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Abstract: This paper presents a novel method for fusing information from multiple sensor systems
for bearing fault diagnosis. In the proposed method, a convolutional neural network is exploited
to handle multiple signal sources simultaneously. The most important finding of this paper is that
a deep neural network with wide structure can extract automatically and efficiently discriminant
features from multiple sensor signals simultaneously. The feature fusion process is integrated into
the deep neural network as a layer of that network. Compared to single sensor cases and other
fusion techniques, the proposed method achieves superior performance in experiments with actual
bearing data.

Keywords: bearing fault diagnosis; deep learning; deep neural network; sensor fusion

1. Introduction

Rolling element bearings are the most important components in rotary machines. The
health condition of the bearing profoundly affects the performance, stability, and life span
of the machines. Normally, when bearings have incipient defects, the machine can still
operate as normal for some time. However, when the bearing defects become more serious,
the breakdown of the machine or the production line is inevitable. Therefore, detecting
bearing defects at the early stages is an important task in industry [1]. The integration of
a real-time bearing fault diagnosis system in rotary machines helps to detect faults and
predict the consequent effects in the system. From that, a plan of operating, maintaining,
and repairing can be scheduled.

Presently, among existing methods, the intelligent signal-based fault diagnosis is
considered to be the most popular approach. In this approach, the task of signal-based
fault diagnosis is treated as a pattern classification problem, which consists of four main
steps: signal acquisition, feature extraction, feature selection, and feature classification [2].
In the first step, signals are measured by different types of sensors attached to the machine.
The signals can be vibration signals [3], current signals [4], acoustic emission signals [5],
and so on. Since noise is inevitable in signal acquisition, the measured signals are always
contaminated by noise components. Therefore, feature extraction is a critical requirement
to extract only helpful information which reflects the health condition of the diagnosis
object and to avoid the noise components. The feature extraction uses signal processing
techniques under different domain representations of the fault signals: time domain,
frequency domain, and time-frequency domain. In the time domain, statistical features are
computed such as root mean square (RMS), square root of the amplitude (SRA), kurtosis
value (KV), skewness value (SK), peak-to-peak value (PPV), crest factor (CF), impulse
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factor (IF), margin factor (MF), and so on [6]. To analyze signals in the frequency domain,
Fourier transform is the most popular method [7]. In the time-frequency domain, wavelet
analysis is the most popular technique which is applied extensively [8]. The output of
the feature extraction step is a feature set that consists of multiple features that reflect the
fault occurring in the bearing. The extracted feature set from fault signals often has a high
dimension. A high number of features may reduce the performance of the successive feature
classification in two factors: classification accuracy and computation time. Optionally,
the feature selection can be employed to select only the most discriminant features from
the original feature set. Principal component analysis (PCA) [9], independent component
analysis (ICA) [10], sequential selection [6], and Fisher discriminant analysis (FDA) [11]
are some representative techniques applied in feature selection. The final feature set is fed
into a classifier to predict the condition of the input signal. In general, neural network
(ANN) [12], support vector machine (SVM) [13], and k-nearest neighbor (kNN) [14] are the
dominant techniques in contemporary work.

The traditional intelligent approach of signal-based fault diagnosis has been exten-
sively applied to industrial applications and achieves great results. However, in this
approach, some weaknesses still exist. The diagnosing performance highly depends on
the feature extraction step which requires signal processing techniques, human labor, and
expert knowledge. The requirement of human labor and expert knowledge means the
feature extraction cannot become an automatic step. For each specific fault diagnosis task,
a new feature extraction procedure must be redesigned manually. Moreover, the tradi-
tional machine learning algorithm fails in extracting highly complex feature abstraction
from signals.

Deep learning (DL) or deep neural network (DNN) is a branch of machine learning
(ML) which has been developed in recent years. DL exploits NNs with many layers
of data-processing units. DNN can extract highly complex abstraction from data [15].
Numerous numbers of DNN models have been introduced and achieved great success in a
vast number of applications. Basically, all DNN models can be considered to be the variants
of four basis NNs: autoencoder [16], restricted Boltzmann machine [17], recurrent neural
network [18], and convolutional neural network (CNN) [19]. Among those NNs, CNN-like
models are the most popular in intelligent signal-based fault diagnosis. With the ability of
effectively extracting features from signals while not requiring expert knowledge, DNNs
can overcome the drawbacks of the traditional approach in signal-based fault diagnosis.

