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Abstract: Recently, Doppler radar-based foot gesture recognition has attracted attention as a hands-
free tool. Doppler radar-based recognition for various foot gestures is still very challenging. So far,
no studies have yet dealt deeply with recognition of various foot gestures based on Doppler radar
and a deep learning model. In this paper, we propose a method of foot gesture recognition using
a new high-compression radar signature image and deep learning. By means of a deep learning
AlexNet model, a new high-compression radar signature is created by extracting dominant features
via Singular Value Decomposition (SVD) processing; four different foot gestures including kicking,
swinging, sliding, and tapping are recognized. Instead of using an original radar signature, the
proposed method improves the memory efficiency required for deep learning training by using a
high-compression radar signature. Original and reconstructed radar images with high compression
values of 90%, 95%, and 99% were applied for the deep learning AlexNet model. As experimental
results, movements of all four different foot gestures and of a rolling baseball were recognized
with an accuracy of approximately 98.64%. In the future, due to the radar’s inherent robustness to
the surrounding environment, this foot gesture recognition sensor using Doppler radar and deep
learning will be widely useful in future automotive and smart home industry fields.
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1. Introduction

In recent years, gesture recognition has been playing an important role in opening
new ways of human and machine interaction in a wide variety of applications such as
wearable devices [1-3], smart phones [4], autonomous vehicles [5-7], and health care [8].

Existing sensors for a gesture recognition of movements of hands and arms include
ultrasound [9-12], camera based vision [13-17], and radar [18-28]. Ultrasonic sensors have
the advantage of relatively low price, but they have short detection distance. Camera based
image sensors are a very common gesture recognition approach that use various popular
CNN (Convolution Neural Network)-based deep learning models [13-17]. However,
because camera based sensors are strongly dependent on surrounding environment factors
like lighting, dust, and so on, it is necessary to design sensors very precisely for out-of-
vehicle or outdoor use. Radar has the advantage of being strong against noise signals such
as those from moisture, dust, and vibration. In addition, radar sensors are suitable for
human motion recognition because they have excellent sensitivity and Doppler resolution
to changes of moving objects as well as strong immunity to ambient noise.

Among various types of radar sensor, Doppler radar is a good candidate for gesture
recognition because it has high sensitivity to human movement. Based on machine-learning
and deep learning techniques involving the time-frequency Doppler spectrum, Doppler
radar-based gesture recognition has been intensively studied for static and dynamic hand

Sensors 2021, 21, 3937. https:/ /doi.org/10.3390/s21113937

https:/ /www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4949-0381
https://orcid.org/0000-0002-9991-7083
https://doi.org/10.3390/s21113937
https://doi.org/10.3390/s21113937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113937
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21113937?type=check_update&version=2

Sensors 2021, 21, 3937

2 of 20

gestures [21,22,24,25] and arm gestures [23,26]. In conventional supervised machine-
learning, well-defined extracted features are essential. Typical machine learning methods
are the k-nearest neighbor (KNN), support vector machine (SVM), and random forest
methods [29-33]. However, the recognition performance is strongly dependent on the
predefined features. On the other hand, deep learning approaches based on multi-layer
networks such as the convolutional neural network (CNN) are promising for overcoming
such feature selection problems without advance need for feature sets. GoogleNet, AlexNet,
VGGNet, ResNet, and DenseNet are good examples of deep learning models [34—40].

Among various methods of gesture recognition, foot gesture recognition is a very
useful tool because it allows simple command and control when the hand cannot be
freely used. Existing sensors use simple solutions by means of motion detection. In
conventional sensors, unexpected door opening may occur due to the unwanted movement
of small animals or objects around the sensor. To overcome this problem, the function
has been improved in a way that recognizes the user’s foot movement or intention after
user authentication through an additional external device such as a smart key fob or
smart phone. Nevertheless, the problem of unpredictable door opening remains because
it is difficult to grasp the user’s exact intention or foot gesture. In order to solve this
misrecognition problem in a more sophisticated smart opening system, it is necessary to
recognize foot gestures only with foot motions without a external device.

Conventional foot gesture recognition is performed using a dual channel surface
electromyography (sEMG) wearable band, which has been proposed as a hands-free
controller for entertainment applications [41]. In automotive applications, one method
involves predicting foot movements toward pedals based on capacitive proximity sensing
and the hidden Markov model for robust driver foot tracking and recognition [42,43].
Another method involves detecting only simple kick gestures using Doppler radar and a
machine-leaning model as a kick-activation system [27,28]. Existing foot gesture solutions
have certain limitations such as inconvenience of contact sensing or confined working
zones indoors or inside vehicles.

To overcome these limitations, Doppler radar-based foot gesture recognition has
recently attracted attention as a smart trunk opener for smart vehicles and as a smart door
opener for smart home applications [44—46]. For example, it is very useful to open the
trunk of a car or automatically open and close a house front door using foot motion in
situations in which hands are unavailable or uncomfortable to use. Unfortunately, so far,
Doppler radar-based recognition of various foot gestures is still very challenging.

