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Abstract: Ageing, disease, and injuries result in movement defects that affect daily life. Gait analysis
is a vital tool for understanding and evaluating these movement dysfunctions. In recent years, the use
of virtual reality (VR) to observe motion and offer augmented clinical care has increased. Although
VR-based methodologies have shown benefits in improving gait functions, their validity against
more traditional methods (e.g., cameras or instrumented walkways) is yet to be established. In this
work, we propose a procedure aimed at testing the accuracy and viability of a VIVE Virtual Reality
system for gait analysis. Seven young healthy subjects were asked to walk along an instrumented
walkway while wearing VR trackers. Heel strike (HS) and toe off (TO) events were assessed using the
VIVE system and the instrumented walkway, along with stride length (SL), stride time (ST), stride
width (SW), stride velocity (SV), and stance/swing percentage (STC, SWC%). Results from the VR
were compared with the instrumented walkway in terms of detection offset for time events and root
mean square error (RMSE) for gait features. An absolute offset between VR- and walkway-based
data of (15.3 ± 12.8) ms for HS, (17.6 ± 14.8) ms for TOs and an RMSE of 2.6 cm for SW, 2.0 cm for
SL, 17.4 ms for ST, 2.2 m/s for SV, and 2.1% for stance and swing percentage were obtained. Our
findings show VR-based systems can accurately monitor gait while also offering new perspectives
for VR augmented analysis.

Keywords: virtual reality; gait analysis; gait event detection; gait features; motion analysis

1. Introduction

Gait-related movement analysis is a complex discipline involving various factors.
It has various applications in research, such as quantitatively describing gait as well as
diagnosing and evaluating of the subject’s locomotion abilities. Gait is an indicator of
overall health as it dictates autonomy. Disease and accidental injuries are common factors
for abnormal gait. Moreover, motor-related pathologies become more frequent with aging,
affecting 10% of people between 60 and 70 years old and 60% of those over the age of 80 [1].
In this challenging scenario, gait analysis has become an area of interest for many research
groups both for clinical application and quantitative assessment.

Currently, there are several methods to observe and extract important gait character-
istics. The state-of-the-art in this field relies on camera-based systems, more specifically
stereophotogrammetry systems. These systems may depend on infra-red cameras and re-
flective markers or on marker-less video recording and shape recognition [2–4]: the former
method is the most accurate while being burdensome in terms of subject’s preparation,
while the latter is more agile in terms of preparation, although it is less accurate.
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These systems are able to reconstruct body position with millimetric accuracy, thus pre-
cisely evaluating movements and gait features [5]. However, their cost and need for specific
indoor instrumented environments present practical limitations to their applications.

More versatile, low-cost systems are represented by wearable sensors such as inertial
motion units (IMUs) [6] or instrumented clothing [7]. Wearable sensors allow motion
analysis in various environments. Although, wearables are able to track and extract gait
characteristics [8], they require calibration procedures to re-align sensor outputs. Further-
more, technology-related issues, such as sensor drift or magnetic disturbances, present
a significant impediment for long-term applications. Calibration procedures often need
a-priori knowledge of the task being examined [9]. Additionally, the output from these
sensors, mainly acceleration and angular velocity, need to be integrated to get position infor-
mation, which introduces reconstruction error into the analysis [10]. Several methods have
been proposed to tackle these issues [9,11,12], however, IMUs still result in inconsistent
and less accurate systems when compared to camera-based setups.

Instrumented walkways represent a non-wearable solution for gait analysis and
require shorter set-up time as compared to camera-based systems. These walkways rely
on pressure sensors placed within a flexible mat that may be used to define a path and
perform gait trials. The walkways detect gait events based on footfall pressures on the mat
surface and compute gait parameters from the corresponding foot position information
from the walkway [13]. The walkway does not require the user to wear any particular
instrumentation, so the user’s state is not altered.

Instrumented walkways are widely used in gait analysis [14–16] and found their
application in rehabilitation procedures when spatiotemporal parameters were needed.
Instrumented walkways have been demonstrated to be a useful tool when 3D motion
analysis is not needed; they also do not need any dress-up/marker placement procedure
that is typically needed for camera-based systems. However, the walkway’s potential is
limited by its size and shape, which usually only allows for straight-line gait tracking, as
sidesteps and turnarounds may not be fully captured.