Generally, in machine fault diagnosis tasks, signals from one single sensor can produce
satisfactory performance. In some cases, signals from multiple sensors can be exploited
simultaneously to enhance the performance of the diagnosis systems since the multiple
sensor systems may contain complementary information that is useful for the diagnosis
process. Usually, it is difficult to use signals from multiple sensors to identify the status of
the machines. The reason is that the signals measured by multiple sensors are disordered
and correlated with multiple sources [20]. Those methods that are proposed with an
attempt to use multiple data sources are called data fusion techniques. Upon the position
where the fusion operation is conducted, there are three general approaches: signal-level
fusion, feature-level fusion, and decision-level fusion. In machine fault diagnosis, feature-
level and decision-level fusion approaches are more popular than the signal-level fusion. In
the feature-level approach, principal component analysis (PCA) is often employed [21]. In
general, the feature sets are combined and analyzed by the PCA algorithm to extract a new
one which often has a smaller dimension. In the decision-level fusion, signals from each
sensor are analyzed and classified independently and then the final decision is generated
using fuzzy integral theory [22] or Dempster–Shafer (DS) theory [23,24].

It can be observed that the common point in the existing fusion techniques is the
requirement of additional data-processing steps. For example, in those methods with PCA,
it is necessary that a new feature set is extracted from the original data sets. Then these
feature sets are combined by PCA to generate a new feature set. This final feature set is the
input fed into the successive feature classification step. In those methods, which are based
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on DS evidence theory, first, the number of feature extractors, feature selectors, and feature
classifiers are required to be equal to the number of signal sources. Moreover, it is necessary
that a new decision maker is introduced to combine the results of preceding classifiers.
In this paper, with the hypothesis that DNNs can effectively extract fault features from
multiple signal sources, use the complementary information and eliminate the redundant
one, a DNN-based fusion technique is proposed for bearing fault diagnosis. The feature-
learning process is conducted in three steps. First, the input signals are represented in the
time-frequency domain by using continuous wavelet transform. Second, each type of signal
is extracted features by a corresponding layer of a DNN. Finally, all extracted features are
fused by a layer integrated into the structure of the DNN. The novelty of this method is
reflected in two points. First, the structure of the DNN is widened to simultaneously learn
features from multiple sources. Second, the feature-fusing operation is integrated into the
structure of the network without additional data-processing step. The effectiveness of the
proposed method is verified via experiments with actual bearing data supplied by Case
Western Reverse University Bearing Data Center [25].

The remainder of the paper is organized as follows. Section 2 briefly reviews sensor
fusion and CNN. Section 3 explains the proposed fault diagnosis method. Experimental
results and discussions are in Section 4. Section 5 concludes the paper.

2. Related Works
2.1. Sensor Fusion

Sensor fusion is the technique of unifying multiple data sources from multiple sensors
to produce more consistent, accurate, and useful information than that provided by any
individual data source [26]. Generally, in the topic of signal-based fault diagnosis, there are
three fusion types, depending on the position on the diagnosis system where the fusion is
carried out. The three types of fusion levels are as follows:

1. Signal-level fusion: this type of fusion is considered to be the lowest level where the
raw signals from all sensors are combined. Since this type combines raw signals, it is
necessary that all signals are comparable in a sense of data amount, sampling rate,
registration, and time synchronization [22].

2. Feature-level fusion: conduct the fusion at the feature space, i.e., from each signal
source (sensor), the corresponding feature set is extracted, then all feature sets are
combined to generate a new one.

3. Decision-level fusion: this type is considered to be the highest level where all decisions
are combined to generate a final conclusion. Based on each signal source (sensor), the
health condition of the machine is predicted. Then all predictions are combined to
generate the conclusion about the machine health status.