To the best of our knowledge, no studies have yet deeply dealt with recognition of
various foot gestures based on Doppler radar and deep learning. Therefore, in this paper,
we propose such a Doppler system for foot gesture recognitions. In addition, through the
proposed method, we evaluate the recognition performance of four different foot gestures
and examine impacts on recognition of foot gestures of sudden moving objects such as
rolling objects, passing animals, and so on. To increase the recognition performance, the
deep learning-based recognition requires a vast number of radar images for deep learning
training [47,48].

To overcome the requirement of large memory, a newly extracted high-compression
radar signature image is utilized for deep learning based foot gesture recognition. The
proposed technique creates a new high-compression radar signature by extracting a dom-
inant feature via SVD (Singular Value Decomposition) processing and recognizes four
different foot gestures via a deep learning model, without degradation of gesture recogni-
tion. Instead of a high-resolution original radar signature, the proposed method improves
the required memory efficiency for deep learning training by using a high-compression
radar signature.

This paper presents a new method for effectively selecting valid radar data through
high memory space efficiency and data visualization in the configuration of a large-capacity
model training data set required for gesture recognition using a radar signature and deep
learning. In other words, by converting the radar STFT signature transparently mapped to
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Gray or RGB image instead of dealing with the raw beat signal of the radar output signal,
the visibility of the radar signature can be clearly checked, so that valid radar data for
various gesture targets can be easily selected and thus, a large radar data set is built. On
the other hand, when the STFT radar signature is converted to an image, some signals of
the radar signature are lost due to the quantization error. To minimize this quantization
error, the STFT radar signature was converted to an RGB image instead of a gray image.

Foot gestures of interest include kicking, swinging, sliding, and tapping; also con-
sidered is a moving object, namely a baseball that rolls near the radar sensor and passes
it. This object can have a significant impact on foot gesture recognition because the four
different foot gestures and the movement of the rolling baseball have very similar move-
ment patterns.

The remainder of this paper is organized as follows. Section 2 presents the signal
model of the Doppler radar used for foot gesture recognition. Section 3 presents a new
method using a high-compression radar signature image and deep learning model with
singular value decomposition scheme for foot gesture recognition. Section 4 details vari-
ous experiments and the obtained original and reconstructed radar signature images for
different foot gestures. In Section 5, experimental recognition results of four different foot
gestures are provided. Finally, conclusions are given in Section 6.

2. Signal Model

This section describes the system model of the Doppler radar for foot gesture recog-
nition. Doppler radar can estimate Doppler signatures corresponding to unique foot
motions. Particularly, Doppler signals include micro-Doppler frequency components due
to movements of non-rigid feet and ankles and main Doppler shift components caused by
translational motions of the body.

In a typical Doppler radar, a transmitted (TX) signal is reflected from a foot gesture.
The reflected signal is changed into a beat signal at the receiver (RX). The sinusoidal signal’s
frequency is sensitive to small movements of the foot. A system model of CW (continuous
wave) radar is considered for a single human subject. The CW TX signal is transformed
into a continuous wave signal by sy () = exp(j27tf.t), where f. is the center frequency.

For the Doppler estimation of a set of L rigid and non-rigid targets with different
radial velocities {v, (t), form =1, ..., L}, foot movements will change the targets” Doppler
frequency shifts. These frequencies correspond to {f (t) = 2f,vm(t)/C, form =1,...,L}
where C is the velocity of light. The beat signal of a single frame for a CW radar is obtained
by mixing the transmitted and received signals. The beat signal x(¢) at a single frame is
represented by

L L L
x(t) = Z X1 (1) + ] Z Xm,Q(t) = Z A COS(27T fiut) + jam sin(27T fi,t) (1)
m=1

m=1 m=1

xm,l(t) xm/Q(t)
I-channel Q-channel

where x,,1(t) and x,, o(t) are the I-channel and Q-channel components, respectively, of a
beat signal consisting of L human’s body motion components due to a foot gesture. a,, and
fm are the amplitude and the micro-Doppler frequency components, respectively. After
passing through an ADC (analog-to-digital converter) with sampling rate of f; = 1/T,
the digitized beat signal at a single frame is denoted by X[n] and obtained by substituting
t = nT; into X(t), thatis, X(t) = X(nTs), where T is the sampling time interval.

By transforming the digitized beat signal X|[n] via the FFT (Fast Fourier transform), an
STFT (Short-Time Fourier Transform) spectrogram X (k, f) can be determined as

j2nfn
-5-

M-1
X(k, f) = ZO X[nlwlk — nle 2)
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where w|n] is a window function and M and N are the number of samples per frame and
the point of FFT, respectively.

Equations (1) and (2) ensure that beat signals have different amplitude and frequency
components for each foot movement. By extracting these unique radar signatures in the
time and frequency domains in a beat signal, different foot movements can be distinguished.

3. New Foot Gesture Recognition Method Using High-Compression Radar Signature
Image and Deep Learning Model

Figure 1 shows a new method of using a high-compression radar signature image and
deep learning for foot gesture recognition.

