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Abstract: This study proposes a novel hybrid imitation learning (HIL) framework in which behavior
cloning (BC) and state cloning (SC) methods are combined in a mutually complementary manner to
enhance the efficiency of robotic manipulation task learning. The proposed HIL framework efficiently
combines BC and SC losses using an adaptive loss mixing method. It uses pretrained dynamics
networks to enhance SC efficiency and performs stochastic state recovery to ensure stable learning
of policy networks by transforming the learner’s task state into a demo state on the demo task
trajectory during SC. The training efficiency and policy flexibility of the proposed HIL framework
are demonstrated in a series of experiments conducted to perform major robotic manipulation tasks
(pick-up, pick-and-place, and stack tasks). In the experiments, the HIL framework showed about a
2.6 times higher performance improvement than the pure BC and about a four times faster training
time than the pure SC imitation learning method. In addition, the HIL framework also showed about
a 1.6 times higher performance improvement and about a 2.2 times faster training time than the other
hybrid learning method combining BC and reinforcement learning (BC + RL) in the experiments.

Keywords: robotic object manipulation task; hybrid imitation learning; behavior cloning; trajectory
cloning; dynamics modeling

1. Introduction

An advanced service robot automates tasks performed by humans in the past—
recognizing the surrounding conditions correctly, including human motion, the position of
objects, and obstacles. As intelligent service robots are increasingly finding their foothold
in our daily lives, techniques for efficient robotic object manipulation are attracting much
research attention [1]. Several researchers have studied motion planning, which is the
mainstream approach to executing robotic manipulation tasks [2–4]. However, motion
planning has several limitations. It requires highly sophisticated kinematics and an inverse
kinematics model in a high-dimensional workspace to generate a control sequence for a
multi-joint robotic hand [5]. Therefore, in an actual execution environment with perceptual
and behavioral uncertainties, motion planning is prone to task failure, requiring frequent re-
planning [6]. Recently, there has been a surge in research on robotic manipulation learning,
where frameworks based on machine learning and artificial intelligence as alternatives to
motion planning are used to address these limitations [7,8]. Robotic manipulation learning
also faces hurdles to its full implementation. Above all, object manipulation tasks using a
multi-joint robotic hand require physical control of each joint motor in a high-dimensional
continuous state–action space. Therefore, robotic manipulation learning involves a long
learning period and a large amount of experience data. Additionally, in a real-world robotic
manipulation environment, sensory data and action control have a high level of uncertainty.
This environmental uncertainty should be addressed by learning flexible and reliable action
policies during learning.

Considering all these difficulties, roboticists are focusing their efforts on developing
techniques to facilitate imitation learning of manipulation tasks [9,10]. Behavior cloning
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(BC) and state cloning (SC) are two typical imitation learning methods whereby robots learn
action policies without any trials using a demo dataset containing human expert trajectories
or other robotic task demonstrations. The policy network is taught to the learner robot by
imitating the action sequences on demo task trajectories in BC [11–13] and following the
task states similar to demo states on demo task trajectories [14–16]. The BC and SC training
modalities are briefly illustrated in Figure 1a,b, respectively. The orange nodes and arrows
represent the demo states sE

t and demo actions aE
t over a demo task trajectory.

Figure 1. Behavior cloning (BC) vs. state cloning (SC).

In BC, as illustrated in Figure 1a, the learner robot starts from the demo state sE
1 and

updates the policy network, as it proceeds with the task, to reduce the difference between
its intended action at and the demo action aE

t assuming that a demo state sE
t is at each

task step t, according to the demo task trajectory d =
〈(

sE
1 , aE

1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

.
For example, let the action taken by the robot at the demo state sE

1 be a1 and the demo
action be aE

1 . The policy network is then updated in BC to match the robot’s action at to
the demo action aE

1 . The robot does not proceed to the next step in the new task state s2
but at the demo state sE

2 . As such, BC has the advantage of efficient learning of action
policies, minimizing trial and error, but the disadvantage of learning action policies with
limited coverage.

In SC, as illustrated in Figure 1b, the learner robot starts from state sE
1 and proceeds

with the task, updating the policy network to reduce the difference between the task state
st+1, which the robot reaches by choosing and implementing its action at at each task step
t, and the demo state sE

t+1, according to the same demo task trajectory d. For example, the
policy network is updated in a manner that the task state s2, which can be reached by the
robot by taking action a1 at the demo state sE

1 , matches the demo state sE
2 . Subsequently,

instead of going on to the next step at the demo state sE
2 , the robot continues at a new task

state s2. As such, SC has the advantage of more flexible learning of action policies with
broader coverage but the disadvantage of requiring more training time and computational
effort. Moreover, stable training of the policy network is undermined if the learner robot’s
real task trajectory d′ is too far away from the demo task trajectory d while carrying out SC,
as shown in Figure 1b.

