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Abstract: With the rise of smart robots in the field of industrial automation, the motion control
theory of the robot servo controller has become a research hotspot. The parameter mismatch of
the controller will reduce the efficiency of the equipment and damage the equipment in serious
cases. Compared to other parameters of servo controllers, the moment of inertia and friction viscous
coefficient have a significant effect on the dynamic performance in motion control; furthermore,
accurate real-time identification is essential for servo controller design. An improved integration
method is proposed that increases the sampling period by redefining the update condition in this
paper; it then expands the applied range of the classical method that is more suitable for the working
characteristics of a robot servo controller and reducesthe speed quantization error generated by the
encoder. Then, an optimization approach using the incremental probabilistic neural network with
improved Gravitational Search Algorithm (IGSA-IPNN) is proposed to filter the speed error by a
nonlinear process and provide more precise input for parameter identification. The identified inertia
and friction coefficient areused for the PI parameter self-tuning of the speed loop. The experiments
prove that the validity of the proposed method and, compared to the classical method, it is more
accurate, stable and suitable for the robot servo controller.

Keywords: robot servo controller; moment of inertia; viscous friction coefficient; improved integra-
tion method; incremental probabilistic neural network; improved Gravitational Search Algorithm

1. Introduction

At present, industrial robots have played an increasingly important role in industrial
production against the backdrop of global industrial manufacturing’s gradual intelligent
development. In order to make the industrial robot capable of more complex work, the
robot control technology requires to have the characteristics of high speed, high precision,
multi-coordination and has good dynamic performance. In summary, finding a way to
control industrial robotsin a way that makes them respond quickly to the predetermined
trajectory instructions while maintaining a high dynamic tracking accuracy, aiming to
achieve stable operation, has become an important research topic in the field of industrial
robot motion control [1–6].

Selecting an appropriate controller is important for system design. Advanced con-
trollers have been proposed recent studies. In [7], three controllers (PID, Stanley and
Sliding Mode Control) weredesigned. Their performance was compared the performance
in seven different environments. Their anti-disturbance properties showed which con-
trollers performed well in each environment. In [8], the comprehensive performance of
four controllers (linear quadratic regulator, model predictive controller, H∞ loop shaping
and µ-synthesis) was compared based on position tracking, vibration damping and control
effort for position control and mechanical vibration suppression in compliant link mecha-
nism. The results showed that different controllers have different advantages for their main
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purposes. However, the classic proportion–integration–differentiation (PID) controller has
the advantage of its simple structure, computational efficiency and low cost compared with
other advanced controllers; therefore, it is the common controller for industrial robots.

The parameters of the servo controller such as moment of inertia and viscous friction
coefficient are extremely important, as they affect the dynamic performance of the controller
designs. For example, the inertia and friction coefficient are used to design the speed loop
controller and, as the parameters increase, the dynamic responsiveness of the system
will be reduced; as the parameters decrease, the system will oscillate. In addition, when
the inertia and friction coefficient change which are used to design the position loop
controller, the system response will be slow and overshoot [9]. Therefore, by identifying
the inertia and friction coefficient online and self-tuning the parameters of the controller
in different industrial application environments, it can have higher response speed and
control precision so that the industrial robot system is more accurate and efficient.

In general, the conventional inertia and friction coefficient identification method can
be divided into offline identification and online identification [10]. The offline identification
needs to be in a certain reference frame that has fixed parameters and more applicable to the
debugging process. The effectiveness of the offline identification method has been verified
in the pertinent literature. In [11], the moment of inertia and friction torque coefficient
wereobtained exactly and simultaneously from a half-period integration method using a
very low-frequency sinusoidal speed control; it utilized the fact that the sinusoidal speed is
in phase with the friction torque and out of phase with the inertia torque. Additionally,
in [12], a method based on the addition of zero mean sinusoidal perturbation to the
permanent magnet synchronous motor (PMSM) drive system was proposed in order to
estimate the combined moment of inertia within one sinusoidal cycle of perturbation that
did not need complex algorithm and the viscous friction can be eliminated. Finally, in [13],
a load torque observer based on sliding mode was proposed for offline inertia identification
which is applicable for the mismatch of the inertia always causes load torque observation
error under dynamic conditions. However, because of the offline identification requires
the drive system to have fixed inertia and friction coefficient, in practice, the parameters of
the system will fluctuate with the change of the attitude of the industrial robot and have
problems such as a long identification time, low precision and large storage space; therefore,
it is not suitable for the dynamic adjustment and control of industrial robot [14,15].