Beat Signal X(t) Ti Predefined
for a foot ADC Wi Cllme' Thresholding for a
gesture mdowing foot gesture
STFT Radar Ra.dar agngture I is mapped Singular Value
. image with .
signature for a RGB from Decomposition
£ . .
oot gesture Transformation Ipgp via ajet (SVD) processing
Xk, ) colormap I =UzyT
Irgp = [Ir, I, I5]
Select the order . Performance
of eigen value Peconsirieted Training in a Testing for four
fo%a foot Radar Image Deep learning different foot
_ T
gesture b = UrZely Model gestures

Figure 1. New recognition method using new radar signature image and deep learning via singular value decomposition

for foot gesture.

The newly proposed foot gesture recognition method is largely composed of a six-step
procedure. The entire procedure includes (1) acquisition of beat signal for each foot gesture,
(2) calculation of STFT radar spectrogram, (3) conversion of STFT radar signature RGB
image, (4) selection of order of eigenvalue, (5) reconstruction of new radar signature image,
and (6) deep learning processing for foot gesture recognition.

In the first step, a beat signal x(t) for different foot gestures is obtained using
Equation (1). In the second step, the STFT spectrogram X(k, f) is extracted from the
received beat signal using Equation (2). Then, only the Doppler frequency of interest
corresponding to the foot gesture is selected through appropriate frequency filtering in
the spectrogram.

In the third step, a radar signature RGB image I is obtained by using RGB transforma-
tion and color mapping to convert the STFT spectrogram. To construct radar data sets for
deep learning training as easily as possible, visualization of radar data is quite useful. In
other words, instead of storing the beat signal (raw data) to select valid data for various
foot gestures, the visibility of the radar signal can be easily checked by means of the STFT
radar signature RGB image, so it is easy to pick up the valid data corresponding to the short
movement. On the other hand, the radar signature signal suffers from the quantization
error caused by the conversion of the STFT radar signature to the RGB image.

To provide a constant-resolution analysis in both time and frequency domains for
robust classification, the reconstructed radar RGB image shall satisfy shift-invariance
property in time and frequency domains because the STFT radar signature satisfies this
shift-invariance property. To meet this shift-invariance property, during the compression,
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the STFT radar signature is converted into an RGB image with a single array proportional
to the magnitude through a colormap.

In the fourth step, an SVD (Singular Value Decomposition) technique is performed
from the radar signature image I and the order of its eigenvalues for feature extraction is
selected. Singular value decomposition (SVD) and principal component analysis (PCA)
are two popular eigenvalue methods used to reduce a high-dimensional data set into
fewer dimensions while retaining important information. SVD is very similar to PCA
because of a data decomposition approach for feature extraction of a signal. SVD is based
on a single datapoint while PCA require a vast amount of data. In other words, PCA
cannot use a single data to pick up features and cannot provide details of the dominant
features. Moreover, different foot gestures are usually hidden in certain specific times and
frequencies, so using SVD to extract the dominant features for a single radar signal allows
for the collection of more comprehensive information than using PCA.

To extract dominant feature information of a foot movement feature from the original
radar image I, the SVD technique is utilized. For convenience, the value of the RGB
image, expressed as an array of three numbers, is mapped to an array of a single number
via color mapping. Here, a jet colormap is used. The final converted RGB image has a
value of one dimension, not three dimensions as obtained via jet colormap. Therefore,
the value of the converted radar RGB image I corresponds to the magnitude of the STFT
radar signature. Then, the transformed image is scaled to the size of p by q (p > q) for
input into the deep learning model. Generally speaking, computational complexity uses
the number of Floating-point Operation(FLOP). Assuming that we use radar images of
size p X q (p = q =227) and truncated SVD, the SVD processing requires computational
complexity of O(3p® + p* + p) FLOP.

Singular value decomposition for radar signature RGB image is expressed as

I=uxv’ (3)

where U and V are the left and right matrix, respectively. The columns of orthogonal
matrices U and V are eigenvectors, and X = diag [07,02,...05,. .. Uq] is the eigen matrix
and diag [-] denotes a diagonal matrix operator. That is, U and V, and X, are expressed in
the following matrix form:

U:[uluZ"'ur"'up}, 4)
-0’1 0 0
0 (%) 0
: : oy :
L= . , ©)
0 0 o
0 0 0
| 0 0 0 |
V=[v10- vy vp]. (6)

By means of the eigenvalues ¢;, and the corresponding eigenvectors u; and v;, the
radar signature RGB image is rearranged into the following expression:

I = 01110] + 02130} + -+ - + Oy1ty0] + - -+ + OgligO;, 7)

where 0; is the eigenvalue and has a descending order, ie., 01 > 02 > ... >0, > ... > 0y,
and u; and v; are unit orthogonal column vectors corresponding to the eigenvalues.
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(a)

Figure 2. The original and reconstructed STFT radar signatures from general RGB image and RGB image via colormap:

Equation (7) shows that the radar signature RGB image consists of a weighted linear
combination of different features.