2.2. Convolutional Neural Network

In general, CNNs are neural networks that exploit convolutional layers which are
based on convolution operation. The convolution computation between a 2-D input feature
x ∈ Rm×n and a 2-D kernel k ∈ Ra×b is y ∈ R(m+a−1)×(n+b−1):

y[i, j] =
m−1

∑
u=0

n−1

∑
v=0

k[u, v]× x[i− u, j− v] (1)

where 0 6 i 6 m + a + 1 and 0 6 j 6 n + b− 1. In convolutional layers, for the simplicity
of the computation, kernels are often designed as square matrices, and the input features
are also square matrices. Consider a convolutional layer with M kernels denoted by
kt ∈ Rm×m, t = 1 : M. Assume that this convolutional layer has the input consists of N
features denoted by xl ∈ Ra×a, l = 1 : N. Then the output of that layer will be M features,
computed by:
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yt = f
( l=N

∑
l=1

kt ∗ xl
)

(2)

where f is the activation function. Normally, the Rectified Linear Unit (ReLU) is extensively
used as an activation function because of its simplicity and less computation requirement.
The math equation of ReLU is as follows:

f(z) = max(z, 0) (3)

The convolutional layer is the most important layer which is the basis of the structures
of a typical CNN-like neural network. Normally, after each convolutional layer, one pooling
layer is implemented to reduce the spatial size of the features. In addition, this layer helps
the network become invariant with a small translation of the input features [27]. The
pooling operation is illustrated in Figure 1. Consider an input feature with the size of 4× 4.
The pooling layer can exploit the max or mean operation. The pooling layer computes the
max (or mean) value of separated regions of the input matrix.

63 6

4 5

8 6

5 5

7 2

1 9

1 0

3 7

9

8 7

4.5 6.75

6 2.75

max-pooling with filter
2x2 and stride 2

mean-pooling with
filter 2x2 and stride 2

Figure 1. Pooling operation.

The pooling layers with the filter size of 2× 2 and stride of 2 are used extensively in
CNN-like NNs. With that configuration, a pooling layer with input xl ∈ R2a×2a will have
the output yl ∈ Ra×a, l = 1 : N.

Training DNNs is often difficult because of their complex structure with many layers
and a huge number of trainable parameters (weights and biases). Recently, the batch nor-
malization (BN) technique proposed by Ioffe et al. [28] is extensively applied to accelerate
the training process of DNNs. BN can improve the speed, performance, and stability of
neural networks. In CNN models, BN can be implemented as a layer right after each
convolutional layer. Basically, the BN layer normalizes its input features by adjusting and
scaling those features. Consider N input features xl ∈ Ra×a, l = 1 : N, BN layer computed
the output features as follows:

yl = γl
[

xl − E[xl]√
Var[xl]

]
+ βl (4)

where γ and β are trainable parameters introduced to scale and shift the normalized
input features. E[x] and Var[x] denote the mean value and standard variation value of x,
respectively. The output 2-D form features of the final pooling layer is flattened into 1-D
form and fed into the dense layer. A dense layer (or fully connected layer) has the same
structure with the conventional a multilayer perception, i.e., each neuron in one layer is
linked to all neurons of the next layer. Flattening the input features simply rearranges
the values of the input features (2-D form) into a column matrix. Consider a feature map
xl ∈ Ra×a, l = 1 : N, the output of the flattening operation will be y ∈ RN∗a2×1.

The final feature map computed by the dense layer is fed into the SoftMax layer to
conduct the classification. Consider a classification task with C labels and input feature
map x, the SoftMax layer computes the probability of each label as follows:

pj =
ewj∗x

∑C
j=1 ewi∗x

(5)
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The loss function of the network is computed by the cross-entropy loss as follows:

L(q, p) = −
C

∑
j=1

qj log(pj) (6)

where q is the true label of the input data.

3. Proposed Bearing Fault Diagnosis Method

The overall procedure of the proposed fault diagnosis method is illustrated in Figure 2.
This method consists of five main steps: signal measurement, signal to image conversion,
image fusion, feature extraction, and feature classification.
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Figure 2. The proposed DNN.

In the first step, the signals from various sensors are measured synchronously. These
sensors can be different types or the same types but installed at different positions on the
machine. Each sensor supplies a data source for the fault diagnosis system.