There are recent works on hybrid learning methods combining BC imitation learning
and reinforcement learning to improve both training efficiency and policy flexibility [17–19].
The hybrid learning methods make use of a combination of loss functions [17,18], a com-
bination of reward functions [19], or pretraining and fine-tuning [20]. The first hybrid
learning method [17,18], combining the BC loss LBC and the reinforcement learning loss
LRL, shows high efficiency of training, since it depends mainly upon the successful demo
trajectories. However, the hybrid learning method with a loss combination reveals low
flexibility of the learned policy, since extra experience data uncovered by the demo dataset
cannot be used for training the policy network. The second hybrid learning method [19],
combining the imitation reward RBC and the task reward RRL, shows high flexibility of
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the learned policy, since it allows extra experience data to be used for training the policy.
However, the hybrid learning method with a reward combination reveals low efficiency of
training due to allowing trial-and-error experiences. The third hybrid learning method [20]
pretrains the same policy network with BC and then fine-tunes it with reinforcement
learning. It has the advantage that it can warm start the policy network, but it has a
disadvantage that it might lead to poorer generalization [17]. To the best of the authors’
knowledge, no research has yet been devoted to developing a hybrid learning method that
combines SC imitation learning with other learning methods.

This study proposes a hybrid imitation learning (HIL) framework, which is a novel
imitation learning framework characterized by integrating BC and SC in a mutually com-
plementary manner. The HIL framework efficiently combines BC and SC losses using the
adaptive loss mixing weight. The HIL framework also uses a pretrained dynamics network
to enhance the efficiency of SC. Finally, the framework performs stochastic state recovery,
in which the task state is transformed into a demo state on a demo task trajectory while
performing SC to ensure stable training of the policy network. This paper presents the
results of a series of experiments testing the performance of the proposed HIL framework in
executing pick-up, pick-and-place, and stack tasks and thus demonstrates its high training
efficiency and policy flexibility.

The contributions of this paper can be summarized as follows:

• The proposed HIL framework combines BC and SC to enhance the efficiency of
robotic manipulation learning by providing the synergistic effect of their respective
advantages, i.e., high learning efficiency and high policy flexibility.

• The framework efficiently combines BC and SC losses using the adaptive loss mixing
weight, which is automatically adjusted according to the degree of policy convergence.

• The framework efficiently implements SC learning using a pretrained dynamics
network that predicts the next state from the result of the implemented action in
association with the policy network within the HIL framework.

• The framework performs stochastic state recovery while performing SC to ensure a
stable training of the policy network.

• This paper presents the process for and results of a series of object manipulation
experiments using a 9-DOF (degree of freedom) Jaco robotic hand, demonstrating the
high learning efficiency and policy flexibility of the proposed HIL framework.

The rest of the paper is organized as follows: Section 2 reviews the literature related to
the topic of this study. Section 3 explains the design of the novel HIL framework in detail.
Section 4 describes the implementation of the proposed HIL framework and the process
and results of the experiments testing its performance, and Section 5 summarizes the main
findings and concludes the study.

2. Related Work

Several studies have been devoted to robotic imitation learning designed to enhance
the training efficiency of robotic manipulation tasks with a high-dimensional continuous
state–action space [21,22]. Imitation learning methods can be categorized according to the
information type of the demo data for policy network training. Among the information
types contained in demo data, i.e., the demo task trajectory, BC trains policy networks
based on demo actions [11–13]. The major advantage of BC is its facility of policy network
convergence with a small number of learning iterations [17]. However, BC has limited
coverage of learned policies and a bias risk of training data because it uses only demo data
for policy training [12,17]. To compensate for these problems, previous studies attempted
methods of using the additional experience data, collected by the learner robot from its
experience, for policy training [23–25] or requesting experts for additional demo data
throughout the learner robot’s online learning [12,22,26,27].

In SC, another imitation learning method, a policy network is trained using the
demo states contained in a demo task trajectory [14–16]. The learner robot does not need
to act as written on the demo task trajectory. Instead, SC requires the execution of a
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given task by passing through the task states as similar to the demo states as possible.
This provides SC advantages over BC because it can reflect various states and actions
outside the demo task trajectory during policy training. For this reason, compared to BC,
SC provides the learner robot with policy learning with more flexibility and a broader
application range [15]. In SC, the policy network parameters should be updated based
on the SC loss calculated by adding the difference between each pair of demo states and
task states. Some researchers attempted to predict a real task state using a dynamics
network [14–16]. These studies proposed methods for defining the action to be taken by
the learner robot using a policy network and predicting the next task state, which is the
result of the action taken, using a dynamics network. These methods can help achieve a
higher data efficiency than those for observing the next state after executing an action in a
real environment. However, it is a great challenge to learn the optimal dynamics network
in a robotic manipulation environment with a high-dimensional continuous state–action
space, with the dynamics network performance posing the problem of interfering with
policy network training [28,29]. In order to effectively train the dynamics network in a
robotic manipulation environment, the proposed HIL learning framework applies a novel
stochastic state recovery technique during state cloning.

Likewise, a range of hybrid learning methods combining BC and other methods have
also been attempted [17–20]. This type of hybrid learning can be categorized into methods
using a mixed loss function [17,18] or a mixed reward function [19]. Policy networks were
trained using the mixed loss function combining the BC loss and reinforcement learning
loss in studies on imitation learning [17,18], and the mixed reward function combining
the task progress-based task reward and the BC-based imitation reward in a study on
reinforcement learning [19]. These and other studies have proposed a variety of hybrid
learning methods, but no research has yet been devoted to developing a hybrid learning
method combining SC and other learning methods. Different from existing hybrid learning
methods, however, our HIL hybrid imitation learning framework tries to combine BC and
SC to learn an effective robotic manipulation policy for the first time. Therefore, the HIL
framework can have high efficiency of training as well as high flexibility of policy.

