penin-
sula into (5 × 5)-km2 grid squares and forecasts the weather in each area for up to 64 h
at 3-h intervals. Step 1 of the TSLAM algorithm obtains the local forecast data by web
crawling (defined as data extraction from a web page [47]). The obtained data comprise
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the location and meteorological forecasts in each area. In this step, if the data source of the
application programming interface (API) provided by the open weather map (OWM) is
changed, the country and its local weather forecast data are newly obtained. Originally,
we considered using the Korean local weather forecast of the OWM rather than the local
weather forecast of the KMA. However, web crawling the weather forecast data of KMA,
which provides a detailed local weather forecast over more regions in Korea than in the
OWM, was selected.

Step (2): Data preprocessing: The KMA provides local coordinate data in its own
coordinate system, which must then be converted to general-purpose latitudes and longi-
tudes. This step is redundant if the data source is OWM’s API because the OWM directly
provides local latitude and longitude data. This step then computes the azimuth and
altitude from the latitude and longitude at the forecast time and converts the data unit into
units compatible with CNU RTPM.

Step (3): Prediction of the rail temperature using CNU RTPM: This step predicts the rail
temperature from CNU RTPMs. CNU RTPM with the highest performance is then installed
as the main model. Through this process, data are converted into three-dimensional data
of latitudes, longitudes, and predicted rail temperatures.

Step (4): Visualization of the predicted rail temperature: This step displays the trans-
formed three-dimensional data on a map for the user. The displayed image can be expressed
in either of the following two modes, Mode 1 or Mode 2, by adjusting the range of the
legend. Mode 1 is a contour map showing the predicted rail temperature in all regions
of the selected country. Mode 1 compares the predicted rail-temperature deviations in
each region but does not clarify the regions in which rails are dangerously deformed.
Conversely, Mode 2 shows the regions of high predicted rail temperature at which the
train-speed should be limited to ensure safe railway operation. These data quickly inform
the train safety officer of the risky sites.

6. Results and Discussion
6.1. Data Configuration

The most important goal for building a model based on machine learning is the
acquisition of numerous high-quality data. Herein, high-quality data were acquired using
the measurement station. The rail temperature was determined at the point where rail
deformation represented the average rail deformation. Moreover, features providing a
globally usable model were selected.

Measurements were continuously collected over a 10-month period from August
2016 to May 2017, obtaining 35,252 samples. The measured data were the air temperature,
relative humidity, wind speed, rainfall amount, and rail temperature. The cloud cover
data, which were not measured, were instead borrowed from the data of nearby KMA. The
maximum, minimum, average, and standard deviation of the dataset are included in the
Appendix A. Korea’s climate is characterized by a large annual range of air temperatures
(−10.1–38.0 ◦C in the collected dataset) and by various weather events, such as monsoon
rains and snowfall, which are dynamically generated in different seasons. The Korean
weather data are thus considered suitable for creating globally available models.

The azimuth, altitude, and TSI were calculated by the method presented in Section 3
and added to the final samples. The resulting model features were weather features (air
temperature, rainfall amount, wind speed, cloud cover, and relative humidity) and solar
effect features (azimuth, altitude, and TSI).

Herein, 70% of the data (24,676 samples) were randomly selected as the training data
and the remaining 30% (10,576 samples) were reserved as the test data. Figure 5 is a
detailed flowchart of the methodology.
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6.2. Feature Importance

Tree-based machine learning methods such as XGBoost can calculate the importance
of features. The feature importance quantitatively evaluates the effect of a particular feature
on the model performance. By ranking and comparing the importance of each feature, we
can remove the unnecessary features with low feature importance from the model. Such
low-importance features can degrade the performance of the model.