It is important to determine the eigenvalues and their corresponding eigenvectors so
as to include sufficient feature information for each foot movement in the original radar
RGB image I. By observing the knee points for all foot gestures, which change rapidly,
the threshold of the order of the eigenvalue can be well selected. By means of selection
of the order, a unique and sufficient feature can be extracted, and the high-compression
radar image is simultaneously created in the radar signature image because the order of
the eigenvalues can be small relative to the maximum number gq. This allows the size of the
radar signature image to be dramatically reduced.

When the STFT radar signature is converted into an RGB image, the size of the radar
signature is one-dimensional, whereas the RGB image is separated into three dimensions,
so the original radar signature can be distorted. To overcome this problem (to match the
dimensions of the radar signature and the RGB image), it is converted into an RGB image
that can be expressed as a one-dimensional single value mapped through a colormap.

Figure 2 shows the original radar image, the reconstructed radar image from a RGB
image with three dimensional arrays, and the reconstructed radar image from a RGB image
with a single dimensional array via a colormap.

(b) (c)

(a) Original Image; (b) Reconstructed image from general RGB image; (c) Reconstructed image from RGB image via

a colormap.

In the fifth step, a reconstructed radar signature image with a high-impact feature is
generated. Using the selected order r, a new radar signature image is reconstructed by the
following equation.

I = UL, V]! )

where U, = [ujuy- - - uy], Xy = diag[oj0y- - - 07], and V; = [v1v2- - - v;]; 1 is relatively small
compared to g, ¥ < q. From Equation (8), a high-compression radar signature images with
sufficient features for each foot gesture are newly created.

In the final step, foot gestures are classified by deep learning. The newly proposed
radar image was trained and validated for a well-known deep learning model; foot gesture
recognition is evaluated through a confusion matrix.

4. Experiments and Signature Images for Doppler Radar-Based Foot
Gesture Recognition

Figure 3 shows experimental setup to recognize foot gestures and experimental scenes
for obtaining radar signals for different foot gestures. Figure 3a is an experimental setup to
collect radar data for foot gestures. Here, the radar sensor used for foot gesture recognition
uses a CW modulated waveform. The center frequency is 24 GHz. The maximum detection
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distance is within about 25 m, with RCS = 0 dBm?. Figure 3b,c provide pictures of the
utilized antenna and the amplification board of the beat signal, respectively. Here, the
horizontal azimuth angle and vertical elevation angle are 80 and 12 degrees, respectively. As
can be seen in Figure 3d,e, the radar was installed at a height of about 0.6 m in consideration
of a typical deployment location, such as the bumper height of a passenger car or SUV
vehicle, or an installation location of a smart door. The radar radiates a transmission signal
toward a target. The emitted signal is reflected by movements of the target, that is, foot
motion gestures, and returned to the radar. If a received signal is above any predetermined
threshold, the received signal is captured via the acquisition system after amplification.
Radar STFT signature is transformed by performing a short-time Fourier transform on a
PC. Table 1 summarized the used radar parameters for foot gesture recognition.

Q@B HFD41
SVDC-HS(555)
1A 240vAC/30vDC
Mo cHma ?,,

Figure 3. Experimental setup and foot motion scenes for Doppler-radar based foot gesture recognition: (a) Experimental
setup and data acquisition system; (b) Utilized antenna; (¢) Amplification board for beat signal; (d) Side view of foot gesture;
(e) Front view of same gesture.

Table 1. The used radar parameters.

Radar Parameter Value Unit
Center frequency 24 GHz
Radar type CW -
Sampling rate 10 KHz
Azimuth beam width 80 Degree
Elevation beam width 12 Degree
Maximum detection distance 25 (RCS = 0 dBsm) m
Time window 409.6 ms
Frame rate 49 FPS
FFT point 1024 Point
Overlap size 1023 Point

Figure 4 illustrates different kinds of foot gesture used in this experiment. As can
be seen in Figure 4, the four different foot gestures include kicking, swinging, sliding,
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and tapping; also included is a sudden movement like that of a rolling baseball. Among
the different foot movements, kicking extends one foot from the front of the radar in the
direction of irradiation and then returns it to the original position; swinging involves one
foot moving from a starting a point approximately 45 degrees with respect to the direction
of the radiation, to a point approximately 45 degrees along a curved line; sliding involves
moving one foot from one side to another in a straight line; tapping involves moving foot
up and down, slowly raising the foot in front of the radar and then rapidly bringing it
down; the moving object motion is of a baseball rolling near the radar.

asu Nl [T - e
‘;\ } .‘> '\ \ \
e N | % = |
= Ay T LR

- N

(b) (c) (d) (e)

Figure 4. Illustration of different foot gestures used in experiment: (a) Kicking; (b) Swinging; (c) Sliding; (d) Tapping;

(e) Rolling ball.