As shown in the previous section, the strength of CNNs is in the 2-D data form
processing. Therefore, in the second step, signals are transformed into 2-D form using
continuous wavelet transform (CWT). The CWT is defined as follows. A mother wavelet is
a function ψ(t) with zero average (i.e.,

∫
R ψ− 0), normalized (i.e., ||ψ|| = 1), and centered

in the neighborhood of t = 0 [29]. Scaling ψ(t) by a positive quantity s, and translating it
by u ∈ R, a wavelet family can be defined as:

ψu,s(t) :=
1√

s
ψ

(
t− u

s

)
, u ∈ R, s > 0 (7)

Given x(t) ∈ L2(R), the continuous wavelet transform of x(t) at time u and scale s
(which inversely relate to frequency) is defined as:

W(s, u) := 〈x(t), ψs,u〉 =
1√

s

∫
x(t)ψ∗

( t− u
s

dt
)

(8)

where ψ∗ denotes the complex conjugate of ψ. CWT decomposes the input signal x(t) into
a series of wavelet coefficients. The scalogram of x(t) is defined by the function:

S(s) := ||W(s, u)|| =
√∫ +∞

−∞
|W(s, u)|2du (9)

If a time interval [t0, t1] needs to be considered, the corresponding windowed scalo-
gram is defined by the function:

S[t0,t1]
(s) := ||W(s, u)||[t0,t1]

=

√∫ t1

t0

|W(s, u)|2du (10)
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In other words, the scalogram is the absolute value of the CWT of a signal, plotted as
a function of time and frequency, as shown in Figure 3.

Figure 3. Time-frequency representation of vibration signal.

By representing signals in the time-frequency domain as image form, the health
condition of the machine will be reflected by a data sample which consists of n images
corresponding to n signal sensors. The task of bearing fault diagnosis now can be consid-
ered to be the task of image classification. However, this image classification task cannot
be solved by the conventional CNN since each data sample consists of multiple images.
Therefore, a new model of DNN is proposed to handle the multiple-image data samples.
Assume that there are n data sources, corresponding to n sensors used for the diagnosis in
the rotary machine. Based on the number of data sources, the proposed DNN model has n
branches accordingly, each branch will handle one individual image in the data sample
which is fed into the network. Each branch consists of multiple successive convolutional
layer–batch normalization layer–pooling layer (a CBP module). Each branch takes the role
of extracting features from the corresponding image data source.

The output of each branch is considered to be a feature set of the corresponding signal
source. All feature sets are combined at the feature-fusing layer, which is integrated as
a layer in the network. Assume that there are n signal source. Accordingly, there are n
feature sets, denoted by Xi, i = 1 : n. Each feature set has a size of h×m×m. The output
of the feature-fusing layer is a new feature set with a size of 1× hnm2. The new feature set
is then fed into the dense layer to learn higher level features. Finally, the output feature set
from the dense layer is classified by the SoftMax layer. The final prediction is made based
on the output probabilities of the SoftMax layer.

4. Experiments
4.1. Test-Bed and Data Preparation

The actual bearing fault data are supplied by the Bearing Data Center of Case Western
Reverse University. The test-bed consists of a 2-hp motor, a torque transducer, and a
dynamometer. The test bearings support the motor shaft. The test bearings were seeded
with faults using electro-discharge machining (EMD). The bearing test-bed can be operated
under different load values by changing the torque applied to the motor. Four operating
conditions are considered include 0 hp, 1 hp, 2 hp, and 3 hp.

Vibration signals are measured by two accelerometers placed at the fan-end (FE) and
drive-end (DE) of the motor. Two accelerators measure vibration signals simultaneously
and the signals are digitized at sampling frequency 12 kHz. There are four types of bearing
conditions considered, including one type of healthy bearing and three types of fault
bearings: bearing with fault at inner race fault, bearing with fault at outer race fault, and
bearing with fault at rolling elements. Each type of bearing fault has different fault diameter,
including 7 mils (mili-inches), 14 mils, and 21 mils. Totally, as shown in Table 1, ten types
of bearing conditions are labeled from 0 to 9, respectively.

Since vibration signals are measured by two accelerators FE and DE simultaneously,
each bearing condition is reflected via two separate files. Overall, 20 vibration signal files
are recorded corresponding to 10 bearing conditions.
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Table 1. Labeling for signal.