The feature importance values computed by XGBoost are graded in Figure 6. The
most important, second-most important, and third-most important features were the
TSI, azimuth, and altitude, respectively. Note that these features are the solar effect
features reflecting the GHI, which are obtained by simple calculations but largely affect
the performance of the model. That is, the solar effect features play an important role in
predicting the rail temperature.
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6.3. Model Performance Comparison
6.3.1. Performance at the Whole Range of Rail Temperatures

Table 1 compares the performances of the previous RTPMs (white) and the newly
developed CNU RTPMs (yellow and orange). To compare the models’ performances, the
datasets used in the RTPMs should be similar. However, direct performance comparison
was difficult because of the restricted data set used in developing previous RTPMs. Thus,
the Hunt model, which uses the air temperature as the sole feature, was used to confirm the
similarity of the dataset used in this study with that used in other RTPMs. Besides, the Hunt
model is common because similar studies have also compared model performance using
it [7,10,13]. In a study by Wu (development of the BoM prediction equation), the RMSE of
the Hunt 1 model was determined as 6.952 ◦C, while in this study, it was determined as
5.866 ◦C. These results disprove the similarity between Wu’s study and the measurement
conditions adopted in this research, such as the rail installation environment and climate.
Figure 7 shows the predicted and measured rail temperatures from 9 August to 12 August
in 2016, when the rails were the hottest. The Hunt 1 model predicts the temperature of the
rails to be somewhat higher, while the CNU RTPM–XGBoost predicts it with high accuracy
regardless of day or night conditions.

Table 1. Comparison of prediction errors in previous RTPMs and CNU RTPMs.

Performance Range Performance in Whole Range of
Rail Temperature

Performance in High Rail Temperature Range
(over 40 ◦C)

Model Name MAE (◦C) R2 RMSE (◦C) MAE (◦C) R2 RMSE (◦C)

Hunt model 1 [8] 2.913 0.9021 5.866 2.660 0.4471 3.925

Hunt model 2 [8] 14.396 0.9021 15.117 3.661 0.4471 4.448

Munro model [1] Unknown 0.9180 Unknown Unknown Unknown Unknown

BoM Prediction
Equation (1–24 h) [10] 0.136 0.9630 2.560 Unknown Unknown Unknown

Weather station
Regression model [10] 0.659 0.8960 4.193 Unknown Unknown Unknown

CNU RTPM–PR2 0.693 0.9709 2.316 0.103 0.5605 2.7108

Chapman’s model [13] 0.200 Unknown 2.500 Unknown Unknown Unknown

CNU
Heat Transfer model [7] 1.537 0.9334 3.799 0.618 0.3406 5.935

CNU RTPM–SVM 0.068 0.9720 2.135 1.055 0.5465 2.802

CNU RTPM–ANN 0.519 0.9839 1.732 1.213 0.7115 2.355

CNU RTPM–RF 0.029 0.9972 0.685 0.191 0.9199 0.927

CNU RTPM–XGBoost 0.008 0.9984 0.518 0.119 0.9415 0.771

CNU RTPM–XGBoost
Without a solar effect 0.043 0.9816 1.744 0.570 0.7243 1.898
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Among the previous RTPMs, the BoM prediction equation showed the highest per-
formance (MAE = 0.136 ◦C, R2 = 0.9630, RMSE = 2.560 ◦C) over the whole range of rail
temperatures. However, the BoM equation requires 24 features, which severely reduces
its versatility. Moreover, the BoM equation is constructed from data collected over one
month during the Australian winter, casting doubt on its global and seasonal applicability.
In contrast, the CNU RTPMs use consecutive data collected over 10 months (including
summer and winter), ensuring their reliability over the four seasons. Moreover, the weather
factors and solar effects are easily obtainable, ensuring the versatility of the CNU RTPMs.
The weather factors are globally available through weather forecasts, and the solar effects
are readily calculated at any given time. These selected features enable easy combination
of CNU RTPM and TSLAM.

The highest performer among the RTPMs over the whole range of rail temperatures
was CNU RTPM–XGBoost (MAE = 0.008 ◦C, R2 = 0.9984, RMSE = 0.518 ◦C). The RMSE
was approximately 2 ◦C lower in CNU RTPM–XGBoost than in the BoM prediction model,
the previously highest performance RTPM.

Accordingly, CNU RTPM–XGBoost was selected as the main model in this study
and its hyperparameters were optimized by K-fold cross validation. Adding the solar
effect features improved the performance of CNU RTPM–XGBoost over that of CNU
RTPM–XGBoost without solar effects, built using the weather data only.