Compared to the offline identification method, the online identification method does
not need pre-estimate and modeling of the system that means the inertia and friction
coefficient can be indeterminate, so it has fewer limitations and covers more complicated
situations of the industrial robot. The commonly used online identification methods cover
three categories: (1) establishment of high order observer or multi-algorithm compound
structure; (2) use the integration method counteracts the effect of the uncertain load torque
and periodically updates the observed inertia; (3) various kinds of optimized neural net-
works are used to identify and self-tune the real-time parameters of the drive system. In
general, for the observer method, it has the advantages of strong anti-disturbance and
robustness. In [16], a robust and stable disturbance observer using radial basis function net-
work (RBFN) was proposed so that the parameter variation and external load disturbances
can be approximated, and an additional robust control was introduced to compensate for
the identification error so that the whole system is stable. In [17], in order to reduce the
calculation burden of the parameters identification, a novel inertia identification algorithm
based on the fixed-order empirical frequency-domain optimal parameter estimation was
proposed which is more precise and more robust against system delay and errors. In [18],
a single recursive least square estimation method with forgetting factor was proposed to
estimate inertia for solving the identification problem that the simultaneous change of load
torque and inertia, and the method avoids designing two separate observers and simplifies
the computations. Additionally, the integration method can identify the inertia and friction
coefficient smoothly and has a stronger anti-noise ability. In article [19], a variable period
velocity differential calculation strategy was proposed to reduce the measurement noise
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caused by the quantization error of the encoder and the moment of inertia is updated in
real time. The integration method can also be combined with the observers, as mentioned
in article [20], which combines the extended state observer (ESO) with the integration
method to design an adaptive controller for the PMSM speed-regulation system and im-
prove the adaptation of the system to the variations of inertia. Finally, compared to the
methods mentioned above, the neural network is more as an optimization tool to make
the result of parameter identification even more excellent. In [21], a real-time moment of
inertia, the identification technique using a Petriprobabilistic fuzzy neural network with an
asymmetric membership function was proposed by combining the neural network and
integral method to optimize the identification results for the servo drive system.

Although the methods mentioned above have been applied in mechatronic servo
systems successfully, there are still some problems to be solved. The method of high
order observer or multi-algorithm compound structure has the problems of transient
observation result fluctuation and asymptotic convergence verification, and the neural
network is more combined with other methods to optimize the identification results.
Frequency response is also a reasonable and effective method for the identification of
dynamic parameter; however, the signal is inevitably affected by various noises and
affect the parameter identification accuracy of frequency response. At the same time,
the frequency response is applicable to the low degree of freedom system with known
parameters and complete modal information is required; otherwise, the eigenmatrix cannot
be inverse in the loss case, so it is not suitable for the parameter identification of the
industrial robot. By contrast, the integration method can improve the above problems
by counteracting the influence of uncertain load torque and updating the inertia and
friction coefficient periodically. However, the conventional integration method has the
condition that the speed and acceleration need to be periodic to ensure the system can reach
a steady state relatively, and the speed quantization error will cover the real speed change
information. For industrial robots, the condition is too harsh, as the robots usually work at
irregular speed or position work commands. To reduce the impact of these problems, an
improved integration method is proposed to identify the moment of inertia and viscous
friction coefficient of the industrial robot servo controller that increases the sampling period
by redefining the update condition in this paper, so that the method is no longer limited
to periodic speed and acceleration conditions. Then, an optimization approach using the
IGSA-IPNN is proposed to filter the speed error which by adding hidden layer of neurons to
improve the accuracy of traditional probabilistic neural network training until the training
error meets the expectation. As opposed to adding filters to the system, the neural network
can easily learn additional information from new samples that improve the identification
accuracy as the robot runs and has strong robustness; the oscillation phenomenon of the
filter at resonant frequency can also be avoided and the system complexity is simplified.
The IGSA is used to optimize the threshold of neural network; the poor local optimization
ability and premature convergence problems of the original method are solved and the
output of the neural network is more precise.

This paper is organized as follows: Section 2 presents the classical integration method
for the inertia and friction coefficient identification and the process of the controller self-
tuning. Section 3 presents the improved integration method and the process of the IGSA-
IPNN optimized method. Section 4 presents the simulation experiment results and the
validity of the proposed method is verified. Section 5 concludes this paper.

2. Classical Integration Method of Moment of Inertia and Viscous Friction
Coefficient Identification

In order to provide a context for an in-depth understanding of the identification
method proposed and the residue problems with the classical method in this paper, the clas-
sical integration method and the controller self-tuning method are introduced in this part.
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2.1. Mechanical System Model

The motion state of a robot servo controller motor is described by its mechanical
motion equation and expressed as follows [22]:

Jm
dωm

dt
= Te − Tf − TL (1)

Te =
3
2

Pn ·
[
ψ f +

(
Ld − Lq

)
id

]
· iq (2)

where Te and TL are the electrical torque and load torque of servo motor system, respectively.
ωm is the mechanical speed and Jm is the moment of inertia. Tf is the friction torque
consisting of three types of friction which contains of static friction torque, coulomb friction
torque and viscous friction. The friction torque equation can be given as:

Tf = (Ts − Tc)e−(ωm/ωs)sign(ωm) + Tcsign(ωm) + Bmωm (3)

where Ts is the static friction torque, Tc is the coulomb friction torque, ωs is the Stribeck
velocity parameter and Bm is the viscous friction coefficient. Usually, the first two terms
in Equation (3) are ignored when the motor is in normal operation because, compared
with the viscous friction torque, the resistance to the motor operation of static friction
and coulomb friction is weak. Inversely, as the only type of linear friction, the value of
viscous friction torque is proportional to the rotating speed. Finally, the mechanical motion
equation of a servo motor can be expressed as

Te = Jm
dωm

dt
+ Bmωm + TL (4)

The dynamic performance of the servo system controller is sensitive to the variation
of mechanical parameters; if there is a deviation value to the original moment of inertia
and viscous friction coefficient of the servo motor system, the control performance of the
controller will be degraded when the mechanical parameters of the controller are fixed. In
order to prove this phenomenon, a simulation experiment is shown in Figure 1.

The red lines in Figure 1 show the response curves of speed and torque when the
inertia of the system is Jm. The speed and torque response have a slight oscillate and a
short settling time before stabilizing. The blue lines and yellow lines in Figure 1 show
the response curves of speed and torque when the inertia of the system is doubled and
the viscous friction coefficient is increased to 5Bm. From the curves, we can see that when
the inertia is doubled, the speed and torque response have a violent oscillation and need
a longer time to stabilize. Similarly, when the viscous friction coefficient is increased to
five times, the speed and torque response need longer stabilization time, and the torque
response will eventually have a deviation value (no-load).Except the moment of inertia
and viscous friction coefficient, the other paraments of the system are the same.

From the simulation results, we can see that the control performance of the system
will decline if the moment of inertia and viscous friction coefficient of the system vary
largely. In order to ensure the stability of the system performance, is necessary to identify
the inertia and friction to handle these kinds of changes.

2.2. Moment of Inertia Identification

To identify the moment of inertia, the integration method which was proposed by
Awaya et al. in 1992 is adopted in this paper and the effect of uncertain load torque can
be counteracted [23]. Assuming that the viscous friction coefficient and load torque are
constant, the moment of inertia changes slowly in each identification period. The ∆Jm and
Ĵm are deviation value and observe value of the inertia, respectively, and the ∆Jm is caused
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by a disturbance torque or by an estimate error. The mechanical motion equation can be
rewritten as:

Te(t) = Ĵm
dωm(t)

dt
+ ∆Jm

dωm(t)
dt

+ Bmωm(t) + TL (5)

Figure 1. Comparisons in the case of J = Jm, J = 2Jm, B = 5Bm. (a) Speed response. (b) Torque response.

Multiplying the derivative of velocity on both sides, Equation (5) can be expressed as

Te(t)
dωm(t)

dt = Ĵm

(
dωm(t)

dt

)2
+ ∆Jm

(
dωm(t)

dt

)2

+Bmωm(t)
dωm(t)

dt + TL
dωm(t)

dt

(6)

Then, integrating both sides of (6), the integration form of the mechanical motion
equation can be expressed as

∫ t f
ti

Te(t)
dωm(t)

dt dt = Ĵm
∫ t f

ti

(
dωm(t)

dt

)2
dt + ∆Jm

∫ t f
ti

(
dωm(t)

dt

)2

+Bm
∫ t f

ti
ωm(t)

dωm(t)
dt dt + TL

∫ t f
ti

dωm(t)
dt dt

(7)



Sensors 2021, 21, 4177 6 of 21

where ti and t f are the initial time and finish time of the identification of cycle, respectively.
By calculating the last two integral terms on the right-hand side of (7) and the expansion of
the integral terms can be expressed as Bm

∫ t f
ti

ωm(t)
dωm(t)

dt dt = 1
2 Bm

[
ωm

(
t f

)2
−ωm(ti)

2
]

TL
∫ t f

ti

dωm(t)
dt dt = TL

[
ωm

(
t f

)
−ωm(ti)

] (8)

Substituting (8) to (7), the observe value and deviation value of the moment of inertia
can be expressed as

Ĵm + ∆Jm =

∫ t f
ti

Te(t)
dωm(t)

dt dt∫ t f
ti

(
dωm(t)

dt

)2
dt
− 1

2 Bm

[
ωm(t f )

2−ωm(ti)
2
]

∫ t f
ti

(
dωm(t)

dt

)2
dt

−TL
[ωm(t f )−ωm(ti)]∫ t f

ti

(
dωm(t)

dt

)2
dt

(9)