3. Methodology
3.1. Problem Description

In this study, the imitation learning problem for robotic manipulation tasks is de-
fined as M = (S, A, P, T, D, π). S and A denote the state space and action space, re-
spectively, and both are defined as high-dimensional continuous spaces. For example,
each state of the 9-DOF robotic hand executing a pick-up task, as shown in Figure 2, be-
comes a high-dimensional continuous space by expressing it in terms of 9-joint angles
(aj0, aj1, aj2, aj3, aj4, aj5, aj6, aj7, aj8), angular velocities (vj0, vj1, vj2, vj3, vj4, vj5, vj6, vj7, vj8),
and 7D pose of the manipulated object (px, py, pz, ox, oy, oz, ow). Moreover, the action
space also becomes a high-dimensional continuous space by expressing the action exe-
cuted by the robotic hand performing this task in terms of the joint velocity command
(vcmd

j0 , vcmd
j1 , vcmd

j2 , vcmd
j3 , vcmd

j4 , vcmd
j5 , vcmd

j6 , vcmd
j7 , vcmd

j8 ).

Figure 2. An example of robotic manipulation task.
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P denotes the stochastic state transition probability P : S× A× S→ [0, 1] , which
represents the effect of the action. It is assumed here that the stochastic state transition
probability distribution is not known to the robot and that the robot must learn it by
experience. T denotes the assigned robotic task, which is commonly expressed by pair(

cinitial , cgoal

)
of the initial state condition (cinitial) and the goal state condition (cgoal). D

denotes the demo dataset D =
{〈(

sE
k1

, aE
k1

)
, . . . ,

(
sE

kl
, aE

kl

)〉
|k = 1, . . . , n

}
and consists of

the sequence of the pairs
(
sE

i , aE
i
)

of the task trajectories performed by an expert.
In this study, it is assumed that the state and action spaces of the demo task performed

by the expert are the same as those of the robotic learning task. From this, it follows that
any given demo state and action (sE

i and aE
i , respectively) contained in D are assumed to

be sE
i ∈ S and aE

i ∈ A. Conversely, π denotes the stochastic policy for the implementation

of T =
(

cinitial , cgoal

)
, expressed as πT : S× A→ [0, 1] , which determines the action at to

be taken by the robot in the state st to execute the assigned task T. In this imitation
learning problem M, the learner robot’s goal is to efficiently learn the action policy πT to
achieve the task T =

(
cinitial , cgoal

)
using the demo dataset D. Table 1 summarizes the

brief descriptions of variables used in this paper.

Table 1. Variable descriptions.

Variable Description

sE
t Demo state

aE
t Demo action

st Task state
at Task action
S State space
A Action space
P Stochastic state transition probability
T Assigned robotic task

cinitial Initial state condition
cgoal Goal state condition
πθ Stochastic policy network
d Demo task trajectory
D Demo dataset
l Length of each demo task trajectory

LBC Behavior cloning (BC) loss
LSC State cloning (SC) loss
Lmix Mixed loss
dconv Degree of policy convergence

fφ Dynamics network
αe Loss mixing weight
ρ State recovery probability

3.2. Hybrid Imitation Learning (HIL) Framework

BC and SC, two mainstream imitation learning methods, have shown excellent achieve-
ments in a variety of fields but have unique limitations. As explained previously, BC’s
major problem is its failure to efficiently address various environmental states not con-
tained in the demo dataset because its action policy learning is limited to the expert’s
task trajectories contained in limited quantities in the demo dataset. By contrast, SC does
not compel the learner robot to follow only the task trajectories contained in the demo
dataset for action policy learning. Instead, SC allows the learner robot some free space to
experience new states and actions not included in the demo dataset so that it can learn
action policies with broader coverage and greater flexibility. The disadvantage of this
approach is that it is time-consuming and cost-intensive because it allows the robot to
learn through trial-and-error experience. In an attempt to overcome the drawbacks of
these two imitation learning methods, this study proposes the HIL framework for efficient
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learning of robotic manipulation tasks. Figure 3 illustrates the overall architecture of the
HIL framework.

Figure 3. Hybrid imitation learning (HIL) framework.

The policy network, at the center of Figure 3, is a neural network module representing
the action policy. In this study, a policy network πθ was designed with three fully connected
(fc) layers with tanh activation functions. Each layer contains 100 units. The BC part of the
HIL framework includes a BC loss estimation module that estimates the BC loss LBC by
following a demo task trajectory

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

and comparing at each
task state sE

t the action predicted by the policy network at and the action taken using the
demo data aE

t . The SC part of the HIL framework consists of a dynamics network and
an SC loss estimation module. The dynamics network is a neural network module that
predicts the next environmental state st+1 after the learner robot has taken an action at
from any given state st. The SC loss estimation module starts from the initial state sE

1
of the demo task trajectory

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

and estimates SC loss LSC by
comparing the next state predicted by the dynamics network st+1 and the next state of
the demo task trajectory sE

t+1 under the assumption that the policy network performs the
predicted action at. To efficiently integrate BC and SC, the HIL framework uses the mixed
loss Lmix, which combines the losses LBC and LSC. The loss mixing module (Figure 3, top)
computes Lmix by adaptively combining LBC and LSC at different ratios depending on the
degree of policy convergence dconv. The degree of policy convergence dconv is a measure of
whether the learner robot has learned the policy sufficiently to reproduce the demo task
trajectory. Therefore, the adaptive loss mixing method of the HIL framework is designed to
concentrate the learning on BC in the initial learning phase, where dconv is low, to teach it
to reproduce the demo task trajectory. As dconv gradually increases, however, the learning
focus is shifted to SC to include the ability to learn from experiences of various states and
actions outside the demo task trajectory in policy learning. The overall learning process of
the HIL framework is summarized in Algorithm 1.
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Algorithm 1. Hybrid imitation learning framework.