6.3.2. Performance at the High Rail-Temperature Range (over 40 ◦C)

The most important practical requirement of RTPM is predicting the high rail tem-
peratures that cause buckling. When predicting rail temperatures over 40 ◦C (Table 1),
the CNU RTPM–RF and CNU RTPM–XGBoost delivered the highest performance among
the tested models (CNU RTPM–RF: MAE = 0.191 ◦C, R2 = 0.9199, RMSE = 0.927 ◦C; CNU
RTPM–XGBoost: MAE = 0.119 ◦C, R2 = 0.9415, RMSE = 0.771 ◦C). The ability to predict
high rail temperatures was conferred by a selected algorithm and proposed features.

Since they adopt the ensemble method, tree-based machine learning algorithms (CNU
RTPM–RF and CNU RTPM–XGBoost) are more suitable for high temperature prediction
than other machine learning algorithms. Tree-based RTPMs are composed of various
submodels constructed under specific conditions. As one of these submodels predicts high
rail temperatures, tree-based RTPMs can outperform models with other architectures.
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Additionally, we showed that the newly proposed solar effect features further im-
prove the performance of predicting the high rail temperature in RTPM by comparing the
performance of the CNU RTPM–XGBoost with or without the solar effect (R2 = 0.9415 and
0.7243, respectively).

6.3.3. Raw Error Data of CNU RTPM

The practical applicability of CNU RTPMs was investigated on raw error data. The
performances of the CNU RTPMs with the same features are compared in Figure 8. This
figure shows the box plots of the errors in the CNU RTPMs, allowing a comparison of the
raw error data in each CNU RTPMs.
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and XGBoost.

The box plots differ in shape; the fence length (distance between the upper and lower
whiskers) is shorter in the CNU RTRMs based on machine learning (SVM, ANN, RF, and
XGBoost) than in the regression model (PR2). The tree-based RTPMs (RF and XGBoost)
yielded the shortest fence lengths around a median of 0 ◦C.

The error ranged by almost 9 ◦C in CNU RTPM–PR2, SVM, and ANN, nearly 6 ◦C in
CNU RTPM–RF, and nearly 3 ◦C in CNU RTPM–XGBoost. A narrow error range guarantees
a reliable rail-temperature prediction that minimizes the risk of incorrect prediction.

As confirmed by its short fence lengths and narrow error range (3 ◦C), the CNU RTPM–
XGBoost is the most suitable algorithm in practical situations, because the criteria of train-
speed limits are shifted to a 4–5 ◦C change in rail temperature. This varies from country
to country. In Korea, high-speed trains run at 230 km·h−1 when the rail temperature is
55–60 ◦C, 70 km·h−1 when the rail temperature is 60–64 ◦C, and are cancelled when the rail
temperature exceeds 64 ◦C [15]. In the UK, the train speed is determined by the stress-free
temperature (STF, usually equal to 27 ◦C in the UK). On well-maintained tracks, the speed
limit is 60 mph and 20 mph at rail temperatures of STF + 37 ◦C and STF + 42 ◦C, respectively.
However, under poor track conditions (inadequate ballast), the temperatures of the 60 mph
and 20 mph speed limits reduce to STF + 13 ◦C and STF + 15 ◦C, respectively [21].

6.4. TSLAM with CNU RTPM–XGboost

TSLAM is a structural health-monitoring application for analyzing railway safety
using CNU RTPM–XGBoost, the highest-performing CNU RTPM. Using TSLAM, railway
safety managers can know the rail temperature in advance or in real-time. Based on the
predicted rail temperature, railway safety managers could decide on safety measures, such
as limiting the train speed and spraying water.

Figure 9a shows the graphical user interface (GUI) of TSLAM. The user selects the time,
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country, and map mode through input-selection widgets and obtains the rail temperature
predicted by CNU RTPM–XGBoost. The predicted rail temperature is displayed either
in Mode 1 (the standard mode showing the predicted rail temperatures in all regions) or
Mode 2 (the detection mode displaying the danger zones on the map). The text-display
panel reports the risk points demanding rail-temperature management and the train-speed
limits recommended by the Korea Railroad Operation Safety Managers Association [15]
(see Appendix E). Equipped with this information, railway safety officers can either plan
the lowering of the rail temperature by water spraying or adjust the train operation interval
in advance.
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(c) the USA.

