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Abstract: Gearbox fault diagnosis based on the analysis of vibration signals has been a major research
topic for a few decades due to the advantages of vibration characteristics. Such characteristics are used
for early fault detection to guarantee the enhanced safety of complex systems and their cost-effective
operation. There exist many fault diagnosis models that have been developed for classifying various
fault types in gearboxes. However, the classification results of the conventional fault classification
models degrade when they are applied to gearbox systems with multi-level tooth cut gear (MTCG)
faults operating under variable shaft speeds. These conditions cause difficulty in discriminating the
gear fault types. Due to the improved computational capabilities of modern systems, the application
of deep neural networks (DNNs) is getting popular in a variety of research fields, such as image
and natural language processing. DNNs are capable of improving the classification results even
when addressing complex problems such as diagnosing gearbox MTCG faults. In this research,
an adaptive noise control (ANC) and a stacked sparse autoencoder–based deep neural network
(SSA-DNN) are used to construct a sensitive fault diagnosis model that can diagnose a gearbox
system with MTCG fault types under varying shaft rotation speeds, despite its complicatedness.
An ANC is applied to gear vibration characteristics to remove a significant level of noise along the
frequency spectrum of vibration signals to fix the most fault-informative components of each fault
case. Next, the autoencoder learns the gear faults characteristic features from these fault-informative
components to separate the fault types considered in this study. Furthermore, the implementation of
the SSA-DNN is substituted for feature extraction, feature selection, and the classification processes
in traditional fault diagnosis schemes by high-performance unity. The experimental results show that
the proposed model outperforms conventional methodologies with higher classification accuracy.

Keywords: adaptive noise reducer; Gaussian reference signal; gearbox fault diagnosis; stacked sparse
autoencoder–based deep neural network; varying rotational speed

1. Introduction

Different types of gearboxes are used in various equipment such as vehicles, industrial
machinery, and electrical generators. However, they are prone to defects due to harsh and
continuous working conditions. Gear defects can lead to damage of the gearbox system
and become a root cause of damaging the whole mechanical device, which may lead to
serious economic losses and the threat of personal safety. Hence, the condition monitoring
of gearboxes is essential, and it would be beneficial if the gear defects in gearboxes can
be detected in the early stages. The general non-destructive method for condition mon-
itoring of gearboxes is based on sensing the vibration characteristics which contain the
fault-related components [1]. The complex sideband frequencies are distributed around
the meshing frequency and its harmonics, which are considered as intrinsic components in
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the vibration signals and are used as informative components to identify gear defects [2,3].
From the standpoint of signal processing, a gearbox vibration signal is an amplitude and
phase-modulated signal that occurs as many frequency tones centered by carrier frequen-
cies are lined up along the whole range of the frequency spectrum. Each set of frequency
tones contains a center frequency, as a meshing frequency or its harmonics, and sideband
frequencies that are a function of the gear frequencies or specific oscillation frequencies
distributed around the center frequencies. For diagnosing gearbox systems, it is essential to
decompose the intrinsic fault-related components, and signal analysis is the most popular
technique for these purposes. For capturing the vibration characteristics, accelerometers
for measuring vibration signals are more frequently employed than acoustic emission
sensors due to their relatively easy installation [4,5]. Notwithstanding, the vibration signals
collected under variable rotational speeds in the gearbox are non-linear and non-stationary
signals [6] which accommodate noise caused by the interaction of multiple related systems
such as the resonance of shafts, gears, and other mechanical components, electrical and
electronic control systems, data collection systems, and the environment [7]. These noise
components are random and cause deterioration of the fault-relative characteristics in
vibration signals, especially for the vibration signals of MTCG gearboxes (i.e., the noise
frequency components might appear randomly with random amplitudes in the whole
range of the frequency spectrum of a vibration signal and can cover or deform the original
meshing frequency components, its harmonics, and sideband frequencies which are con-
sidered as fault signatures). For that reason, the appropriately selected signal processing
techniques for reducing noise components and filtering out the informative components
are of a high importance.