According to Equation (9), since the numerator of the second and the third term is
a constant value, if the identification period is sufficiently long, the denominator of the
second and the third term will extremely large compared to the numerator that cause the
whole term converge to zero and can be neglected. Nevertheless, a long period is not
suitable for the real-time inertia identification. Hence, it is assumed that the speed at ti
and t f is equal and the second and the third term can be set to zero. In order to satisfy this
condition, a periodic speed formula can be expressed as

ωm(t) = ωm
(
t + Tpi

)
,

dωm

dt
6= 0 (10)

where the Tpi is the inertia identification period and the second and the third term is
equal to zero. The moment of inertia, including the observe value and deviation value by
integration method, can be expressed as

Ĵm + ∆Jm =

∫ t+Tpi
t Te(t)

dωm(t)
dt dt∫ t+Tpi

t

(
dωm(t)

dt

)2
dt

(11)

Eventually, the recursion formula of the identification inertia can be expressed as
(k ∈ N+):

Ĵm(k + 1) = Ĵm(k) + ∆Jm(k)

=

∫ (k+1)Tpi
kTpi

Te(t)
dωm(t)

dt dt∫ (k+1)Tpi
kTpi

(
dωm(t)

dt

)2
dt

(12)

For the purpose of proving the convergence of the recursion Formula (12), assuming
the total deviation value in the identification period is ∆Jtotal , it can be expressed as

lim
k→∞

∆Jtotal = ∆Jm(k) (13)

then,
Jm = lim

k→∞
Ĵm(k) (14)

From Equation (14), it can be seen that the estimated moment of inertia converges to a
constant and proves the convergence of the integration method.

2.3. Viscous Friction Coefficient Identification

Similar to the identification of the moment of inertia, the identification of viscous
friction coefficient using the integration method also needs the mechanical motion equa-
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tion. First, taking the derivative of each term, then multiplying the derivative of velocity,
Equation (5) can be transformed:

dTe(t)
dt ·

dωm(t)
dt = Jm · d2ωm(t)

dt2 · dωm(t)
dt + B̂m ·

∫ t f
ti

(
dωm(t)

dt

)2

+∆Bm ·
∫ t f

ti

(
dωm(t)

dt

)2
+ dTL

dt ·
dωm(t)

dt

(15)

where the ∆Bm and B̂m are the deviation value and observe value of the viscous friction
coefficient. Integrating both sides of (15), the integration form of the mechanical motion
equation can be expressed as

∫ t f
ti

dTe(t)
dt ·

dωm(t)
dt = Jm ·

∫ t f
ti

d2ωm(t)
dt2 · dωm(t)

dt + B̂m ·
∫ t f

ti

(
dωm(t)

dt

)2

+∆Bm ·
∫ t f

ti

(
dωm(t)

dt

)2
+
∫ t f

ti

dTL
dt ·

dωm(t)
dt

(16)

Assuming that the load torque is a constant value or varies slowly during the iden-
tification period, the derivative of the load torque can be approximated to zero. When
calculating the first and third terms on the right-hand side of (16), the expansion of the
integral terms can be expressed as

Jm ·
∫ t f

ti

d2ωm(t)
dt2 · dωm(t)

dt dt

= 1
2 Jm ·

[(
dωm(t f )

dt

)2
−
(

dωm(ti)
dt

)2
]

dTL
dt
∼= 0,

∫ t f
ti

dTL
dt ·

dωm(t)
dt dt = 0

(17)

Substituting (17) with (16), the viscous friction coefficient can be expressed as

B̂m + ∆Bm =

∫ t f
ti

dTe(t)
dt ·

dωm(t)
dt dt∫ t f

ti

(
dωm(t)

dt

)2
dt

− 1
2 Jm ·

( dωm(t f )
dt

)2

−
(

dωm(ti)
dt

)2


∫ t f
ti

(
dωm(t)

dt

)2
dt

(18)

According to Equation (18), similar with the previous analysis, the second term can
also be neglected if the identification period is sufficiently long. In order to adapt to the
real-time identification method in this paper, assuming the absolute value of accelerated
speed at ti and t f is equal or close to each other, the second term can be set to zero. In order
to satisfy this condition, a periodic accelerated speed formula can be expressed as

dωm(t)
dt

=
dωm

(
t + Tp f

)
dt

,
dωm(t)

dt
6= 0 (19)

where the Tp f is identification period of the viscous friction coefficient, it can be expressed as

B̂m + ∆Bm =

∫ t+Tp f
t

dTe(t)
dt ·

dωm(t)
dt dt∫ t+Tp f

t

(
dωm(t)

dt

)2
dt

(20)

Similar with the inertia, the recursion formula of the identification inertia can be
expressed as

B̂m(k + 1) = B̂m(k) + ∆Bm(k)

=

∫ (k+1)Tp f
kTp f

dTe(t)
dt ·

dωm(t)
dt dt∫ (k+1)Tp f

kTp f

(
dωm(t)

dt

)2
dt

(21)
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The convergence of the integration method can be proved by the following formula: lim
k→∞

∆Btotal = ∆Bm(k)

Bm = lim
k→∞

B̂m(k)
(22)

The moment of inertia and viscous friction coefficient can be used for adjustment of
the gains of controller and observer. In this paper, the parameters are directed at tuning the
dynamics proportional gain and integral gain of the speed loop controller.