Although, the standard instrumented walkways can accurately measure gait fea-
tures, they are expensive. Moreover, performing gait analysis in a condition close to
everyday life would capture a more realistic information. Therefore, a portable and af-
fordable solution for gait analysis could have a significant impact on motion studies and
diagnostic procedures.

Recently, the use of virtual reality (VR) in rehabilitation and motion analysis has
increased. Clinicians use it as an innovative method to collect movement data while
augmenting conventional clinical care and optimizing the physical abilities of their pa-
tients [17,18]. VR may be defined as a simulation of a real-world environment, generated
through computer software [18]. The VR environment is experienced by the user through a
human-machine interface [19]. Previous research highlights the capability of VR systems to
enhance skills acquisition and retention by providing task specificity (ecological validity),
repetition and external real-time feedback (knowledge of results) [20].

VR systems use two laser emitter units, called Lighthouses, for position tracking [21].
These emitters alternate horizontally and vertically to scan the environment in each direc-
tion. VR headsets, trackers and controllers are equipped with photodiodes that are marked
during Lighthouse scans. The difference in time when the various photodiodes are hit by
the laser allows position and orientation reconstruction. Furthermore, some VR systems,
such a VIVE systems, integrate this method with IMU-based tracking which allows for
higher update rates [21].

For several clinical populations, VR based gait training with feedback was beneficial
in improving parameters such as gait symmetry and walking speed [22]. The usage of VR
systems both in combination with other sensors and by themselves has been tested [23]
and showed promising results. For this reason, research is moving in that direction.

For instance, Peruzzi et al [24] examined the effect of VR-based gait training on
multiple sclerosis patients. They observed how patients significantly improved their
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walking endurance and speed, as well as, cadence, stride length, lower limb range of
motion, and power. Furthermore, patients also experienced an improvement in balance.
Similarly, Wang et al [25] investigated how VR training may improve balance in patients
with Parkinson’s disease (PD). Researchers reviewed studies involving VR effects on PD
patients - a total of 12 studies with a median PEDro score of 6.4 involving 419 participants.
The review reported significant improvements in Berg Balance Scale, Time Up and Go Test
(TUG), and stride length in PD patients who received VR-based treatment as compared to
patients treated using traditional procedures.

Despite their reported advantages, VR systems still represent a relatively new tech-
nology that need to be validated for gait analysis. Recently, VR systems’ tracking was
validated against camera-based systems. The comparison showed that 3D tracking was
accurate within (0.7 ± 0.3) cm translationally and (1.64 ± 0.18)◦ rotationally. This results
suggest that VR sensors can be used to accurately track joint motion for clinical and research
applications, although accuracy on extracted parameters was not discussed [26].

Although validated against camera-based systems, VR’s potential for accurately de-
tecting clinically relevant and reliable information has yet to be investigated. A cheaper
solution with respect to cameras for spatiotemporal parameters assessment is represented
by IMU-based setups. IMU-based setups may show good accuracy in tracking human
motions, however, specific sensor fusion algorithms are usually needed to achieve that
performance [6]. Although, VR systems are spatially limited (they must be used indoors
and calibrated), they do provide a more consistent and reliable position tracking since they,
unlike IMUs, directly provide displacement information [26]. Furthermore, VR trackers
can be used for long-term data acquisition without the added complexity for incorporat-
ing additional trackers [27]. Given its accuracy against well-known systems, VR has the
potential to be a reliable, low-cost gait analysis system representing a valid alternative to
wearable setups for indoor environments. Table 1 summarizes the main features of various
motion capture systems, from camera-based to wearables and instrumented walkways. It
presents a perspective about current state-of-the-art in motion analysis to refer to when
testing VR system.

In this paper, we propose an estimation and calculation procedure to validate a VIVE
virtual reality system against an instrumented walkway, here used as a reference. The VR
system consisted of a headset and trackers. The method uses event detection to segment
the data and estimate the spatiotemporal during overground walking. To the best of our
knowledge, the VIVE system has not been methodically characterized as a gait analysis
tool. Furthermore, we will make the tools to record the VIVE tracker data and calculate the
gait parameters with a range of shoe sizes publicly available. The tools will be available for
download in a GitHub repository and we will include the link will with the final version of
this paper.



Sensors 2021, 21, 3325 4 of 15

Table 1. Table detailing the state-of-the art for gait analysis and corresponding characteristics.

Camera-Based
Systems IMUs Walkways VR

Collection Space Dedicated lab Any environment Flat surfaces Any indoor space

Setup time

10 to 20 min,
depending on markers

setup. Plus, initial
configuration.