Function HIL(D, ρ)
/* the demo dataset D =

{〈(
sE

k1
, aE

k1

)
, . . . ,

(
sE

kl
, aE

kl

)〉∣∣∣k = 1, . . . , n
}

,
the state recovery probability ρ */
Initialize the policy network πθ and the dynamics network fφ
fφ = Pretrain_Dynamics_Network(fφ, D, E)
for e = 0, . . . , E epochs do

for I = 0, . . . ,|D| do
Sample d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

from D
LBC, dconv = Behavior_Cloning(πθ, d)

LSC = State_Cloning(πθ, fφ, d, ρ)
Lmix = Loss_Mixing(LBC, LSC, dconv)

Update the policy network parameters θ by gradient descent
θ← θ−∇θLmix

end for
end for
return πθ

After initializing the parameters of the policy network πθ and the dynamics network
fφ, the HIL framework pretrains the dynamics network fφ using the demo dataset D,
followed by the iterative training of the learning process consisting of demo task trajectory
sampling, BC, SC, loss mixing, and policy network updating. First, in the demo task tra-
jectory sampling process step, a demo task trajectory d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

is selected for training from D. In the BC step, dconv is computed based on the demo task
trajectory d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

. In the SC step, LSC is computed based on
d and fφ. In the loss mixing step, Lmix is computed using the adaptive loss mixing weight
αe, as

Lmix = (1− αe)LBC + αeLSC (1)

where the adaptive loss mixing weight αe is not a constant but a variable equivalent to
dconv (αe = dconv); that is, αe increases with increasing dconv, resulting in a decrease in the
weight of LBC and an increase in the weight of LSC in Lmix. Finally, in the policy network
update step, the parameter θ of the policy network πθ is updated based on the mixed
loss, as expressed by Equation (2). In other words, in the HIL framework, θ of the policy
network πθ is updated using a gradient descent analysis of Lmix with respect to the demo
task trajectory.

θ← θ−∇θLmixed (2)

Algorithm 2 describes the implementation process of the aforementioned BC step of
the HIL framework in detail. In BC, the learner robot follows the demo task trajectory d =〈(

sE
1 , aE

1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

, concurrently selecting the action at to be taken in each
demo state sE

t using the policy network πθ ( at ∼ πθ

(
sE

k
)
) and computing the probability

of at to be selected in the state sE
t
(

pt = P
(
at
∣∣sE

t ; πθ

))
, followed by the calculation of LBC

based on the at determined by the policy network πθ and the demo action aE
t , as

LBC = ∑(sE
t , at, aE

t )∈B ‖at − aE
t ‖2

2. (3)

Accordingly, LBC is defined as the sum of the differences between the chosen at,
determined by the policy network πθ in each demo state sE

t , and the demo action aE
t , based

on the demo task trajectory d =<
(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)
>. Additionally, the dconv

of the policy network πθ is calculated in the BC function based on the probability pt for the
learner robot to select the action at at each state sE

t , as

dconv =
1
l ∑l

t=1 pt. (4)
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Lastly, LBC and dconv calculated as above are returned as the final result of the BC func-
tion.

Algorithm 2. Behavior cloning.

Function Behavior_Cloning(πθ, d)
/* the policy network πθ
the demo data d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

*/
Initialize the episodic buffer B to be empty
for t = 1, . . . , l timesteps do
Sample an action at ∼ πθ

(
sE

t
)

pt = P(at
∣∣sE

t ;πθ)
B← B∪

{(
sE

t , aE
t , at, pt

)}
end for
Estimate the BC loss LBC

LBC = ∑
(sE

t , at, aE
t )∈B
‖at − aE

t ‖2
2

Calculate the degree of cloning dconv

dconv = 1
l

l
∑

t=1
pt

return LBC, dconv

3.3. State Cloning with Dynamics Network

As explained above, in the HIL framework, both BC and SC are used to train the policy
network πθ . Unlike BC, SC does not compel the learner robot to imitate the demo task
trajectories only but provides opportunities to attempt new states and actions. In general,
a learner robot faces difficulty in reproducing the demo task trajectories in a real task
environment with a very wide state and action space and high environmental uncertainties.
It is also at a high risk of facing new states unencountered during demo task execution,
even if the same task is repeatedly performed. Therefore, in a robotic manipulation task
environment, a learner robot must be allowed to experience new states and actions outside
the demo task trajectories and to carry out SC imitation learning based on those experiences
to learn more flexible action policies with broader coverage.