The radar signatures are specific and unique and can be distinguished for the different
foot gestures. Here, clutter components caused by various stationary obstacles surrounding
the radar and DC components due to leaky signals are removed by pre-signal processing
before performing a STFT processing. In addition, beat signal is sampled at a sampling rate
of 10 KHz for each time window of 409.6 ms. During the STFT processing, time window
of 409.6 ms has four sub-time intervals of 102.4 ms. A 10 kHz sampling for 409.6 ms
will produce data of 4096 points. The sampled data of 4096 points becomes data size of
1024 x 3073 by doing STFT operation having the parameters such as the point of FFT of
1024 and the size of overlap of 1023. The STFT radar image is finally extracted at a frame
rate of 4.9 fps.

To configure the data set for each foot gesture, the STFT radar spectrogram was
transformed into an RGB image. The STFT radar spectrogram has a size of 1024 x 3073.
Only the frequency shift of a foot gesture in the STFT radar spectrogram is extracted. From
various experimental results, Doppler frequencies caused by foot gestures are mainly in the
range of —250 Hz to 250 Hz. The Doppler frequency of interest for foot gesture recognition
is marginally chosen from 500 Hz to 500 Hz. Therefore, the STFT radar spectrogram of
1024 x 3073 size is converted to an original RGB image of 105 x 3073 size. Therefore,
radar spectrum with size of 1024 x 3073 was converted to a 105 x 3073 RGB image, and
the converted RGB image is rescaled to an RGB image of 227 x 227, which becomes the
input for the deep learning model. Here, to convert the STFT radar spectrogram into an
RGB image, the STFT radar spectrogram was transformed into an RGB image using a
jet colormap.

Figure 5 shows radar signatures in the time and frequency domains and the STFT
spectrogram for four different foot gestures and one rolling ball. In Figure 5, each row
represents a radar signature for a specific recognition target. The first, second, and third
columns show radar signals in the time domain, radar signals in the frequency spectrum,
and the STFT spectrogram for each target, respectively. The STFT spectrogram is obtained
by performing STFT processing with the following Kaiser window function [49,50].

o(my1- (7))

wln] = o) ,forn=10,1,...N —1] )
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where [j(+) is the modified Bessel function of the first kind with an order of zero and
B = 5. Because the time window of STFT uses the Kaiser function, which is a unit energy
window function, the STFT radar signature is a linear and shift-invariant distribution in
time and frequency. Because the STFT radar signature is magnitude-wise converted into a
RGB image via a colormap, the reconstructed STFT radar image satisfies shift-invariance
property in time and frequency domains. Thus, it provides a constant-resolution analysis

in both time and frequency domains for robust classification.
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Amplitude(v)
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03 0.4 Frequency(Hz) Time(s)
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Figure 5. Radar signature for kicking: (al) Time domain; (b1) Frequency domain; (c1) STFT spectrogram.Radar. signature

for swinging: (a2) Time domain; (b2) Frequency domain; (c2) STFT spectrogram.Radar. signature for sliding: (a3) Time

domain; (b3) Frequency domain; (¢3) STFT spectrogram. Radar signature for tapping: (a4) Time domain; (b4) Frequency

domain; (c4) STFT spectrogram. Radar signature for a rolling baseball: (a5) Time domain; (b5) Frequency domain;

(c5) STFT spectrogram.

()

Figure 6 shows the original STFT radar RGB images for the four different foot ges-
tures. As can be seen in Figures 4 and 5, there are clear distinguishing features in the time
domain, in the frequency domain, and in the STFT spectrogram for each target. Looking
at the symmetry of the time domain and frequency spectrum, kicking and sliding have
symmetrical properties, while swinging and tapping have asymmetric characteristics. In
addition, from the point of view of bandwidth, kicking, swinging, and tapping have rela-
tively wider bandwidths, while sliding and the rolling baseball exhibit relatively narrower
bandwidth due to their different kinetic mechanisms. For example, sliding has a relatively
low amplitude and many sidelobes in the frequency domain compared to kicking. Because
the movement direction of swinging is almost perpendicular to the direction of radiation,
the radial component of the Doppler frequency shift is relatively small. Figure 7 shows
original STFT radar signature images for five different gestures measured from the radar
installed at another height of about 1.5 m.

Kicking, swinging, and sliding involve motions of the foot approaching and moving
away from the radar. Kicking starts with taking the foot off the floor and finishes with a
motion of putting the foot back on the floor after fully extending the foot. According to the
STFT spectrogram image, the kinetic mechanism allows the sign of the Doppler frequency
shift to change from negative to positive and the received signal is stronger than those
during swinging or sliding.

In cases of both swinging and sliding, the STFT spectrogram exhibits similar frequency
bands but slightly different levels of received power. The strongest received signal is the
moment when the foot approaches the radar most closely.

T ——————
| —

(b) (©) (d) (e)

Figure 6. Original STFT radar signature images at a height of about 0.6 m: (a) Kicking; (b) Swinging; (c) Sliding; (d) Tapping;
(e) Rolling baseball.
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(a)

(b) (c) (d) (e)

Figure 7. STFT radar signature images at a different height of about 1.5 m: (a) Kicking; (b) Swinging; (c) Sliding; (d) Tapping;

(e) Rolling baseball.