Bearing Conditions Fault Size (Mils) Label

No fault 0

Inner race fault 7 1

Inner race fault 14 2

Inner race fault 21 3

Ball fault 7 4

Ball fault 14 5

Ball fault 21 6

Outer race fault 7 7

Outer race fault 14 8

Outer race fault 21 9

4.2. Other Methods for Comparison

To evaluate the effectiveness of the proposed method, as well as analyze the advan-
tages and disadvantages, some other bearing fault diagnosis methods published recently
have been adopted to make comparisons. The proposed method in this paper is a com-
bination of deep learning and sensor fusion. Therefore, it is necessary to compare it with
the deep learning-based approaches and the sensor fusion approaches. The first method
to compare is published in [30]. In this method, a DNN based on LeNet-5 is developed
to classify a gray-scale image data-set, which is obtained by transforming the vibration
signals. The second method which is taken into account is published in [31]. In this
method the transfer learning technique is adopted to reuse the Alexnet, a well-known
DNN in image classification [32]. Originally, Alexnet is a very deep NN trained for image
classification. When adopted into the new task of bearing fault diagnosis, it is re-trained
with the time-frequency image of vibration fault signals. The third method adopted to
compare is a PCA-based fusion method. In this method, vibration signals are transformed
into the time-frequency domain. From each sample of the signal, 14 features are extracted.
Therefore, each bearing condition is indicated by a total of 28 features (14 features from
the DE sensor and 14 features from the FE sensor). PCA algorithm is exploited to fuse
the two feature sets and generate a new one consisting of only 20 features. Finally, MLP
is employed to classify the fused feature set generated by PCA. The fourth method to
compare is based on the DS evidence theory. In this method, two separated NNs are used
to diagnose the bearing condition using DE and FE signals, respectively. Then the DS
evidence theory is manipulated to combine the diagnosing results of the NNs. In this
method, the fusion is conducted at the decision level, while in the PCA-based method, the
fusions are conducted at the feature level.

4.3. Signal Pre-Processing

The DNN models for the fault diagnosis problem need to be trained by a significant
amount of data samples. Therefore, the signal files are split into equal segments. As
mentioned in Section 4.2, the method proposed in [30] is taken into account for comparison.
In this method, there is a step where the signal samples are rearranged to form gray images
and apply the image classification by LeNet5. Therefore, an MNIST-like data-set is going
to be created. In the MNIST data-set, the gray images have a size of 28× 28. Therefore,
the length of signal segments is selected at value 28× 28 = 784. For each condition of the
test bearing, 600 signal segments are prepared, including 300 segments of vibration signal
measured by FE sensor and 300 segments of vibration signal measured by the DE sensor.

The next step in signal pre-processing is to represent signal segments in the time-
frequency domain using CWT. The original time domain vibration signals are represented



Sensors 2021, 21, 244 8 of 13

in the time-frequency domain using CWT, which exploits the Morse wavelet function. The
time-frequency images of vibration signals are shown in Figure 4. In each condition of
bearing, the training data-set and testing data-set are split randomly with the ratio of 7/3.

Figure 4. Time-frequency representations of vibration signals.

4.4. Designing and Training the Proposed DNN

In the topic of image classification, many well-known DNNs have been successful
with an image size of 3× 224× 224. Inspired by that fact, in this paper, all time-frequency
images are resized to a size of 3× 224× 224. As a result, the inputs of DNNs have the size
of 3× 224× 224. The convolution kernel size and stride step length were determined by
trial-and-error process, taking into the consideration of the values used in the literature.
The kernel size of 3× 3 with the padding zero technique and the stride step of 1 is used in
all convolutional layers. In all pooling layers, the kernel size of 2× 2 and the stride step of
2 are used. Consequently, after passing a group of three successive layer: convolutional
layer, batch normalization layer, and pooling layer, the output data will have the number
of feature maps equal to the number of the kernels in the convolutional layer, and the size
of feature size is reduced by 2.

The feature-fusing layer flattens the two input feature sets of two branches, and
concatenates them to generate a fused feature map. Then this feature map is fed into the
dense layer, and finally, the SoftMax layer classifies the feature map to predict the class of
the input data sample. It is noticeable that each data sample consists of two time-frequency
representations (from DE and FE sensors). The fused feature set has a size of 1 × 12,544.