2.4. Speed Loop Controller Parameter Auto-Tuning

After identification of the inertia and viscous friction coefficient, the speed controller
parameter can be calculated to improve the dynamic performance of the system. Consider-
ing the negligible overshoot in a step tracking response, good regulating characteristics
and zero steady-state error, the proportion integration (PI) controller is used for speed
control in this paper. The transfer function of rotor speed response to command input can
be expressed as

ωm
ω∗m

= KI Kt
Jms2+(Bm+KPKt)s+KI Kt

∼= ω2
n

s2+2ξωns+ω2
n

(23)

where KP and KI represent proportional and integral gain, respectively. ωn is the natu-
ral frequency and ξ is the system damping ratio, the relationship between them can be
expressed as

ξ =
Bm + KPKt

2(Jm · KIKt)
1/2 (24)

ωn =

(
KIKt

Jm

)1/2
(25)

The overshoot of the step function response of (23) is prevented by setting the damping
ratio to 1 just that the absence of zeros and then the unit step response can be expressed as

ωm(t) = 1− e−ωnt(1 + ωnt) (26)

Usually, the response time of the unit step response is defined as the time rise from
0 to 90% of its final value for convenience of designing the PI controller quantitatively.
Equation (26) can be rewritten as:

0.9 = 1− e−ωntre(1 + ωntre) (27)

where tre is the response time, solve the above equation to obtain ωn and then the parame-
ters of PI controller can be expressed as

Kp =
2Jmωn − Bm

Kt
KI =

Jmω2
n

Kt
(28)

From the above formula, the estimated moment of inertia and viscous friction coeffi-
cient are substituted into (28) to adjust the gain of the PI speed controller to accomplish
the parameters auto-tuning of the PMSM servo drive system and improve the dynamic
performance of the system at different running conditions. The block diagram of the PMSM
drive system parameters identification is shown in Figure 2.



Sensors 2021, 21, 4177 9 of 21

Figure 2. Block diagram of the PMSM drive system parameters identification.

3. Improved Integration Identification Method and IPNN-IGSA Optimization Method

According to the above analyses, the classical identification process of the moment of
inertia and viscous friction coefficient has been introduced. However, the classical method
still has some weakness that causes the applied range of it under restrictions. In general,
the limitations of the classical method include the following:

1. The most important condition of the conventional integration method is that the
speed and accelerated speed need to be periodic to ensure the system reach a steady
state relatively, meaning that the sampling period is fixed. However, in fact, this
condition is too rigorous, because the commands of the servomotor equipment are
irregular under normal circumstances.

2. Several key parameters in the conventional integration method have preconditions.
For example, the load torque TL needs to be a constant value or vary slowly during
the identification period. Similarly, the moment of inertia Jm and viscous friction
coefficient Bm also need to be constant or vary slowly. The motor torque constant Kt
needs to be accurate.

3. Although the conventional integration method has ability of noise reduction to de-
crease the quantization error from encoder, if the accelerated speed changes slowly,
the quantization error will cover the real speed change information and make the
system instability.

For the purpose of expanding the applied range of the conventional integration
method to limit the negative impacts, an improved integration method is proposed to
weaken or avoid the first and third limitations, as mentioned above. The first limitation—
i.e., the fixed sampling period of the conventional integration method being too rigorous
and the accelerated speed measurement error being inversely related to the magnitude
of the absolute value of the acceleration, leading to difficulties estimating the accelerated
speed accurately when it is not obvious—causes the system to fail to provide a strict
accelerated speed for inertia and friction coefficient identification. The third limitation—i.e.,
that since the quantization error from the encoder exists, the real speed feedback signals
will contain noise signals—leads to the system being unable to provide accurate speed
information for the identification of the inertia and friction coefficient.

In conclusion, to reduce the accelerated speed estimation error significantly and
expand the applied range, an improved integration method by increasing sampling period
for the process of the moment of inertia and viscous friction coefficient identification is
proposed in this section. Meanwhile, to optimize the speed differential information and
reduce the speed quantization error from the encoder, a smoothing approach using the



Sensors 2021, 21, 4177 10 of 21

IPNN-IGSA for the speed error measurement to filter out the information that the speed
measurement error exceeds the error threshold is proposed in this section.