Few minutes for
calibration and sensor

placement

Few minutes for initial
configuration.

Few minutes for initial
configuration

User preparation
Several minutes to

sensors markings and
identification

Few minutes for sensor
placement No preparation Few minutes for sensor

placement

# of sensors/markers to
track a single segment 3 1 - 1

Portability No Wearable Portable Portable

Cost Very expensive Affordable Expensive Affordable

Type of measurement Infrared-based Inertial and magnetic Pressure-based Laser-based

Gait features accuracy
(feet displacement) ~0.2 mm ~50 mm ~1 mm To be investigated

Post-processing time
Up to one hour,

depending on marker
setup

Minutes Minutes Minutes

Covered Gait Features

Spatiotemporal
features;

3D-displacement; joint
kinematics

Spatiotemporal
parameters; joint

kinematics

Spatiotemporal
features; 2D

displacement

Spatiotemporal
features;

3D-displacement; joint
displacement

2. Materials and Methods

Seven healthy young adults participated in the experiments (one female, six males,
25 ± 5 years old). Subjects were informed about the research procedure and signed a
written consent form before participating. All participants had a normal or corrected-to-
normal vision; none of the participants had any reported disorders and all were new to the
experimental conditions.

2.1. Procedure

Participants walked on a 6.10 m × 0.61 m instrumented walkway (Zeno Walkway,
Protokinetics, Havertown, PA, USA) at their own speed for twenty laps, back-and-forth,
while wearing VR trackers on their feet (Figure 1). Trackers were placed on front feet,
on the upper back of the subject’s shoes. Sensor placement on shoes allows for accurate
tracking of feet motion [28].

A Unity3D (Unity Technologies, San Francisco, CA, USA) program was developed
to display a virtual walkway within the VR headset (VIVE HTC PRO, Valve Corporation,
Bellevue, WA, USA) paired with STEAM VR v020 [29]. The virtual environment (VE) was
calibrated so that the virtual walkway was aligned and mapped one-to-one with respect to
the physical walkway. The visual environment was a 3D outdoor space (Figure 2); objects
such as trees and animals were placed to provide depth reference. Participants experienced
the virtual environment and motions in it in the first-person perspective, while their body
was not rendered in the virtual environment. The lack of self-image may influence gait
analysis as it was demonstrated by previous studies [30]. However, this condition is
consistent for any trial under exam, since we did not investigate physical-world gait trials.
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Figure 2. (a) Physical walkway setup in the laboratory (b) and corresponding walkway configuration in the virtual environment.

The session trial consisted of twenty consecutive laps on the walkway. Participants
were asked to walk straight without stepping outside of the walkway and to perform
turnarounds outside the walkway so that they could be easily excluded from data analysis.
VR tracker trajectories in the VR were measured at a sampling frequency of 90 Hz while the
walkway registered events at 120 Hz. The data was concurrently recorded using a custom
inbuilt user datagram protocol (UDP) packet sent at the start of the walkway recording
session and the walkway data were downsampled to 90 Hz for analysis.

Data recorded by the instrumented walkway and computed with the accompanying
software: ProtoKinetics Movement Analysis Software (PKMAS 5.09C3, ProtoKinetics,
Havertown, PA, USA), were used as ground truth values to test VR system performances
in gait analysis.

Finally, it should be noted that gait features are usually computed from heel position,
as seen in Figure 3, as provided in the manual for the walkway, while VR sensors are
placed on the feet between toe and ankle Figure 3. Therefore, a body axis transformation
was carried out to shift the current position of the tracker to the heel for a more appro-
priate comparison. The 3D distance between the heel and the foot sensors were taken
using a camera-based motion tracking system (Vicon, Oxford, UK). The heel position was
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determined using the position and rotation of the sensors and then applying the transfor-
mation. A reference table containing sensor to heel 3D displacement for several shoe sizes
is included in the appendix (Appendix A).
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Figure 3. Schematic SL and SW from walkway [31]: position of the VR tracker on the foot upper back (green) and heel
position (yellow) used for said features calculations.

The camera-based system was used to take static measures on trackers’ position on
shoes. As mentioned earlier, we decided to rely on the instrumented walkway for the VR
system validation because it represents a portable, accurate tool for gait analysis.