Simply put, SC is the process of updating the parameter θ of the policy network
πθ to reduce the loss between state sE

t and the learner robot’s task state st on the demo
task trajectory d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

. The SC process of the HIL process is
illustrated in Figure 4. The figure shows that the SC in the HIL framework uses policy,
dynamics, state recovery, SC loss estimation, loss mixing, and parameter update modules.

Figure 4. State cloning with dynamics network.
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Suppose that a learner robot is currently performing the action at in the environmental
state st. The dynamics network fφ consisting of three fully connected layers among the SC
modules then predicts the next state st+1 as a consequence of the action at. Accordingly, if
the policy network πθ decides on an action at, based on the input of the current state st, the
dynamics network fφ predicts the next state st+1 based on the current state st and action
at. The dynamics network is used in the SC step of the HIL framework following pretrain-
ing using the demo dataset D. Pretraining the dynamics network greatly contributes to
enhancing the learning efficiency of the policy network during the SC process.

The state recovery module plays the role of moving any given state task state st, which
is not on the demo task trajectory d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

, to a state sE
t on the

demo task trajectory during the learner robot’s task execution. In general, throughout the
SC imitation learning, the learner robot is not instructed to imitate the actions on the demo
task trajectory. This makes the learner robot’s actual task trajectory d′ prone to digression
from the demo task trajectory d. An excessive discrepancy between the demo task trajectory
d and the actual task trajectory d′ undermines stable learning of the policy network πθ .
Therefore, in the state recovery module of the HIL framework, stochastic state recovery
is intermittently performed to return the learner robot’s state to a state on the demo task
trajectory using the recovery probability ρ.

The SC loss estimation module calculates LSC using the difference between the two
states sE

t and st. The resultant LSC value is integrated into the mixed loss with LBC using
the loss mixing module. To minimize the mixed loss, the parameters of θ of the policy
network πθ are updated using the parameter update module.

Algorithm 3 describes the SC learning process in detail. The SC learning process
involves the demo task trajectory d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

l , aE
l
)〉

, policy network
πθ, state recovery probability ρ, and pretrained dynamics network fφ. It begins with task
initialization in which the episodic buffer B is emptied, and the learner robot’s task state s0
is set to the initial state sE

1 on the demo task trajectory. This is followed by action sampling,
the second step of SC in which the at to be executed in the state st is decided using πθ

( at ∼ πθ(st)). The third step of SC is the next state determination, in which at is executed,
and the next task state st+1 is determined. Depending on ρ, the next state st+1 is either the
state predicted by fφ(st, at) or a state on the demo task trajectory sE

t+1. In the fourth step,
the pair consisting of the determined next state st+1 and the demo state sE

t+1 (st+1, sE
t+1) is

stored in the episodic buffer B. Steps 2–4 are performed iteratively until task termination,
followed by SC loss estimation, which is the final step. In the SC loss estimation step, LSC
is calculated using the difference between the two states sE

t and st based on the data stored
in buffer B, as

LSC = ∑
(st, sE

t )∈B

‖st − sE
t ‖2

2 (5)

Algorithm 3. State cloning.

Function State_Cloning(πθ, fφ, d, ρ)
/* the policy network πθ, the pretrained dynamics network fφ,
the demo data d, the state recovery probability ρ */
Initialize the episodic buffer B to be empty

s0 ← sE
0

for t = 1, . . . , l − 1 timesteps do
Sample an action at ∼ πθ(st)

st+1 ←
{

fφ(st, at), with (1− ρ)
sE

t+1, with ρ

B← B ∪ {( st+1, sE
t+1)

}
//append each pair of states to B

end for
Estimate the SC loss LSC

LSC = ∑
(st, sE

t )∈B
‖st − sE

t ‖2
2

return LSC
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3.4. Pretraining the Dynamics Network

As mentioned above, the dynamics network fφ performs pretraining using the demo
dataset D prior to implementation of SC in the HIL framework. Algorithm 4 describes the
pretraining of the dynamics network.

Algorithm 4. Pretraining the dynamics network.

Function Pretrain_Dynamics_Network (fφ, D)
/* the dynamics network fφ, the demo dataset D */
for e = 0, . . . ,E epochs do

for i = 0, . . . ,|D| do
Initialize the episodic buffer B to be empty
Sample d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

il , aE
il
)〉

from D
Initialize the environment to initial state sE

1
for t = 1, . . . . il − 1 timesteps do
Execute an action aE

t and perceive the next state st+1
B← B ∪ {

(
st, aE

t , st+1
)}

//append each state transition to B
end for

Update the dynamics network parameters φ by gradient descent

φ← φ−∇φ

(
∑

(st,aE
t ,st+1)∈B

‖fφ
(
st, aE

t
)
− st+1‖2

2

)
end for

end for
return fφ

Dynamics network pretraining begins with task initialization, emptying the episodic
buffer B, sampling a demo task trajectory d =

〈(
sE

1 , aE
1
)
,
(
sE

2 , aE
2
)
, . . . ,

(
sE

il , aE
il
)〉

from the
demo dataset D, and initializing the environmental state to the initial state sE

1 of the demo
task trajectory. In the second step, “action execution”, the demo action aE

t is executed in the
current state sE

t . In the third step, “state observation”, the next state st+1 resulting from the
second step, i.e., execution of the demo action aE

t , is observed, and these state transition
experience data

(
st, aE

t , st+1
)

are stored in the episodic buffer B. The second and third steps
are iteratively performed through the termination of the task, and the training data for
the dynamics network are collected in the episodic buffer B. In the last step, “parameter
update”, the parameters φ of the dynamics network fφ are updated using the parameters
of the training data

〈
. . .
(
st, aE

t , st+1
)
, . . .