The radar signature in the time domain, the radar signature in the frequency domain,
and the STFT spectrum for tapping motion were measured by taking a motion of slowly
raising and suddenly lowering the instep. This motion has a unique STFT spectrogram
that can be divided into an almost unchangeable and a relatively narrower frequency band
in a relatively long interval and a relatively strong and wider frequency band in a very
short interval.

The rolling ball has a distinguishable feature in that the STFT spectrogram has several
narrow frequency bands due to the ball’'s moving speed as well as the ball’s rotational
speed during measurement.

Figure 8 shows the eigenvalue and cumulative energy of original radar signature
RGB images for different foot gestures. From Figure 8, as expected, knee points for all
foot gestures that change rapidly are observed; each foot gesture has different knee points,
meaning that each foot gesture has a respective domain energy.

The eigenvalue

Kicking
- = =Swing i
.......... Sliding >
_____ Tapping ED
—3¢— Object E
25|
[}
£ 09, §
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o ¥ Sliding
| O T R Tapping
| | e _ —— Object
w 08 ‘ ‘ ‘

10715 .
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The order of eigenvalue

100 150 200 0 50 100 150 200
The order of eigenvalue

(a) (b)

Figure 8. Eigenvalue and cumulative energy in radar signature RGB image for different foot gestures: (a) Eigenvalue; (b)

Cumulative energy.

Figure 9 shows the original and reconstructed radar signature RGB images according
to the different compression ratios for the kicking gesture. Here, the relationship between
the order of eigenvalue to be selected and the compression ratio is calculated by

r(p+q)=pq(l—e) (10)

where r is the order of eigenvalue to be selected and p and g are the dimensions of
the original image matrix and € is the compression ratio of the original image to be
reconstructed. Figure 9a is the original radar signature RGB image and Figure 9b,d are the
reconstructed radar images with different compression ratios € = 90%, 95%, and 99%. Here,
the selected order of the eigenvalue r is 11, 6 and 1, respectively.
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(a) (c) (d)

Figure 9. Original and reconstructed radar signature RGB images according to different compression ratios for kicking
gesture: (a) Original radar image; (b) Reconstructed radar image with compression ratio of € = 90%; (c) Reconstructed radar
image with compression ratio of € = 95%; (d) Reconstructed radar image with compression ratio of € = 99%.

Figure 10 shows the reconstructed radar signature RGB images according to the differ-
ent foot gestures and the movement of a moving object all with the same compression ratio
of € = 99%. Figure 10 corresponds to kicking, swinging, sliding, and tapping movements
and the movement of the rolling baseball. Figure 10 provides reconstructed radar signature
RGB images for each different foot gesture, which are slightly distinguishable.

(a) (b) (©) (d) (e)

Figure 10. Reconstructed radar signature RGB images according to different foot gestures and movement of moving object,
with compression ratio of € = 99%: (a) Kicking; (b) Swinging; (c) Sliding; (d) Tapping; (e) Rolling ball.

5. Recognition Results

The original radar signature RGB images for the four different foot gestures and one
rolling ball were acquired with 700 images for each target. The total number of original
radar images was approximately 3500. To acquire radar images for each foot movement,
one woman and four men took part in this experiment. Among the acquired radar images,
600 for each foot gesture were used in a ratio of 90:10 for training and cross-validation
for deep learning processing; 100 images for each foot gesture were used to evaluate foot
gesture recognition.

To select a learning framework to evaluate the recognition performance of the pro-
posed method, comparative experiments were performed on five different learning models
including PCA based SVM, because PCA based SVM method is widely used in the motion
classification. In this paper, the learning frameworks considered are GoogleNet, ResNet,
VGG, AlexNet, and PCA based SVM [34,39,40,51-53]. Comparative recognition perfor-
mance is summarized in Table 2. In this case, the recognition indicators are recall, precision,
F1, and accuracy. Each performance indicator is defined like that recall = TP /(TP + FN),
precision = TP /(TP + FP), F1 = 2 (recall x precision)/(recall + precision), and accuracy
= (TP + TN)/(TP + FP + FN + TN). Here, TP, TN, FP, and FN are abbreviated as true
positive, true negative, false positive, and false negative, respectively. Model training was
performed on a PC with Intel (R) core (TM) i7-9800X CPU core, clock speed of 3.80 GHz,
RAM of 64 GB, and two nvidia titan GPU computational performance. As can be seen from
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Table 2, the foot gesture recognition using the proposed high compression method was
compared with the others for five different models. Five different learning models have
very good performance. In this paper, the AlexNet model was selected among several deep
learning models by considering the learning time and recognition performance.

Table 2. Comparative experiments’ results for five different learning models.