2.2. Event Detection
2.2.1. VR Event Detection

MATLAB R2020a (MathWorks, Inc., Natick, MA, USA) was used for off-line signal
processing. VR trackers trajectories were filtered using a third-order forward-backward
low-pass Butterworth filter with a cutoff frequency of 12 Hz [32]; trajectories were also
detrended using a linear detrend function.

The function used to gather information about the different gait phases is performed
using feet trackers trajectories. The segmentation procedure divides the gait cycle after
detecting two main events: toe-off (TO) and heel strike (HS).

The analysis is performed while the subject is already in motion so as to avoid tran-
sitory phases. In order to do so, the subject was asked to take a couple of strides before
walking on the walkway. The tracker trajectory can be described by a double-peaked
waveform (Figure 4). The first peak corresponds to the foot lifting from the ground, i.e. TO,
as specified in [33], and it determines a transition from stance to swing phase. The second
peak, namely the foot reaching the ground again, corresponds to a HS. TO and HS are also
depicted in Figure 4 as red and blue dots, respectively. After correctly detecting HS and
TO, it is possible to segment each cycle in swing (SW) and stance (ST) phases.

Time intervals between TO and subsequent HS are swing phases (SWC), and intervals
between HS and TO are stance phases (STC) of a gait cycle. The sum of swing and
corresponding stance determines the whole gait cycle.

The vertical trajectory from a foot tracker is shown in Figure 4 and the associated
cyclical waveform was analyzed to detect events. The algorithm proposed in this paper
represents a simple and straightforward method to detect gait events. The method is
based on those available for camera-based data [33] as trajectories in a global reference
frame were available for VR systems similar to the camera-based systems. In the research
described in [33] both the heel and toe trajectories were available, while we only had mid-
foot trajectories. So, reported waveforms and proposed algorithms may result differently,
even if they were based on the same principles.
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of a tracker on the foot. Vertical displacement is shown on the y-axis while the x-axis reports samples over time of the signal.
A schematic representation of a gait cycle is also reported to clearly indicate which events correspond to the peaks on the
signal. Negative vertical displacement depends on VR 3D space calibration: the 0 level may not correspond with ground
level and could result in negative vertical values for the feet trackers.

2.2.2. Walkway Event Detection

PKMAS dedicated software was used for gait event detection on walkway data and
signal processing. Gait events were defined using the procedure described in the manual
for the instrumented walkway [34]. Heel strikes (HS) are defined as first contact instants,
they correspond to the initial time (frame) that the foot comes in contact with the walkway.
Toe offs (TO) are defined as last contact instants and correspond to the last time (frame)
that the foot is in contact with the walkway.

For this purpose, the foot is represented by its bidimensional footfall. The footfall is
computed as the ellipse with the smallest area that completely encloses all of the activated
sensors of a footprint, computed with the minimum area bounding ellipse algorithm.
Footprint recognition and gait event evaluation are performed as detailed in [34].

2.3. Gait Features
2.3.1. VR Gait Features Evaluation

Gait events detected using VR data were used to evaluate gait features (Figure 3):
stride length (SL), stride time (ST), stride width (SW), stride velocity (SV), stance percentage
(STC%) as well as swing percentage (SWC%) were evaluated. These parameters were
chosen as they represent some of the most commonly evaluated features in gait analysis.
As such, it was of our interest to test the VR system ability in computing them. Furthermore,
other parameters such as joint angles, would be available only by adding more VR trackers.
Gait phases were reported as percentage of the whole gait cycle since it is the most common
way to report them in gait analysis. Features were computed in 2D since the walkway can
only provide 2D displacement information. Each feature was computed as follows:

Stride length of the i-th stride is computed as:

SLi =

√(
FTTHS(i)

X − FTTHS(i−1)
X

)2
+
(

FTTHS(i)
Y − FTTHS(i−1)

Y

)2
(1)

where FTTHS(i)
X and FTTHS(i−1)

X are the foot tracker position at the i-th and (i−1)-th HS
events respectively. X and Y are the anteroposterior and the mediolateral components of
the position vectors respectively; the anteroposterior axis is pointing forward while the
mediolateral axis is pointing to the left.