The main advantage of TSLAM is its worldwide applicability, enabled by including the
globally available features in CNU RTPM–XGBoost. A user can select a country through the
GUI, and visually observe the predicted rail temperature of that country using the weather
forecast provided by the OWM. In other words, users can obtain the rail temperature or
warnings from devices installed with TSLAM, independent of location. As an example,
Panels (b) and (c) of Figure 9 show the predicted rail-temperature maps of France and the
USA, respectively, in Mode 1. In this mode, users can compare the regional deviations
in the predicted rail temperatures. In Mode 2 (Figure 9a), the user must know the train
driving rules of the selected country.

TSLAM can improve the efficiency of a train system controlled by a safety management
system. As mentioned above, TSLAM requires the weather forecast data from the OWM,
which are easily accessible. Therefore, operators of a train safety management system can
acquire the information required for rerouting or applying derailment-prevention measures
at any locality. With this information, they can appropriately adjust the train interval, avoid
bottlenecks, and efficiently operate the rail system.

Additionally, TSLAM can support the indirect measurement of the rail temperature
over the entire network. Generally, the rail temperature is directly measured using ther-
mocouples; however, installing thermocouples over the entire network results in high
installation and maintenance costs. Additionally, because of the safety issue, it is difficult to
attach the thermocouples in some networks. However, TSLAM prediction showed nearly
the same result as directly measuring the rail. Thus, TSLAM is expected to serve as a
supporting system that provides the predicted rail temperature using real-time weather
measurement data or weather forecast data.
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6.5. Limitations and Directions for Improvement

The features of CNU RTPM were designed by using the thermal analysis. The aim
was to improve the performance of rail-temperature prediction and to extend its network
applicability. However, some relevant features were excluded because of data unavailability
and restriction. The particulate matter (PM) is one of the excluded features, which can be
incorporated into an improved RTPM in future work.

Recently, PM2.5 (with diameters of 2.5 µm or less) has been shown to decrease the
DNI proportion and increase the DHI proportion in the GHI [48]. By definition, the
DNI is related to the direction of sunlight and induces a temperature distribution on the
cross- section of the rail. In contrast, the DHI is less directional and tends to smooth the
temperature distribution on the rail cross-section. In regions with high PM2.5 concentration,
this interplay causes a slight difference between the rail temperature predicted by CNU
RTPM and the actual rail temperature.

Moreover, sleeper material might be incorporated into an improved RTPM in future
work. During the measurements, the rail was installed on concrete sleepers with a thermal
conductivity of 0.13 W·m−1·k−1 [49]. Although the installation of concrete sleepers is
increasing with the development of high-speed trains, wooden sleepers remain common
in many parts of the world. The thermal conductivity of wood is 2.0 W·m−1·k−1 [49,50].
The different thermal conductivities of these two materials will degrade the universal
applicability of CNU RTPM. Concrete sleepers with low thermal conductivity will conduct
a lower heat flux than wooden sleepers. For this reason, when the solar irradiance is high,
a rail installed on wood sleepers will reach a lower temperature than a rail installed on
concrete sleepers.

Furthermore, the health status of rails can be integrated into an improved RTPM.
The health status of the rail is directly related to its thermal properties, such as solar
absorptivity, and mechanical properties, which include hardness and density [7,51]. For
example, according to a previous study, solar absorptivity is important for predicting rail
temperatures [7]. The solar absorptivity expresses how much solar irradiation affects the
temperature change of the rail. The rail surface condition affects the solar absorptivity.
Usually, the solar absorptivity of unused rail is 98.7%, whereas that of used rail is 81.1%.
This difference comes from the rail surface and paint erosion. Thus, the performance of
RTPM can be improved in future works by considering the health status of rail.

7. Conclusions

Herein, we developed novel rail-temperature prediction models (CNU RTPMs) and a
TSLAM using weather forecast data alone, which can predict the rail temperature over the
entire network.

• The CNU RTPMs were developed with different machine learning methods using
the long-term (over 10 months) measured data from all seasons. Such long-term data
collection ensures a reliable model.