Training Time

Model (Minutes) Recall Precision F1 Accuracy
GoogleNet 2.54 091 0.92 091 0.96
ResNet 1.52 0.89 0.90 0.89 0.96
VGG 12.4 0.95 0.95 0.95 0.98
AlexNet 1.24 0.92 0.93 0.92 0.97
PCA-SVM 2.38 0.92 0.94 0.92 0.97

Table 3 shows the accuracy and loss after training and cross-validation based on
the AlexNet deep learning model for various radar signature images. With respect to
different compression ratios, radar signature images are used to evaluate the recognition
performance. Case # 1 is training results using original image; case # 2 uses 90% compressed
radar images; cases # 3 and # 4 correspond to radar signature images having 95%, and
99% compression ratios, respectively. Here, the utilized validation frequency is 50; the
maximum epochs and size of the mini batches are 30 and 128, respectively. The AlexNet
deep learning model was found to have a good accuracy of above 95% even when using
radar signature images with compression ratio of 95%.

Table 3. Training results based on AlexNet deep learning model: training accuracy and loss.

Case Training Accuracy Loss
Case#1 96.0 0.14
Case #2 97.0 0.23
Case #3 96.7 0.14
Case#4 85.7 0.53

Figure 11 shows foot gesture recognition performance obtained using the proposed
method in cases of original and reconstructed radar images for both training and test
evaluation. Here, four different foot gestures of kicking, swinging, sliding, and tapping are
considered as well as the movement of an unpredictable object that may affect foot gesture
recognition, a rolling baseball.

As can be seen in Figure 11, the confusion matrix represents the recognition perfor-
mance of the four different foot gestures using the proposed radar signature image and
AlexNet deep learning model. The horizontal and vertical axes in the confusion matrix are
the input and output, respectively, of the AlexNet deep learning model.

As can be seen in Figure 11a, all different gestures have good recognition recall of
about 96.4% and false recognition rate of about 3.6%. Among the four different foot
gestures, tapping has the best recognition, with a recall over 98%. Compared to the other
foot gestures, tapping has a short, strong, and clear feature in the radar signature image.
On the other hand, sliding, swinging, and the rolling baseball were more easily confused.
Sliding and swinging have considerable similarities in kinetic mechanism but a subtle
difference that makes it possible to distinguish them. This small difference is caused by the
linear and curved movement patterns. Further, sliding and the rolling ball show nearly the
same linear movement pattern. There is a subtle difference between the two movements.
Sliding involves just linear motion, without up-and-down bouncing, while the rolling ball
suffers from up-and-down motion and linear motion simultaneously. This subtle difference
makes it possible to clearly distinguish them.
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Figure 11. Confusion matrix showing performance of radar sensor’s foot gesture recognition according to original and

reconstructed radar images used for both training and testing: (a) Original radar image; (b) Reconstructed radar image with

compression ratio of € = 90%; (c) Reconstructed radar image with compression ratio of € = 95%; (d) Reconstructed radar

image with compression ratio of € = 99%.

Figure 11b,d show the performance of foot gesture recognition in the case of the pro-
posed high-compression radar images for both training sets. In Figure 11b,c, reconstructed
radar images with compression ratios of 90% and 95%, respectively, are used; in Figure 11d,
reconstructed radar images with compression ratio of 99% are used.

Figure 11b,d show that the four different foot gestures have nearly identical recognition
recall of approximately 96% when comparing case using reconstructed radar image with
a compression ratio of 90% and case of using original radar image. The SVD processing
extracts the dominant signal components corresponding to large eigenvalues and removes
some background noise. So, the accuracy after compression is a little increased due to a
denoising effect of the SVD processing.

Figure 11c shows the case of a reconstructed radar image with compression ratio of
95%: the recognition recall is a very high 92%. Among the four different foot gestures,
kicking and tapping have especially excellent recall of more than 97%.
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In Figure 11d, for a reconstructed radar image with compression rate of 99%, the
recognition recall is slightly worse at approximately 90%. Especially, swinging and sliding

gestures have recognition recall values of approximately 85%.

To assess the quality of recognition and a more accurate understanding, we depict
comparative recognition results for each foot gesture based on reconstructed radar images

with different compression ratios graphically and numerically.

Figure 12 shows graphically probabilistic performance of radar sensor’s foot gesture
recognition according to original and reconstructed radar images. Table 4 shows more
detail of numerically probabilistic performance. Here, recall, precision, and F1 are used as

recognition performance for different target gestures.
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Figure 12. Probabilistic performance of radar sensor’s foot gesture recognition according to original and reconstructed

radar images: (a) Recall; (b) Precision.

Table 4. Probabilistic performance details of radar sensor’s foot gesture recognition according to
original and reconstructed radar images.