Stride time of the i-th stride:

STi = tHS(i) − tHS(i−1) (2)

where tHS(i) and tHS(i−1)are the time instants corresponding to the i-th and (i−1)-th
HS events.
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Stride width is computed as the perpendicular distance between the line made by two
consecutive same-foot heel strikes and the contralateral heel, as specified in the walkaway
manual [34]. The stride width is then computed as follows using the position of the feet at
heel strike and mediated over each cycle, as shown in Figure 3:

SWi =

√(
RFTHS(i)

X − LFTHS(i−1)
X

)2
+
(

RFTHS(i)
Y − LFTHS(i−1)

Y

)2
−
(

SLi

2

)2
(3)

Stride velocity is computed as stride length over stride time ratio : SV =
SL
ST

(4)

Stance and swing percentages are computed as the portion of stance phase and swing
phase over the whole gait cycle, expressed as percentages. Given that they are competing
percentages, an offset recorded for STC% will represent a negative offset for the SWC%:

STC% = 100 × stance_duration[sec]
cycle_duration[sec]

(5)

SWC% = 100 × swing_duration[sec]
cycle_duration[sec]

(6)

It should be noted that STC% + SWC% = 100.

2.3.2. Walkway Gait Features Evaluation

The walkway uses the gait events detected, specifically heel strike, to evaluate gait
features: meaning, the stride length (SL), stride time (ST), stride width (SW), stride velocity
(SV), stance percentage (ST%) as well as swing/stance percentage (SWC%, STC%) were all
evaluated at heel strike.

2.4. Validation Procedure

VR and walkway data were synchronized using a custom algorithm (UDP packet)
during experimental sessions. Following offline data processing, VR-based feature valida-
tion was performed. A comparison between gait events (HS and TO) was carried out by
determining the time difference between the two systems. The sensitivity, precision and
accuracy are reported.

The sensitivity is the percentage of gait events that are detected successfully by the VR
system, within 33.3 ms resolution (3 timestamps for 90 Hz). This timestamp was chosen to
represent a significant sensitivity as well as a reliable resolution for accurately describing a
gait cycle. Timestamps were chosen based on the reliability testing as well as a review of
the algorithm results presented in [35]. Outlier values were identified as values higher than
3.5 times the median absolute deviation (MAD) around the median [36]. A total of 3.39%
for HS (40 events out of 1185) and 2.2% for TO (27 events out of 1227) were identified as
outliers. These outlier values were a result of sensor disconnection and subsequent loss
of tracking. Outliers were removed at the event identification and were not used for the
spatiotemporal calculations:

Sensitivity = 100 × TP
TP + FN

(7)

True positives (TP) are the values from the walkway that were detected by the VR,
while false negatives (FN) are events that were identified by the walkway but undetected
by the VR system. Accuracy and precision are described by the time offset error and its
distribution [37].

The closest HS and TO temporal matches within a 33.3 ms resolution were used to
determine possible differences between the VR system and the ground truth, namely the
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walkway. The mean error, absolute mean error, standard deviation as well as the root mean
square error (RMSE) are presented to show the magnitude and spread of differences in
measurements between the VR system and the reference walkway.

3. Results

A detailed analysis of temporal and spatiotemporal parameters from the proposed
VR setup and the walkway reference are presented below.

3.1. Validation of Gait Events

Our system was able to identify the gait events (heel strikes and the toe offs) that were
detected by the walkway. Figure 5 below shows the detection time offsets between the VR
system and the reference walkway. The results show that about 90% of the gait events are
detected within a 33.3 ms window. Mean absolute error, standard deviation, and sensitivity
are reported in Table 2, while Figure 5 below shows that the proposed method was able to
detect all HSs within a window of 15.3 ± 12.8 ms and TOs within 17.6 ± 14.8 ms.
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Table 2. Table showing percentage of HS and TO that can be properly detected in under either
33.3-ms cutoff.

Gait Events Heel Strike Toe Off

Cutoff Time Window [ms] 33.3 33.3

Mean Offset [ms] −2.6 ± 16.9 4.2 ± 17.1

Mean Absolute Offset [ms] 13.4 ± 10.5 13.7 ± 11.0

Sensitivity [%] 94.2 88.3

3.2. Validation of Gait Features

A detailed comparison of gait features is given below (Table 3). On average, the mean
absolute error of all the subjects shows that there is 2.0 cm and 1.4 cm difference between
the spatial parameters (SW and SL respectively), 17.4ms offset for the stride time, and
about 1.6% difference between the stance-swing percentage. Figures 6 and 7 show the error
distribution along with the ~95% limitations and the correlation of the VR vs. walkway
measurements respectively. This analysis was carried out using a 33.3 ms resolution to
avoid possible discrepancies from gait event detection offsets.
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Table 3. Mean offset of VR gait features from matched events (33.3 ms, resolution).