• To improve the prediction performance, the CNU RTPMs combine standard weather
features with newly suggested solar effect features. These features originate from the
analysis of the thermal environment around the rail. Additionally, they are easily
obtained from global weather forecasts and additional calculations on the weather
forecast data. Precisely, the solar effect features significantly improved prediction
performance at the high-rail-temperature range.

• In a performance comparison, the CNU RTPM–XGBoost emerged as the best predictor
of the rail temperature among the machine learning methods. The proposed CNU
RTPM–XGBoost, which delivered higher performance, reliability, and versatility than
previous RTPMs, was suggested as a new model for predicting rail temperature over
the entire network. The CNU RTPM–XGBoost is applicable worldwide because its
features are globally available in weather forecast data.

• The visualization application, TSLAM, maps the predicted rail temperatures, which
assist railway safety officers (if necessary) in planning safety measures.
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We expect that CNU RTPM–XGBoost and TSLAM will significantly improve both
train safety and train timeliness.
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Abbreviations
The following abbreviations are used in this article:
CWR Continuous welded rail
BoM Bureau of meteorology
RTPM Rail-temperature-prediction model
RMSE Root mean square error
MAE Mean absolute error
R2 Coefficient of determination
ANN Artificial neural network
SVM Support vector machine
RF Random forest
XGBoost Extreme gradient boosting
TSLAM Train-speed-limit alarm-map
DAQ Data acquisition system
CNU Chungnam national university
KMA Korea meteorological administration
TSI Total solar irradiance
GHI Global solar irradiance
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
API Application programming interface
OWM Open weather map
GUI Graphical user interface
PM Particulate matter

Appendix A

The summary of the dataset is shown in Table A1. This dataset is consisted of measured
data (air temperature, relative humidity, wind speed, rainfall amount, and rail temperature)
and borrowed data (cloud cover). Table A1 shows the maximum value, minimum value,
average value, and standard deviation.
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Table A1. Summary of the dataset (from August of 2016 to May of 2017).

Features Maximum Value Minimum Value Average Value Standard Deviation

Air temperature 38.00 ◦C −10.10 ◦C 11.03 ◦C 10.30 ◦C

Relative humidity 98.00% 14.00% 67.59% 18.64%

Wind speed 19.30 m/s 0.00 m/s 1.64 m/s 2.12 m/s

Rainfall amount 3.81 mm 0.00 mm 0.03 mm 0.98 mm

Rail temperature 53.04 ◦C −11.67 ◦C 13.63 ◦C 13.08 ◦C

Cloud cover 10 1 6.90 2.84
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Appendix B

The global horizontal irradiance (GHI) is closely related to rail temperature. The
comparison of the measured rail temperature and GHI at the measurement station during
the 2016 summer (16.08.05–16.08.30) are shown in Figure A2. Figure A2a shows the positive
correlation between the measured rail temperature and GHI. This result is more clearly
shown in Figure A2b. According to Figure A2b, the coefficient of determination (R2)
was 0.6870.
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Appendix C

The total solar irradiance (TSI) is governed by the elliptical orbit of the Earth. The
TSI is maximized and minimized at the perihelion (January) and apex (July) of the Earth,
respectively, and is calculated as follows:

θ =
(
dn − dp

)
× 360

365.256363004
× π

180
, (A1)

D =
α × (1 − e2)

1 + e× cos(θ)
, (A2)

It= Isc ×
(

Davg

D

)2
. (A3)

In the above expressions, dn and dp denote the elapsed day from January 1 and
perihelion day (January 2–5), respectively, and θ is the circumferential angle from perihelion.
D and Davg are the actual and mean sun–Earth distances, respectively, α is the semi-major
axis of the ellipse (149,598,261 km), e is the eccentricity of the Earth’s orbit (0.01671123), Isc
is the solar constant (1367 W/m2), and It is the TSI.

Note that dn is the only variable in the TSI calculation.