Compression Gesture Recall Precision F1
Kicking 0.97 0.9798 0.9749
Swing 0.96 0.9412 0.9505
Original Sliding 0.94 0.9216 0.9307
Tapping 0.98 1 0.9899
Object 0.97 0.9798 0.9749
Kicking 0.99 1 0.9950
Swing 0.92 0.9684 0.9436
90 Sliding 0.98 0.8909 0.9333
Tapping 0.97 1 0.9848
Object 0.97 0.9798 0.9749
Kicking 0.98 1 0.9899
Swing 0.77 0.9747 0.8603
95 Sliding 0.9 0.7949 0.8571
Tapping 0.98 0.9515 0.9655
Object 0.97 0.9418 0.9557
Kicking 0.97 0.9898 0.9798
Swing 0.84 0.8571 0.8485
99 Sliding 0.85 0.7798 0.8134
Tapping 0.95 0.9314 0.9406
Object 0.91 0.9785 0.9430

Figure 13 shows foot gesture recognition performance when compressed and original
radar signature images are used as data sets for training and testing, respectively. Since
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radar-based deep learning for gesture recognition requires high-volume images for training,
it is necessary to use high-compression, low-capacity radar images to improve the memory
efficiency. When a highly compressed radar image is used for training and a high-resolution
original radar image is used as input of deep learning model, this has a considerable impact
on recognition performance of radar-based foot gestures.
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Figure 13. Confusion matrix showing foot gesture recognition performance when compressed and original radar signature

images are used as data sets for training and testing, respectively: (a) Reconstructed radar of compression ratio of 90%
for training and original radar images for testing; (b) Reconstructed radar of compression ratio of 95% for training and
original radar images for testing; (c) Reconstructed radar of compression ratio of 99% for training and original radar images

for testing.

In Figure 13a,b, radar images with 90% and 95% compression ratios, respectively, are
used for deep learning training. Figure 13a shows recognition recall of foot gestures of
approximately 96% when reconstructed radar images with compression ratio of 90% are
used for training and original radar image is used for test evaluation.

When radar images with different compression ratios are used for training and testing,
the recognition performance of foot gestures is almost the same as in cases using all original
radar images and all compressed radar images with compression ratio of 90%, respectively,
for training and testing.

Figure 13b shows that when reconstructed radar images with compression ratio of 95%
are used for training and original radar images are used for test evaluation, the recognition
recall of all foot gestures is approximately 92%. In this case, the recognition performance of
foot gestures is almost the same as in the case in which all reconstructed radar images with
compression ratio of 95% are used for both training and testing.

Figure 13c shows that when reconstructed radar images with compression ratio of
99% are used for training and original radar images are used as input, the recognition
recall of all the foot gestures is approximately 63%. In Figure 13c the recognition recall
values for kicking and tapping are 95%, and 83%, respectively. The recognition recall for
the rolling ball is approximately 97%. On the other hand, the recognition recall of swinging
and sliding were 19% and 23%, respectively, values showing considerable deterioration.
From Figure 13, radar-based deep learning for foot gesture recognition can achieve good
recognition performance and high memory saving by using as training images radar
images at compression ratio of about 90%. Regardless of the use of either compressed or
original radar images as input, the recognition recall of foot gestures is over 92%.

Figure 14 shows the required memory capacity versus the number of training data
according to different kinds of radar signature images for foot gesture recognition using
radar-based deep learning model. Under the assumption that one pixel image is one byte,
the utilized original radar RGB image has approximately 151 Kbytes. As can be seen in
Figure 14, compared to using the original radar images, the required memory capacity can
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be considerably reduced (approximately 19 times) by using radar images with compression
ratio of 95%. In other words, if we use a million radar RGB images for deep learning
training, memory requirement will be approximately 144 GB. On the other hand, if we use
reconstructed radar images with 95% compression ratio, memory of about 8 GB will be
required for the same number of images.

150 . . . .
——Original Radar Image
- = =Radar Compression Image, € = 90%
----- Radar Compression Image, € = 95%
---------- Radar Compression Image, € = 99%
__ 100 .
m
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Figure 14. Required memory capacity according to number of training data.

6. Conclusions

In this paper, we propose a new technique for foot gesture recognition using an SVD
based high-compression radar image and a deep learning model. Here, four different foot
gestures including kicking, swinging, sliding, and tapping, and the movement of a rolling
baseball as an example of something other than a foot movement, were considered. The
Doppler radar signature in the time domain, the Doppler radar signature in the frequency
domain, and the STFT spectrogram for four different foot gestures were measured and
unique radar signatures corresponding to each foot gesture were obtained. In addition,
to improve the required memory efficiency, a reconstructed radar signature image with
high-compression and a unique dominant feature is created by appropriately selecting
high-impact eigenvalues through an SVD processing; the newly proposed radar signature
image is used for both training and as input for the deep learning model for foot gesture
recognition. Finally, to evaluate the foot gesture recognition performance, AlexNet, a CNN-
based deep learning model, was used. The four different foot gestures included kicking,
swinging, sliding, and tapping. Original and reconstructed corresponding radar images
with high compression values of 90%, 95%, and 99% were used for the AlexNet based
deep learning model. As for experimental results, in the case of using a high-compression
(95%) radar signature image, all four different foot gestures and the rolling baseball were
found to have nearly the same recognition accuracy of approximately 98.64%, similar to
that obtained in the original high-resolution radar images.

In the future, due to the radar’s inherent robustness to surrounding environments,
foot gesture recognition sensors using Doppler radar and deep learning will be widely
useful in future automotive and smart home industry fields such as smart trunk openers,
smart door openers, and so on.
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