SW
[cm]

SL
[cm]

ST
[ms]

SV
[cm/sec]

Stance-Swing
[%]

Mean Offset −1.0 ± 2.4 0.3 ± 1.9 0.4 ± 17.4 0.2 ± 2.2 0.5 ± 2.1

Mean Absolute Error 2.0 ± 1.6 1.4 ± 1.4 13.4 ± 11.1 1.6 ± 1.5 1.6 ± 1.4

RMS Error 2.6 2.0 17.4 2.2 2.1
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4. Discussion

This study aims to evaluate the viability and accuracy of a VIVE Virtual Reality system
for gait characterization; an instrumented walkway was used as a reference against the
VR system.

The rationale behind the comparison with a walkway is that this sensor already
represents a portable, accurate alternative to camera-based systems. On the other hand, a
correctly validated VR system may have a potential that a walkway does not offer, given
that VR systems are less expensive, portable and can detect 3D movements. Since VR
systems directly provide displacement information in the global reference frame about
worn trackers, they are hypothesized to perform more accurately than other wearable
technologies such as IMU-based setups against the walkway.

When compared to a more traditional low-cost system for evaluating spatiotemporal
parameter, such as IMUs, the VR system showed better accuracy, both in terms of RMS error
and mean absolute offset since typical displacement errors with wearable technology are
around 5 cm [38–40]. This was predictable, since VR systems directly gives displacement
information, avoiding sensor-related errors that are typical with IMUs.

Furthermore, gait events were correctly detected with a timing resolution of 33.3 ms
and a sensitivity of 88.3% and 94.2% for TO and HS respectively, while corresponding gait
features showed a root mean squared error of ~2.3 cm offset for spatial features and ~17 ms
of temporal parameters.

4.1. Gait Events Detection

Detection of gait events showed high accuracy and resolution, with a mean absolute
offset between the two systems of 13.4 ms for the HS and 13.7 ms for the TOs. Event
detection discrepancies between the walkway and the VR system may be related to the
differences in detection methods and sensors specifications. The walkway dedicated
algorithm relied on actual first contacts (heel contacts, mostly) while having the VR trackers
placed on the mid-foot needed for different methodologies. Nevertheless, the presented
method resulted in line with the walkway and camera-based systems in terms of reliability
in gait events detection [38–40].

Even if only straight-line waking was tested, VR systems allow for observing motions
in more complex 3D-spaces, while the reference walkway does not allow that. However,
further research is needed to test VR accuracy in assessing spatiotemporal parameters
during ambulation in free open space.

Other low-cost wearables, such as IMUs, may be less or more accurate depending on
gait speed [41]. Moreover, adding more IMUs to any setup increases the computational
load representing a strong limit in terms of sensor network design. VR systems allow for
computing gait events using tracker trajectories, as it is usually done with markers and
camera-based systems [33].

TO detection has lower accuracy as compared to HS. Since TO detection is performed
after HS detection, detection errors may accumulate resulting in higher values for TO.
Furthermore, as earlier studies point out, the TO is a less drastic movement compared to
HS and thus less discernible to detect [38,42].

4.2. Gait Features Evaluation

The gait feature analysis demonstrates accurate results as compared to the walkway
reference for most of the parameters and sensor-position sensitive results for stride width.

SW and SL showed a mean absolute error of 1.7 cm (3.0 cm and 1.8 cm for 75th
percentile and 0.7 cm and 0.5 cm for the 25th percentile, respectively). The distribution
of the errors as well as a visual representation of the agreement of the data is presented
in Figures 6 and 7 above. These results indicate a better performance compared to other
low-cost systems such as IMUs which usually show an error around 3–5 cm [38]. Although
camera-based systems or walkways (our reference) show more accuracy, presenting errors
of mm, these systems are also far more expensive.
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The SW shows a higher standard deviation and RMSE as compared to SL. This could
be attributed to the fact that three sensor positions are needed to compute SW, accumulating
possible positional and angular errors from the VR system [26]. The transformation from
the foot instep to the heel may result in inaccurate measurements if the sensor is not
properly secured. Sensor misplacement and resulting heel position error have a higher
effect on SW. Further, because SW is sensitive to heel position conditions where sensors
might re-set after a disconnection or get mislabeled might have affected it. Although the
reported error shows that the VR system can compete with current wearable systems that
report spatiotemporal parameters [40], the error reported is a large percentage compared
to the reference walkway (about absolute mean percentage of 30%). Therefore, analysis
involving base of support or mediolateral displacement using this method would need
alternative methods to get more accurate estimates.