3.1. Improved Integration Identification Method for Inertia and Friction Coefficient

Most servomotor equipment works in position regulation mode; however the periodic
speed command is not suitable for the position regulation mode. Inversely, frequent start–
stop motion and reciprocating motion are more usual in position regulation mode. The
characteristic of this motion is that the zero-speed point is frequently occurring and the
accelerated speed during a start process and stop process is equal to each other. Therefore,
readjust the sampling period of the moment of inertia from fixed period to speed equal
to zero, readjust the sampling period of the viscous friction coefficient from fixed period
to accelerated speed is different of the previous sampling period. The proposed update
sampling period can be expressed by mathematical formula as:{

ωm(k) = ωm(k− i) = 0
|dωm(k)/dtk| 6=

∣∣dωm(k− i)/dtk−i
∣∣ dωm

dt
6= 0 (29)

Figure 3 is the schematic diagram of the proposed update sampling period. Compared
with the sampling period rule of the conventional method, the proposed method in this
paper has longer sampling period while reducing the accelerated speed estimation error
and more suitable for the servo system position regulation mode. In order to get a better
understanding of the proposed method, the detailed steps are mentioned as follows:

Figure 3. Schematic diagram of the proposed update sampling period.

Updating sampling period of moment of inertia Jm: Preset a speed threshold ωth and
a time threshold Tth firstly that the ωth is the minimum speed that the system can identify
and Tth is the minimum identification duration time of the system. If the real-time speed of
motor is larger than ωth while the time of duration is larger than Tth, move to the next step,
otherwise, repeat the above process. Then, update the Jm if the motor speed ωm is equal
to zero, otherwise repeat the process. Finally, move back to the initial step to update the
moment of inertia for the next period.

Updating sampling period of viscous friction coefficient Bm: Differentiating the speed
firstly and preset the accelerated speed threshold ∆ωth which is the minimum accelerated
speed that the system can identify. If the absolute value of the real-time accelerated speed
is larger than ∆ωth while the time of duration is larger than time threshold Tth, move to the
next step, otherwise, repeat the above process. Then, updating the Bm if the absolute value
of the real time accelerated speed |∆ωm(k)| is not equal to the last absolute value of the
accelerated speed |∆ωm(k− 1)|, otherwise repeat the process. Finally, move back to the
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initial step to update the viscous friction coefficient for the next period. The flow chart of
the update process is shown in Figure 4.

Figure 4. The flow chart of the proposed update process.

In conclusion, compared with the conventional method by fixed sampling period, the
proposed method in this paper which increase the sampling period expand the applied
range especially for the servo system position regulation mode and reduce the accelerated
speed estimation error to provide a cleaner input for identification. The experimental
verification part will be given below.

3.2. IPNN-IGSA Optimization Method for Speed Measurement Error

The network structure of the proposed IPNN-IGSA comprises four layers including
the input layer, the pattern layer, the summation layer and the decision layer. In order
to improve the accuracy of neural network training, a hidden layer of neurons is added
between the input layer and the pattern layer until the training error meets the expectation.
The signal propagation of each layer is described in detail as follows.

Input layer: The input data is derived from the training sample values, and then the
input values are passed to all the pattern units. In this paper, the input data is the speed
error e(t) which is obtained by subtracting the output of the estimated speed from the
output of the command speed that can be expressed as
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e(t) = ω∗m −ωm (30)

Suppose the output of the neural network is P types of data (in this paper, the neural
network outputs two types of data, one is the data whose error is less than the threshold
and can be used for the parameter identification, the other one is the data with larger
errors) and the Qp is the neuron belonging to the p−th (p = 1, 2) class. The scalar product
formula is obtained by multiplying the speed error with the weighting coefficient wp,q, and
then input to the pattern layer for the next calculation. The scalar product is expressed as

Zp,q = e(t) · wp,q (31)

Pattern layer: The number of pattern neurons is equal to the number of training data
and each pattern neuron belongs to one type. The nonlinear operation is performed and
use it as an activation function that is shown in (32). The probability of the output of the q
neuron of type p is shown in (33).

yp,q = exp
[(

Zp,q − 1
)
/σ2

]
(32)

Φp,q(e) =
1

(2π)
L
2 σL
· yp,q (33)

where σ is the smoothing parameter, and L is the dimension of training dataset.
Summation layer: This layer calculates the average value of the output of neurons in

each pattern layer with the same type, and calculates the maximum probability that the
data belongs to this category. The probability density function of the type p is obtained by
Parzen window method, as shown in (34). Additionally, the output of the pth summation
neuron is calculated by (35).

fi =

Qi
∑

q=1
Φp,q(e)

Qp
(34)

Sp =
1

Qp
·

Qp

∑
q=1
·Φp,q(e) (35)

Decision layer: The decision layer will estimate the probability of input vectors
according to various types and select the neurons with the maximum probability density
as the output. The output has only one weight, determined by the lost parameter, the prior
probability, and the training pattern for each category. The output of the decision neuron is
calculated by:

eout = argmax
{

1
2

Sp

}
(36)

In order to improve the accuracy of neural network filtering, the probabilistic neural
network is trained by increasing the number of hidden layer neurons. When the training
error does not meet the expectation, a hidden layer of neurons is added between the input
layer and pattern layer until the training error meets the expectation. The network structure
is shown in Figure 5.