The SoftMax layer of the DNN has 10 outputs, corresponding to 10 classes of bearing
health conditions that need to be classified. The network is trained with mini batch
stochastic gradient descent with momentum algorithm, the learning rate α = 0.001, the
momentum β = 0.9, and the batch size 16.

4.5. Fault Diagnosis Results

All methods mentioned in Section 4.2 are taken into account to make a comparison
with the proposed method. Among those methods, the method using Lenet5 and Alexnet
uses single signal sources. These two methods will be evaluated by both the DE signal
source and the FE signal source separately. The PCA-based, DS-based, and the proposed
method in this paper are fusion-based methods. Therefore, the DE and FE signal sources
will be used simultaneously for these three methods. Each method is trained by 2100 data
samples and tested by 700 data samples. The accuracy of diagnosis with 700 testing data
samples is the criteria to evaluate the performance of those fault diagnosis methods. Four
different operating conditions of the test bearing are taken into account for evaluating
the fault diagnosis methods. The accuracy of all methods is shown in Table 2. It can be
observed that all methods, under all operating conditions of the test bearing achieve very
high accuracy. However, the results of the DS-based fusion method are slightly lower
the others.
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Table 2. Fault diagnosis accuracy of methods.

Method Sensor
Accuracy (%)

0 hp 1 hp 2 hp 3 hp

Alexnet DE 100.0 99.78 100.0 100.0

Alexnet FE 100.0 99.78 99.89 100.0

Lenet5 DE 97.56 96.67 99.56 99.67

Lenet5 FE 97.56 96.67 99.56 99.67

PCA-based fusion DE and FE 98.6 98.6 99.25 99.4

DS-based fusion DE and FE 97.73 97.67 99.05 99.47

Proposed method DE and FE 100.0 99.56 100.0 99.78

4.6. Evaluation under Noisy Conditions

In industrial environments, the sensory signals are always contaminated by noise.
That leads to the degradation of the performance of the fault diagnosis system. To evaluate
the robustness against the noise of fault diagnosis methods, noise signals are introduced
into the original vibration signals. The additive Gaussian white noise (AGWN) with
various standard variances is added to the original vibration signals. The signal-to-noise
ratio (SNR) is defined as follows:

SNR = 10 log
(Psignal

Pnoise

)
(11)

where Psignal and Pnoise are the power of signal and noise, respectively. Figure 5 shows the
noisy signal made by adding an original signal with Gaussian white noise. The experiments
are conducted with noisy signals which obtained by adding AWGN with different SNR
values vary in the range [−1,−2,−3,−4,−5,−6,−7,−8].
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Figure 6 and Table 3 show the experiment results. Table 3 describes the experiment
results conducted under different working conditions. We consider 4 load conditions:
0 hp to 1 hp, 2 hp, and 3 hp. Under each load condition, the noise levels are changed
from −8 dB to −1 dB. The classification accuracy is the metric used to compared 7 fault
diagnosis methods, included the proposed one. It can be observed that the common trend
of all diagnosis methods is the more noise added to the original signal, the worse the

Figure 5. Add noise to original signal.

Figure 6 and Table 3 show the experiment results. Table 3 describes the experiment
results conducted under different working conditions. We consider 4 load conditions:
0 hp to 1 hp, 2 hp, and 3 hp. Under each load condition, the noise levels are changed
from −8 dB to −1 dB. The classification accuracy is the metric used to compared 7 fault
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diagnosis methods, included the proposed one. It can be observed that the common trend
of all diagnosis methods is the more noise added to the original signal, the worse the
classification accuracy. In the worst case (−8 dB noise level), some methods cannot exceed
50% accuracy. Among all compared methods, the proposed method achieves the highest
accuracy under all working conditions. Figure 6 shows some facts as follows:

• The diagnosis accuracy of all methods decreases in accordance with the noise level in
the signal.

• For the two methods using single signal source, the diagnosis accuracy in the case of
DE sensor and FE sensor are very close.

• The PCA-based and DS-based fusion methods have very similar diagnosis accuracy,
since in these two methods, the same feature set is extracted.

• Among the compared methods, the proposed method which uses the DNN-based
feature fusion has the most consistency against noise, better than all other methods.

Table 3. The diagnosis accuracy (%) of methods under different working conditions.