〉
stored in the episodic buffer B, as

φ← φ−∇φ

(
∑(st,aE

t ,st+1)∈B ‖fφ
(

st, aE
t

)
− st+1‖2

2

)
. (6)

where fφ(st, at) and st+1 represent the next state predicted by the dynamics network fφ
and that observed in the real-life setting, respectively. Consequently, the parameter φ of
the dynamics network is updated using a gradient descent optimization method based on
a loss function defined as the difference between the next state predicted by the dynamics
network fφ

(
st, aE

t
)

and the next state actually observed st+1 in the parameter update step.

4. Implementation and Evaluation
4.1. Manipulation Tasks

In this study, the performance of the HIL framework was analyzed by testing it on
three types of robotic manipulation tasks (pick-up, pick-and-place, and stack tasks) using a
9-DOF Jaco robotic hand, as shown in Figure 5.

All blocks used for the three object manipulation tasks were assumed to be rigid
cubes (5 cm3). Each task state is expressed in terms of the angle and angular velocity of
the Jaco robotic hand joints and the position and orientation of the target block. Each
control action of the Jaco robotic hand is expressed as a joint velocity command, which
is a nine-dimensional integer vector. The uncertainty of the real world was simulated by
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applying Gaussian noise N(0, 0.001) to all actions of the Jaco robotic hand executed in the
CoppeliaSim simulators. The characteristics of each of the three object manipulation tasks
are subsequently summarized.

Figure 5. Three robotic manipulation tasks.

The goal of the pick-up task is to grab the target block placed on the table and lift it
to or above the predetermined reference height of 20 cm. For this task, the initial location
of the object block on the table was set at random, while the initial position of the robotic
hand was fixed. This task has the smallest state space, and its task state is hence easy to
predict by the dynamics network compared with the other manipulation tasks.

The goal of the pick-and-place is to grab the target block placed on the table and move
it from the initial location to the predetermined target position. If the distance between
the initial position of the target block and the target position is less than 5 cm, the task is
considered successful. The initial and final locations of the target block were set at random
for each task, with the initial position of the robotic hand again fixed to the same position.
Compared to the pick-up operation, which requires simply lifting the object, this task is
more challenging because it has a much larger state space and a longer task trajectory. It is
less challenging than the stack task, which requires moving the target block and stacking it
onto another block, although these two tasks are similar in that the target block must be
moved to the target position.

The goal of the stack task is to grab the target block and stably place it on another
block. The initial position of the target block is set at random for this task, while the
initial positions of the robotic hand and the second block onto which the target block
should be stacked are always fixed. Of the three tasks, this has the largest state space and
highest complexity.

4.2. Model Training

The HIL framework was implemented in Ubuntu 18.04 LTS computing environments
using PyTorch of the Python deep learning library. The policy network and dynamics
network of the HIL framework were designed with three fully connected layers. Each layer
consisted of 100 hidden units, and a rectified linear unit was used as the activation function.
The robot manipulation task environments, including the Jaco robotic hand, were modeled
using the robot simulator CoppeliaSim, and PyRep, a toolkit for robot learning.

The demo data for training were gathered by an iterative run of the sequential pro-
cesses of motion planning, plan execution, and trajectory recording. In motion planning,
all trajectories of the Jaco robotic hand to reach the target pose from the initial pose of each
task were calculated using the motion planner Open Motion Planning Library plugin for
the robot simulator CoppeliaSim. In the processes of planning execution and trajectory
recording, the state–action pairs at each simulation timestep were recorded while the tasks
were sequentially executed by the joints of the Jaco robotic hand according to the planned
trajectories. As explained above, each state is expressed in terms of the position of the
manipulation task objects and those of the robotic hand joints, and each action in terms
of a joint velocity command for each joint of the robotic hand. Through this method, the
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recorded sequence of the state–action pairs throughout the demo task became the demo
data representing the task episode, and a demo dataset was constructed by collecting
them. The demo dataset for HIL consisted of 200, 250, and 300 task execution trajectories
for pick-up, pick-and-place, and stack tasks, respectively, considering their increasing
complexity. The demo dataset was divided into training and validation datasets at a ratio
of 10:1, which were used for training and testing of the HIL framework.

The demo dataset was used to pretrain the dynamics network prior to its inclusion
in the HIL framework, and the pretrained dynamics network was fine-tuned again in
an end-to-end training process of the entire HIL framework. The policy network and
dynamics network in the HIL framework were trained at a learning rate of 10−3 using the
optimizer Adam [30].

4.3. Experiments in Simulated Envirionment

The experiments testing the performance of the HIL framework were conducted
in a computing environment consisting of an Intel i9-7920X Processor 12-core 24-thread
2.9 GHz CPU and GeForce GTX 2080 Ti GPU. The first experiment aimed to prove the
superiority of the proposed HIL framework through a performance comparison of various
loss mixing methods combining LBC and LSC. To this end, the mean task success rate
and learning time (min) were compared while varying the value of αi, the mixed weight
coefficient used in calculating Lmix and LSC (see Equation (7)). A comparison was also
made between the application cases of the fixed mixing weights (0, 0.3, 0.6, and 1.0) and
the automatically determined adaptive loss mixing weight depending on the degree of BC
dcloning (αi = dcloning), as is the case with the HIL framework. In particular, mixing weights
of αi = 0 and αi = 1 indicate the exclusive application of pure BC imitation learning
and pure SC imitation learning, respectively. The state recovery probability ρ for the SC
function was set to be 0.6.