Recently, many digital signal processing techniques have been developed by re-
searchers that can be applied in different domains (e.g., time domain, frequency domain,
and time-frequency domain) by employing a variety of advanced approaches such as
Fourier transforms, short-time Fourier transforms, Hilbert transforms, wavelet transforms,
Hilbert-Huang transform-based empirical mode decomposition [8–14], and the combined
techniques [15–17]. The key methods which were utilized in those methodologies for
discovering the fault-related components in the vibration signals are as follows: win-
dow filtering, thresholding, wavelet excitation, and intrinsic mode function extraction.
These methods demonstrated their ability to reduce the noise at some ratio; however,
the fault-informative components have been distorted as well. Due to these issues, these
methods might not perform well in processing the signals containing MTCG faults to
prepare the differentiable data for fault classification. Hence, in this paper, the ANC is
utilized for processing the vibration signals to reduce the noise presence and preserve the
fault-related components [18] to overcome the disadvantages of the previously introduced
signal analysis models.

Considering the feature engineering and classification processes, the traditional gear-
box fault diagnosis methods include feature pool configuration (feature extraction and
feature selection) and fault classification by machine learning algorithms such as k-nearest
neighbors (k-NN), support vector machines (SVMs), and artificial intelligence networks
(ANNs) [19–22]. The main idea of those methods is to perform fault classification using the
features which are statistical parameters extracted and selected from vibration signals in the
time and frequency domains [23]. Feature extraction is an interfering process that requires
a series of experiments for discovering fault-related discriminating feature parameters
and then, based on their discriminating capabilities, the appropriated feature selection
algorithms are applied for reducing the dimensionality of the constructed feature pool and
selecting the most discriminative features for the classification process. These feature pool
configuration processes can precede the difficultness of analyzing the vibration signals
in each fault case of an MTCG gearbox system for extracting discriminative parameters.
Moreover, these approaches can efficiently classify gear faults of a gearbox system under
invariant shaft speed, but their performance degrades when applied to the datasets col-
lected under varying shaft speeds. These issues can be addressed by creating a network
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that can efficiently determine tiny different components of non-stationary vibration signals
of an MTCG in a gearbox system operating under varying speeds. The deep learning tech-
nique has dawned as an advantageous tool that has been applied in the fields of natural
language processing, computer vision, image processing, and pattern recognition, and
has succeeded in discriminating barely distinguishable components in categories through
multiple non-linear transformations [24–26]. In other words, deep neural networks (DNNs)
are suitable for use in the construction of sensitive and non-linear models. Instead of
manually extracting the features and selecting the most separable ones, DNNs can be
efficiently used for unsupervised hierarchical feature extraction and feature learning [27].
Thus, this study employs a stacked sparse autoencoder (SSA)-based DNN for identifying
the fault types of an MTCG gearbox system based on the vibration signals with reduced
noise components delivered by the ANC module.

The major contributions of this study are summarized as follows: (1) an adaptive
noise control approach is designed for de-noising and preserving fault-related elements
of raw vibration signals to obtain the optimized subbands on its outputs which mostly
contain the essential informative components of vibration signals, and (2) the SSA-DNN
utilizes the optimized subbands for identifying the MTCG defect types. The efficiency of
the proposed model is evaluated by applying it to the vibration dataset collected from the
MTCG gearbox that contains signals collected under six levels of tooth cut fault, such as
6.6%, 10%, 20%, 30%, 40%, and 50% cut as well as signals collected under normal operating
conditions. The experimental dataset was collected under variable shaft rotating speeds,
such as 300 RPM, 600 RPM, 900 RPM, and 1200 RPM, respectively. The results demonstrate
the improved fault classification performance in comparison with the existing models.

The rest of this paper is organized as follows. Section 2 presents a gearbox experimen-
tal dataset along with the characteristics of vibration for normal and defective gears. The
detail of the proposed method is provided in Section 3. Section 4 describes the experiment
configuration and the process of parameter tuning for the proposed network. Section 5
presents the results and discussion, and Section 6 contains the concluding remarks.