For the neural network, the thresholds and weights are the most important parameters
which determine the accuracy of the output results. In order to improve the problem, an
intelligence optimization algorithm IGSA is applied in this paper to optimize the thresholds
and weights.
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There are four variables that are active gravitational mass, passive gravitational mass,
inertial mass and position of each agent in IGSA optimization algorithm. Assuming that the
system has N agents in the search area. Define the Xi =

(
x1

i , · · · xd
i , · · · xN

i

)
(i = 1, 2, · · ·N)

as the position of the i−th agent where xd
i is the d−th dimension value of the agent i. The

force acted on agent i by agent j is shown in formula (37).

Fd
i,j(t) = G(t)

Mpi(t) ·Maj(t)
Ri,j(t) + ε

[
xd

j (t)− xd
i (t)

]
(37)

where G(t) is gravitational coefficient which control the accuracy of the search and be
decreased with the time passed by, Mpi(t) is the passive gravitational mass connected with
agent i, Maj(t) is the active gravitational mass connected with agent j, Ri,j(t) is Euclidean
distance between agent i and agent j, ε is a small constant.

The gravitational constant G(t) is defined as:

G(t) = G0e−τ t
tmax (38)

where G0 is the initial value, τ is the descending coefficient and tmax is the maximum
number of the iterations.

The resultant force applied on agent i in d−th dimension is shown as

Fd
i (t) = Σ

j∈Kbest
randjFd

i,j(t) (39)

The Kbest is the set of the first K agents with the biggest mass and will linearly de-
creased with iteration t. The randj is a random variable in the interval [0, 1]. According to
the Newton’s second law, the acceleration of agent i in direction of the d−th dimension is
as follows:

ad
i (t) =

Fd
i (t)

Mi(t)
(40)
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where Mi(t) is the inertial mass of agent i. The inertia masses and gravitational are updated
by the following equations.

mi(t) =
f iti(t)− fworst(t)
fbest(t)− fworst(t)

(41)

Mi(t) =
mi(t)

N
Σ

j=1
mj(t)

(42)

The f iti(t) is the fitness value of agent i, fbest(t) and fworst(t) are the best and worst
fitness values, respectively.

For the propose of improving the poor local optimization ability and premature
convergence, IGSA adjusts the inertia weight and boundary variation dynamically. Finally,
the speed and position of agent can be updated as follows:

vd
i (t + 1) = randi · w(t) · vd

i (t) + ad
i (t) (43)

6xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (44)

w(t) = wmax −
wmax − wmin

T
· t (45)

where randi is a uniform random variable in the interval [0, 1], the size of wmax and wmin
is according to the actual problem, the T is the maximum number of iterations. The flow
chart of the IPNN-IGSA is shown in Figure 6.

Figure 6. The flow chart of the IPNN-IGSA.
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4. Simulation Results and Discussion

To evaluate the performance of proposed improved integration method and IGSA-
IPNN optimized method, a simulation experiment model for servo controller is built. The
detailed parameters of the servo drive system are descripted in Table 1.

Table 1. Main parameters of the servo controller model.

Parameter Value

Rated power 600 W
Rated torque 1.91 N·m
Rated current 3.5 A

DC link voltage 220 V
Pole pairs 4

Stator resistance 0.643 Ω
d-axis inductance 5.25 mH
q-axis inductance 12 mH

Flux linkage 0.175 Wb
Inertia of servo motor 2 × 10−3 kg·m2

Viscous friction coefficient of servo motor 8 × 10−3 N·m·s

4.1. Performance of the Improved Integration Method

To validate the effectiveness of the proposed method, the sinusoidal reference speeds
were chosen to be 10 Hz, 1500 r/min and 20 Hz, 3000 r/min which have been tested in the
simulation experiment and the period is 0.5 s. Motor speed, electrical torque, acceleration,
moment of inertia and viscous friction coefficient are the observation data of the simulation
experiment. Figure 7 is the inertia and friction coefficient identification simulation experi-
ment results of the classical fixed period integration method and the proposed improved
update sampling period integration method and both methods are running at the sinu-
soidal reference speed of 10 Hz, 1500 r/min simultaneously. In Figure 7, except the speed
and torque, the blue lines represent the classical fixed period integration method and the
red lines represent the improved update sampling period integration method. From the
simulation experiment data, the identification error of classical integration method is 8.7%
while the identification error of improved integration method is 2.2% for the moment of
inertia, and the identification error of classical integration method is 9.3% while the identi-
fication error of improved integration method is 1.8% for the viscous friction coefficient.
Although the inertia and friction coefficient identification results of the improved update
sampling period integration method still have a slight error in comparison with the actual
value, compare to the classical fixed period integration method, the higher precision and
stability demonstrate the excellent identification performance of the proposed method.