Appendix D

The optimized hyperparameters of the extreme gradient boosting (XGBoost) were
n_estimators, colsample_bytree, learning_rate, max_depth, and subsample. The value range of
hyperparameters were described in the list of candidate hyperparameters in Table A2. As
a result, tuning was performed to find the optimal value for the combination of hyper-
parameters in the 3750 preset value for the combination of hyperparameters. The results
of the hyperparameters tuning are described in Table A2. Since the results were difficult
to describe completely, the top six results were shown based on the best score. The score
was calculated based on the coefficient of determination (R2). As a result, the optimal
hyperparameters set was n_estimators = 3000, colsample_bytree = 1.0, learning_rate = 0.03,
max_depth = 9, and subsample = 0.4.

Table A2. The list of candidate parameters and parameters tuning results for finding the optimal
parameter set in XGBoost.

List of Candidate Hyperparameters

n_estimators Colsample_bytree Learning_rate Max_depth Subsample

{500, 1000,
1500, 2000,
2500, 3000}

{0.2, 0.4, 0.6, 0.8,
1.0}

{0.01, 0.03, 0.05,
0.07, 0.09} {5, 6, 7, 8, 9}

{0.2, 0.4,
0.6, 0.8,

1.0}

Hyperparameters Tuning Results (Top 6)

n_estimators Colsample_bytree Learning_rate Max_depth Subsample Best Score

3000 1.0 0.03 9 0.4 0.998009
2500 1.0 0.03 9 0.4 0.997989
3000 1.0 0.03 8 0.4 0.997984
2000 1.0 0.03 9 0.4 0.997951
2500 1.0 0.03 8 0.4 0.997945
3000 1.0 0.05 8 0.4 0.997924

The hyperparameter of the support vector machine (SVM) was optimized using Grid-
SearchCV same as XGBoost. The optimized hyperparameters are the kernel coefficient γ
and penalty coefficient C. The value range of hyperparameters and result of hyperparame-
ters tuning are described in Table A3. Table A3 shows the optimal hyperparameters set is
γ = 0.1 and C = 10.
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Table A3. The list of candidate parameters and parameters tuning results for finding the optimal
parameter set in SVM.

List of Candidate Hyperparameters

γ C

{ 0.001, 0.01, 0.1, 1, 10} { 0.001, 0.01, 0.1, 1, 10}

Hyperparameters Tuning Results (top 6)

γ C Best Score

0.1 10 0.960011

1 10 0.958223

1 1 0.957759

1 0.1 0.956218

0.1 1 0.953065

0.01 10 0.944773

The hyperparameter of the random forest (RF) was optimized using GridSearchCV
same as SVM and RF. The optimized hyperparameters are the number of variables to pick
to split on at each node (Mtry) and the number of trees in the run (Ntree). The value range of
hyperparameters and result of hyperparameters tuning are described in Table A4. Table A4
shows that the optimal hyperparameters set was Mtry = 11 and Ntree = 3000.

Table A4. The list of candidate parameters and parameters tuning results for finding the optimal
parameter set in RF.

List of Candidate Hyperparameters

Mtry Ntree

{7, 8, 9 10, 11} {500, 1000, 1500, 2000, 2500,
3000}

Hyperparameters Tuning Results (Top 6)

Mtry Ntree Best Score

11 3000 0.993880
11 1000 0.993865
11 1500 0.993865
11 2000 0.993861
11 2500 0.993859
11 500 0.993845

To optimize the number of nodes in one hidden layer artificial neural network (ANN),
we compared the losses generated by changing the number of nodes. This ANN model
used MSE as a loss function. The optimization of ANN seeks to minimize a loss function.
Figure A3 shows the tuning result in ANN. In this graph, node 22 shows the minimum
loss value. This means node 22 is an optimal hyperparameter.
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Appendix E

To prevent buckling-induced train derailment due to the rise of the rail temperature,
the Korea Railroad Operation Safety Managers Association (KORSMA), made a rule on
the train speed limit according to the rail temperature [15]. The rule is divided into part of
regular trains and Korea Train eXpress (KTX). The rule is summarized in Table A5.

Table A5. Train driving rules according to rail temperature in KORSMA.

Train Type
Rail Temperature

55–60 ◦C 60–64 ◦C Exceed 64 ◦C

Regular train - <70 km/h <20 km/h

KTX
(Korea Train eXpress) <230 km/h <70 km/h Stop
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