Noise Level (dB) −8 −7 −6 −5 −4 −3 −2 −1

Load
0

hp

Alexnet-DE 55.11 67.0 75.44 84.11 87.33 90.67 91.22 94.56

Alexnet-FE 57.89 68.0 71.44 82.44 82.56 88.89 92.11 93.44

Lenet5-DE 35.89 34.22 45.44 61.78 58.11 68.44 82.67 86.22

Lenet5-FE 39.78 45.56 60.89 59.78 72.44 79.78 86.89 89.11

PCA-based fusion 53.88 62.33 67.14 72.27 76.68 80.1 82.68 86.37

DS-based fusion 54.42 62.13 66.06 72.4 76.14 80.5 83.69 86.24

Proposed method 65.11 78.11 82.78 85.33 90.0 92.22 94.44 96.22

Alexnet-DE 53.89 64.44 77.89 83.78 89.0 91.56 93.67 95.22

Load
1

hp

Alexnet-FE 52.11 56.56 65.78 71.67 78.0 80.78 87.78 90.22

Lenet5-DE 34.56 39.22 45.22 56.22 63.22 74.0 78.0 81.67

Lenet5-FE 37.67 43.0 56.22 59.56 71.56 81.44 81.89 87.78

PCA-based fusion 54.66 59.2 65.98 71.57 77.36 82.46 85.93 88.59

DS-based fusion 54.66 59.2 65.98 71.57 77.36 82.46 85.93 88.59

Proposed method 53.22 73.44 83.33 90.0 91.89 93.11 96.44 97.44

Alexnet-DE 52.56 64.33 73.89 83.33 87.11 90.33 94.56 96.0

Load
2

hp

Alexnet-FE 52.89 58.78 70.11 79.78 84.11 90.56 95.33 96.67

Lenet5-DE 38.78 42 51.11 63 68.89 79.22 81.56 85.67

Lenet5-FE 39.22 45 57.57 65.67 72.67 78.44 86 92.33

PCA-based fusion 55.12 58.85 67.14 71.73 76.36 81.21 87.27 88.94

DS-based fusion 55.39 60.83 66.4 71.8 76.9 82.09 87.48 90.21

Proposed method 75.11 78.67 89.78 93.11 96.33 97.56 98.78 99.11

Alexnet-DE 58.33 63.67 79.0 83.78 91.78 94.56 96.56 98.0

Load
3

hp

Alexnet-FE 64.56 71.11 81.56 85.56 91.11 95.56 95.89 97.44

Lenet5-DE 40.56 41.33 55.67 58.78 78.89 82.67 88.56 92.67

Lenet5-FE 41.22 58.11 64.0 73.33 77.22 87.11 89.22 94.33

PCA-based fusion 57.25 63.35 73.39 78.39 84.57 88.83 90.66 94.36

DS-based fusion 57.98 64.42 72.72 78.18 85.79 88.9 91.52 94.83

Proposed method 79.89 83.89 92.67 96.0 96.78 97.67 98.44 98.89
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Figure 6. Evaluation of fault diagnosis methods under different SNRs and operating conditions.

5. Conclusions

This paper proposed a novel deep neural network for the task of multiple sensor-based
fault diagnosis. The proposed DNNs with wide structure and integration of the feature
fusion as a network layer help to learn features from multiple signal sources simultaneously
and effectively. As a result, the proposed method can achieve better results compared
to other DL-based and fusion-based methods, especially under noisy conditions. The
proposed neural network is not limited in the topic of this paper, i.e., used for vibration
signals, it can be applied to any fault diagnosis task that have to fuse multiple signal
sources. In future works, we will evaluate the proposed method with other types of signals
such as current signals and acoustic emission signals. Moreover, we will also examine the
performance of the proposed method for the case of fusing different types of signals in the
same fault diagnosis system.
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Abbreviations
List of Abbreviation used in paper:

ANN artificial neural network
CF crest factor
CNN convolutional neural network
CWT continuous wavelet transform
DNN deep neural network
DL deep learning
FDA fisher discriminant analysis
ICA independent component analysis
IF impulse factor
kNN k-nearest neighbor
KV kurtosis value
MF margin factor
PCA principal component analysis
PPV peak-to-peak value
RMS root mean square
SK skewness value
SNR signal-to-noise ratio
SRA square root of the amplitude
SVM support vector machine
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