Similarly, Figure 8 is the inertia and friction coefficient identification simulation ex-
periment results at the sinusoidal reference speed of 20 Hz, 3000 r/min. The identification
error of classical integration method is 4.3% while the identification error of improved
integration method is 2.6% for the moment of inertia, and the identification error of classical
integration method is 5.2% while the identification error of improved integration method
is 2.1% for the viscous friction coefficient. The results also proved that the higher precision
and stability of the proposed method compared to the classical integration method. Re-
gardless of the speed and frequency of the servo motor, the inertia and friction coefficient
identification accuracy of the method which proposed in this paper is superior to the
classical method.
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Figure 7. Comparison of inertia and friction coefficient identification results at the sinusoidal
reference speed of 10 Hz, 1500 r/min which the blue line represents the classical integration method
and red line represents the improved integration method. (a) Motor speed. (b) Electrical torque.
(c) Acceleration. (d) Moment of inertia. (e) Viscous friction coefficient.
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Figure 8. Comparison of inertia and friction coefficient identification results at the sinusoidal
reference speed of 20 Hz, 3000 r/min which the blue line represents the classical integration method
and red line represents the improved integration method. (a) motor speed. (b) electrical torque.
(c) acceleration. (d) moment of inertia. (e) viscous friction coefficient.
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4.2. Performance of the Improved Integration Method combine with IGSA-IPNN

The simulation experimental results of the proposed IGSA-IPNN to filter out the speed
information with overlarge error at sinusoidal reference speed of 1500 r/min are shown in
Figures 9 and 10. Figure 9 is the part of the speed sample classification results by IGSA-
IPNN, the classification 1 is the invalid speed sample which have excessive error and the
classification 2 is the valid speed sample which the error is within acceptable limits and can
be used for the inertia and friction coefficient identification. Figure 10 is the identification
results of the inertia and friction coefficient; the red lines represent the improved update
sampling period integration method combine with the IGSA-IPNN and the blue lines
represent the improved update sampling period integration method.The identification
error of the single improved integration method is 2.1%, while the identification error
of improved integration method with IGSA-IPNN is 1.3% for the moment of inertia,
and the identification error of single improved integration method is 1.6% while the
identification error of improved integration method with IGSA-IPNN is 1.2% for the
viscous friction coefficient. Thesimulation experiment show that the precision and stability
of the identification results combined with the IGSA-IPNN are slightly better than the
single method and the error is smaller. The validity of the proposed method is proved.

Figure 9. Part of the speed sample classification results by IGSA-IPNN.

Figure 10. Comparison of inertia and friction coefficient identification results at the sinusoidal
reference speed of 10 Hz, 1500 r/min which the blue line represents the single improved integra-
tion method and red line represents the improved integration method combine with IGSA-IPNN.
(a) moment of inertia. (b) viscous friction coefficient.
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4.3. Stability Analysis of the Proposed Method

In order to verify the stability of the proposed method, the stability analysis simulation
experiment is carried out in this paper. A constant 10 N·m load torque is added at 0.4 s
while the sinusoidal reference speed is 1500 r/min; the experiment results are shown in
Figure 11. As can be seen from the experimental results, although the load torque distur-
bance causes a fluctuation of inertia and friction coefficient identification slightly, the result
is ultimately restored to the exact value after a few tenths of a second. The anti-disturbance
performance of the proposed method is proved.

Figure 11. The anti-disturbance performance of the inertia and friction coefficient identification
results: (a) Motor speed. (b) Moment of inertia. (c) Viscous friction coefficient.

5. Conclusions

In this paper, because the classical integration method has constraints that are too
strict—which is not suitable for industrial robots, the speed quantization error generated
by the encoder in the moment of inertia and viscous friction coefficient identification
process—an improved integration method, combined with IGSA-IPNN, is proposed. First,
as the industrial robot is difficult to satisfy the traditional methods of periodic speed and
acceleration requirements when it work in speed or position control mode, an improved
integral method by re-adjusting the update sampling period is proposed that make it stable
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and accurate in more a complex working environment and improve dynamic performance.
In addition, an optimized neural network called IGSA-IPNN is proposed to filter out the
speed differential information with error and provide precise input information for param-
eter identification in this paper. Finally, through different types of simulation experiment
results and data analysis, the effectiveness and stability of the proposed method are verified.
The experiments of parameter identification of industrial robot will be carried out in fol-
lowing research;the compensation of the moment of inertia, viscous friction coefficient and
how to use the identification result to compensate the electromagnetic torque to eliminate
the rotational speed error caused by are the future research priorities.
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