Lmix = (1− αi)LBC + αiLSC, (7)

Table 2 outlines the results of the experiment. The case using the adaptive loss
mixing weight (αi = dconv) outperformed the cases using a fixed mixing weight in all
three manipulation tasks. Among the different mixing weight values, the case using SC
loss only (αi = 1.0) outperformed the case using BC loss only (αi = 0) for action policy
learning in all three manipulation tasks, presumably because SC allows the learner robot
more opportunities than BC to experience the actions not included in the demo data for
the learner robot to learn action policies with wider coverage and higher reliability than
BC. Comparing the other two cases of fixed mixing weights (αi = 0.3, 0.6), different
performance levels were observed depending on the executed task type. In the pick-up
task, the case with a comparatively low mixing weight (αi = 0.3) outperformed the other
case (αi = 0.6). In the pick-and-place and stack tasks, the case with a comparatively high
mixing weight (αi = 0.6) outperformed the other case (αi = 0.3). This suggests that high
performance can be expected by setting a low mixing weight (=higher LBC contribution)
for a task with low complexity, such as the pick-up task, and a low mixing weight (=higher
LSC contribution) for a task with high complexity such the pick-and-place and stack tasks.
As such, expecting a uniformly high performance is difficult when using a fixed mixing
weight αi for different types of tasks with different complexities. By contrast, the HIL
framework, using the adaptive loss mixing weight while learning depending on the degree
of policy convergence dconv (αi = dconv), showed a uniformly high performance in various
tasks with different complexities. Figure 6 shows how dconv changes during task learning.
For all three tasks, we find that dconv increases as training proceeds. These experimental
results prove the superiority of the HIL framework, achieved by implementing an adaptive
loss mixing weight method.

The second experiment was conducted to observe the effect of the stochastic state
recovery performed by the SC function in the HIL framework and analyze the performance
changes depending on the value of the state recovery probability ρ. To this end, the average
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success rate from 10 runs was measured, with the values of the state recovery probability ρ
set to 1.0, 0.6, 0.3, and 0. Table 3 outlines the results of this experiment.

Figure 6. Changes in dconv for learning manipulation tasks.
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Table 2. Performance comparison among the methods using different loss mixing weights.

Loss Mixing

Task Pick-Up Pick-and-Place Stack

Success
Rate

Time
(min)

Success
Rate

Time
(min)

Success
Rate

Time
(min)

αi = 0 0.58 112 0.48 128 0.16 135
αi = 0.3 0.75 293 0.52 422 0.46 414
αi = 0.6 0.72 393 0.78 456 0.72 545
αi = 1.0 0.64 460 0.76 625 0.66 724

αi = dconv 0.75 119 0.84 156 0.78 181

Table 3. Performance comparison depending on the state recovery probability ρ.

Recovery
Task Pick-Up Pick-and-Place Stack

ρ = 1.0 0.64 0.46 0.52
ρ = 0.6 0.75 0.84 0.78
ρ = 0.3 0.816 0.75 0.76
ρ = 0 − − −

Table 3 shows that all three tasks failed when stochastic state recovery was not applied
(ρ = 0). Conversely, the task success rate exceeded 0.5 when stochastic state recovery
was applied (ρ = 1.0, 0.6, 0.3), thus verifying the positive effect on learning of stochastic
state recovery. HIL performed best at ρ = 0.3 in the pick-up task, where the state space is
relatively narrow and the length of the task episode is short, and at ρ = 0.6 in the pick-and-
place and stack tasks (wide state space and long task episode length). In general, when ρ is
set high, whenever a digression from the demo task trajectory occurs during the SC learning
process, it is returned to one of the states of the corresponding demo state trajectory. If ρ is
set low, digression from the demo task trajectory is tolerated for a long time, resulting in
more opportunities to experience new states and actions unencountered while performing
the demo task. Therefore, to obtain high HIL performance, it is advantageous to set the
state return probability ρ low in a pick-up task, which has a relatively low complexity, and
high in a pick-and-place or stack task, which has a higher complexity. Conversely, setting
ρ to the maximum value of 1.0 resulted in the lowest performance across all three tasks,
presumably because the restraint on the states was not allowing for any digression from
the demo task trajectory at every timestep during the learning process, resulting in the HIL
framework learning the same things as in a pure BC process, neutralizing the advantages
of the former over the latter.

The third experiment was conducted to evaluate the superiority of the proposed
HIL framework by comparing it with typical robot manipulation task learning methods.
Specifically, the performance levels of pure BC imitation learning, reinforcement learning
(RL) using the PPO algorithm [31], hybrid learning with a mixed loss function combining
the BC loss and the reinforcement learning loss (BC + RL), and the proposed HIL framework
were compared. The state recovery probability ρ of the HIL framework was set to 0.3 and
0.6 for the pick-up, and pick-and-place and stack tasks, respectively. The mean task success
rate of each learning epoch of the policy network was used as the threshold for success.
The reward function for RL was designed as follows:

Pick-up: A reward of +0.01 is awarded when the robotic hand approaches the object,
+0.1 when it grasps it, and +1 when it lifts it to or above a certain height.