2. The MTCG Gearbox Dataset
2.1. The Experimental Testbed and MTCG Gearbox Dataset

Figure 1 shows the experimental setup used for exploring the vibration characteristics
of the MTCG gearbox system. A three-phase AC induction motor is connected to a pinion
wheel through a drive shaft (DS) and a set of adjustable blades is mounted on a non-drive
shaft (NDS) the other end of which is connected to a gear wheel. The numbers of teeth on
the pinion wheel and the gear wheel are equal to 25 (Np = 25) and 38 (Ng = 38), respectively.
The length of each tooth is equal to 9 mm. The torque generated by the AC motor is
transferred to the adjustable blade through the gearbox with a gear ratio of 25:38 (1:1.52).
The multi-level tooth cut faults were seeded in one tooth of the gear wheel by cutting the
percentage of the tooth length as depicted in Figure 2. The MTCG fault types contain a
normal gear or a no seeded fault gear (N) condition, a tooth cut seeded gear defect of 6.6%
(D1), a tooth cut seeded gear defect of 10% (D2), a tooth cut seeded gear defect of 20% (D3),
a tooth cut seeded gear defect of 30% (D4), a tooth cut seeded gear defect of 40% (D5),
and a tooth cut seeded gear defect of 50% (D6), respectively. For measuring the vibration
characteristics of an MTCG gearbox in the normal and defects cases, the vibration sensor
(an accelerometer 622B01 of IMI Sensor company) was installed at the end of the NDS,
72.5 mm from a gear wheel. Therewith, the shaft rotation speeds are monitored by using
a displacement transducer (a speed sensor) to track the seeded hole in the DS once per
rotation. The output signal from a vibration sensor was digitized using a PCI-based data
acquisition board with a sampling frequency of 65,536 Hz continuously for one second.
The data collection process was repeated 200 times to receive 200 samples of 1-s length
per each gear defect state (seven states) under each shaft rotation speed. Therefore, the
total number of observing samples is 5600, each of one second duration. The detailed
description of the MTCG gearbox dataset is in Table 1.
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Figure 1. Experimental testbed arrangement for acquiring the MTCG gearbox dataset.
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Figure 2. The defect states of the gear wheel and examples of vibration signals at a rotation speed of
600 RPM: (a) no seeded fault, normal gear, (b) tooth cut 6.6% (0.6 mm), (c) tooth cut 10% (0.9 mm),
(d) tooth cut 20% (1.8 mm), (e) tooth cut 30% (2.7 mm), (f) tooth cut 40% (3.6 mm), and (g) tooth cut
50% (4.5 mm), respectively.

Table 1. A detailed description of the MTCG defect types and dataset.

Gearbox Fault State. Description
Number of 1-S Data Samples Acquired for Each

Rotation Speed
Sampling

Frequency (Hz)
300 RPM 600 RPM 900 RPM 1200 RPM

Normal Gear
(N)

No seeded fault in the
teeth of a gearbox 200 200 200 200 65,536

Defect type 1(D1) Gear tooth cut 6.6%
(0.6 mm) 200 200 200 200 65,536

Defect type 2(D2) Gear tooth cut 10%
(0.9 mm) 200 200 200 200 65,536

Defect type 3(D3) Gear tooth cut 20%
(1.8 mm) 200 200 200 200 65,536

Defect type 4(D4) Gear tooth cut 30%
(2.7 mm) 200 200 200 200 65,536

Defect type 5(D5) Gear tooth cut 40%
(3.6 mm) 200 200 200 200 65,536

Defect type 6(D6) Gear tooth cut 50%
(4.5 mm) 200 200 200 200 65,536
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2.2. The Vibration Characteristics of the Gearbox System

The categories of gear defects can be generally split into three types: manufacturing
defects (wheel eccentricity, defect of tooth profile, etc.), installation defects (parallelism),
and defects caused by long-term operation (cracked tooth, spalled tooth, case ware tooth,
tooth wear, etc.). In this work, the MTCG defects were created to simulate the operated
defects as the multi-level depth of a tooth cut seeded in the gear wheel of the gearbox
system. The vibration characteristics of a gearbox system are analyzed in the cases of a
healthy gear (a defect-free gear) and a defect gear for identifying the informative fault-
related components in the vibration signal. The vibration signal of a defect-free gear
represents a linear and periodical signal that is calculated using the following formula [28]:

yn(t) =
K

∑
k=i

Yk cos(2πk fht + ∂k) (1)

where yn(t) is a vibration signal of a healthy gear; K is a total number of meshing frequency
harmonics in the observed frequency spectrum of a vibration signal; Yk and ∂k are the
amplitude and phase of the k-th meshing frequency harmonics (k = 1, . . . , K); and fh stands
for the meshing frequency which can be calculated using the parameters of a gear wheel
( fh = fgNg, where fg is a gear wheel rotation speed and Ng is the number of gear teeth)
or parameters of a pinion wheel ( fh = fpNp, where fp is a pinion wheel rotation speed
and Np is the number of pinion teeth). Figure 3a illustrates an example of a frequency
spectrum denoting the informative components as meshing frequency tones in a spectrum
of vibration signals of a defect-free gearbox.