ST showed a mean absolute error of 13.4 ms (19.1 ms for 75th percentile; 5.2 ms for
the 25th percentile) which is expected due to the accuracy demonstrated in gait events
detection. Similarly, SV showed a mean absolute error of 1.6 cm/s (2.3 cm/s for the 75th
percentile; 0.6 cm/s for the 25th percentile).

The Swing and Stance percentage showed a mean absolute error of 1.6% (2.2% for the
75th percentile; 0.58% for the 25th percentile), as seen in Figures 6 and 7. The STC errors
indicate a combined effect of both the stride time error as well as the stance time error,
as the STC is the ratio of these two values (Equation (5)). However, similar to previous
gait features, these errors are lower than those obtained from other low-cost systems since
IMU-based systems showed errors of 30 ± 10 ms [43].

4.3. Limits

The procedure for testing the accuracy of VR systems in gait analysis does not consider
various speeds (namely, controlled slow walking or running): only straight-line gait at
self-selected speed was tested. Moreover, a comparison with a camera-based system
could have allowed for testing more versatile scenarios, while the walkway was limited to
straight-line walking. Testing VR accuracy during different gait speeds, gait with turns
or gait on particular ground would provide a better description of its reliability. Further
investigations would provide useful information, although they are beyond the aims of the
current study.

Also, it may be noted that the gait events detection algorithm was tailored for healthy
subjects only, since our analysis involved only young, healthy participants. The algorithm
may not work with certain categories of patients and in that case it could be useful to adopt
different gait detection strategies, as described in [44].

Further, this methodology warrants careful placement and securing of the sensors, as
misalignment and slipping could impact the sensor-to-heel transformation and as a result
stride width computation.

Despite its low-cost and portability, a VR system is mainly intended for indoor motion
tracking providing accuracy at low-cost but only in structured environments. Moreover,
the subject would eventually need to wear a VR headset to properly move in the virtual
scenario: wearing a VR headset, especially for long sessions, may result in side-effects such
as nausea and may result in discomfort for some users [45]. Finally, it should be noted how
VR itself may affect user’s motion behaviors.

A test assessing reproducibility over subject and time (namely a test-retest procedure)
would have been necessary to have a better perspective on the VR system performances.
However, the whole experiment was performed over the course of several weeks for each
participant, introducing a variability that may be taken as a proof of reproducibility.

Despite these limitations, the demonstrated benefits of virtual reality in gait analysis
and gait training have been proven [46–48] that it holds a great potential for gait analysis.
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5. Conclusions

We have presented an investigation of the VR system for gait analysis. Our approach
consisted of testing how accurately a VR-based setup can detect gait events such as heel
strikes and toe offs as well as gait features such as stride length, stride time, stride width,
stride velocity and stance/swing percentage.

This study is intended to offer a direct reference for VR reliability, specifically for deter-
mining spatiotemporal parameters during gait. Gait analysis, is typical in the rehabilitation
procedure and this study may provide a perspective on a new promising technology, even
if more research on pathological gait needs to be performed. Future research will focus on
the limitations that affected the proposed approach; namely the VR accuracy at various
speeds, its performance with different tasks during walking (e.g., turning or stair climbing)
as well as testing VR accuracy against another camera-based system.

We believe that the use of VR-based systems may offer a significant improvement for
motion analysis applications. It represents an accurate and low-cost solution that is easily
adaptable to any indoor environment while also widening the potential for new testing
opportunities to increase the effectiveness of therapeutic treatments.
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Appendix A

3D distance from VR tracker to heel (right and left side) for a range of shoe-sizes.
X: in the direction of the length of the foot (shoe) pointing to the heel,
Y: to the right of the foot (shoe), Z: up in the direction of the height of the foot.

Table A1. Appendix A.

US 6 US 9 US 10 US 12

Shoe Side L R L R L R L R

X [mm] 211.04 214.13 225.16 226.76 218.76 241.97 243.43 240.32

Y [mm] 4.21 12.31 14.31 −11.10 3.00 −12.94 7.69 14.64

Z [mm] −85.98 −86.63 −99.76 −94.29 −91.85 −99.65 98.95 −88.98

https://github.com/antoniopradom/VR-Gait-Analysis
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