Pick-and-Place: A reward of +0.01 is awarded when the robotic hand approaches the
object, +0.1 when it grasps it, and +10 when it lifts and moves it to or
above a certain height.

Stack: A reward of +0.01 is awarded when the robotic hand approaches the
object, +0.1 when it grasps it, +1 when it lifts it to or above a certain
height, and +10 when it stacks it onto another object.
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The results of this experiment are shown in Figure 7. This shows that pure BC
improved the performance level most rapidly but was outperformed by the other two
methods. This is because BC cannot reflect new states and actions not included in the demo
data in the action policy and hence yields the lowest performance level in the manipulation
tasks with high complexity and environmental uncertainty. On the other hand, RL using
the PPO algorithm improved the performance level most slowly. In the stack task shown in
Figure 7c, which had the highest complexity, RL provided no noticeable improvement for
the first 400 epochs. For this reason, it is hard to distinguish the plot showing the RL result
from the epoch axis in Figure 7c. From these experimental results, it can be assumed that
RL requires a much higher number of trials than BC and HIL to learn a policy network to
any significant extent, lowering the data efficiency. For all three tasks, the hybrid learning
of BC + RL provided a faster improvement in the performance than pure RL. However, for
two complex tasks such as pick-and-place and stack tasks, the hybrid learning of BC + RL
showed a lower performance than the proposed HIL framework. By contrast, HIL showed
the highest task performance improvement in all three manipulation tasks, presumably by
fully benefiting from the combined advantages of BC with high learning efficiency and SC
with various state–action experiences reflected in learning. The results of this experiment
verify the high learning efficiency and task performance success rate of robots trained
via HIL.

Finally, a fourth experiment was conducted to qualitatively evaluate the action policies
resulting from HIL training. After 5 h of training time, the policies learned by BC, RL,
and HIL were compared for the pick-up task. The object position changes observed when
applying each policy to the real task are plotted in 3D space in Figure 8.

Figure 7. Cont.
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Figure 7. Comparison with conventional learning methods.

Figure 8. Qualitative comparison among the learned policies.

Figure 8 illustrates the trajectory of the target objects during task execution from their
respective initial positions I1, I2, I3 to their final poses G1, G2, G3 for each of the policies
learned. The object trajectories resulting from the policy learned through HIL, (I1, G1),
(I2, G2), and (I3, G3) in the three pick-up tasks, show that every action causing digression
from the demo task trajectory during task execution is corrected to the demo task trajectory,
allowing the robot to reach the target position. By contrast, the object trajectories resulting
from the policy learned through BC show that digression from the demo task trajectory
during task execution cannot be remediated. For example, in the (I1, G1) and (I2, G2) tasks,
the target object was barely picked up, and in the (I3, G3) task, the target object was lifted
close to the target height with much difficulty but wandered from the target trajectory,
resulting in failure. The trajectories resulting from the policy learned through RL show that
it could lift the target object to a certain height in the (I1, G1) and (I3, G3) pick-up tasks
but failed the final objective in all tasks, presumably because RL could not learn within the
given time sufficiently well to properly execute the tasks. These experimental results prove
HIL’s ability to learn high-quality action policies within a short learning time.

5. Conclusions

This study proposes an HIL framework as an efficient method for learning robotic
manipulation tasks. To ensure efficient and flexible learning of action policies, the proposed
HIL framework combines the advantages of BC and SC in a mutually complementary
manner. Meanwhile, it overcomes the limitations of BC-based learning of action policies
being limited to those similar to the demo dataset and those of SC-based learning requiring
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more training time and computational effort, which neutralizes its advantages of higher
flexibility and broader coverage over BC. The proposed HIL framework uses an adaptive
loss mixing approach to adaptively balance the contributions of the BC and SC losses
depending on the degree of policy convergence. Furthermore, the proposed HIL framework
utilizes pretrained dynamics networks as a way to enhance SC efficiency and performs
stochastic state recovery during SC implementation to ensure stable training of the policy
network. Additionally, a series of experiments was conducted using a simulated Jaco
robotic hand, which verified the high learning efficiency and policy flexibility of the
HIL framework.

Currently, the proposed HIL framework has several limitations. First, it requires
multiple sequences of (state, action) pairs as demo trajectories. However, there are many
domains where it is possible to record the observed states during demonstration, but not
the executed actions or controls. To deal with such state-only demo trajectories, the current
HIL learning must be extended further. Second, as a hybrid imitation learning approach,
the proposed HIL framework cannot learn the optimal policy due to some low-quality
or wrong demo data. Third, the current HIL framework can only be implemented in a
simulated robotic environment. Therefore, it is planned to develop a relevant sim-to-real
learning scheme to enable the transfer of action policies learned with the HIL framework
in simulated robotic environments to a real robot in the physical environment. Last, the
current HIL framework does not provide a facility to use live demonstrations performed
by humans. It will be interesting to extend the HIL framework to support live human
demonstrations using a remote control such as a 3D mouse.
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