Figure 3. The example vibration signals present in the frequency domain: (a) a normal gearbox and
(b) a defective gearbox.

Compared to a vibration signal of a normal gear, a signal of a defected gear is more
complex due to the occurrence of impulsive vibrations when the motion is transferred
from the DS to the NDS by rotating a pinion wheel through a gear wheel at a defective
tooth position during one rotation cycle. Those periodical impulsive vibrations create
the non-linear and non-stationary vibration signal formed as the amplitude and phase
modulation signal in the point of view in the signal processing zone [3]. The fault gear
vibration signal can be formulated [29] by Equation (2), and an example for demonstrating
the fault-related informative components is shown in Figure 3b:

yd(t) =
K

∑
k=0

Sk(1 + σk(t)) cos(2πk fht+ ∈k +ψk(t)) (2)

Here, σk(t) = ∑N
i=0 Θki cos

(
2πi fgt + Ωkj

)
and ψk(t) = ∑N

i=0 Ψki cos
(
2πi fgt + ξki

)
are

modulating components of the amplitude and phase partial in the fault gear vibration
signal yd(t); Θki,Ψki are amplitudes and Ωkj,ξki are phases of the i-th sideband, respectively,
roundly k-order meshing the frequency tone of the vibration signal yd(t).
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3. The Incorporated Construction Model of the ANC and the SSA-DNN

The proposed sensitive and speed invariant model for diagnosing gearbox faults is
presented in Figure 4. Three major function blocks are utilized in this model, such as the
data collection system (Sensors and DAQ), the ANC, and the SSA-DNN. The data collection
system collects the vibration dataset of an MTCG gearbox system for each fault type (seven
fault types in total) under variable shaft rotation speeds. It collects the vibration data sam-
ples and captures the gear defect behaviors in the vibration characteristics: each vibration
sample is evenly acquired during one second to monitor several complete rotation cycles
of the defected gear. The ANC module then processes the raw vibration signals. Firstly, it
performs down-sampling three times along with filtering the signal with a low-pass filter
to receive the vibration subbands within the frequency range from 0 to 10 kHz according
to the real operating frequency range of the vibration sensor [18]. The expression of multi-
level gear defect types on the vibration characteristic is signified by the magnitudes of the
principal frequency tones, therefore the main function of the ANC is optimizing vibration
subbands for removing the redundant components along with noise while preserving the
original fault-related components. The output of the ANC provides the optimized subband
in the frequency domain (power spectrum density) which mostly contains the meshing
frequency, its harmonics, and their distributed sideband gear frequency tones (i.e., the
defect-related informative components). Under variant speeds condition, the positions of
principal frequency tones are altered according to the explanation in Section 2. There exist
the components that represent the speed invariant MTCG defects as the numbers of latent
features related to the ratio and proportional to the amplitudes and displacements in the
optimized vibration subbands, which are difficult to extract features from by traditional
methodologies [30]. Notwithstanding, based on the unsupervised learning and hierarchy
of feature extraction constitution of a deep neural architecture (DNA), the SSA-DNN can
vanquish the issue and automatically explore the most defect-substantial features from
a set of components in the frequency spectrums of optimized subbands output from the
ANC. By fetching out these features, the SSA-DNN can use them to identify defect types of
an MTCG gearbox system for achieving a high classification result in the output layer.

1 
 

 
Figure 4. A block diagram of the proposed gearbox fault diagnosis model.

3.1. Adaptive Noise Control (ANC)

ANC is a signal processing method used for reducing noise and preserving the fault-
related informative elements in gearbox vibration characteristics. The ANC approach is a
self-constructed and time-varying system that uses a recursive algorithm for optimizing
its parameters for obtaining the desired optimized signal in its output [31]. General
ANC consists of a digital filter, an adaptive algorithm, and a reference signal generator.
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An adaptive algorithm operates to update the coefficients of the digital filter based on the
feedback error signal of a filtered reference and an input signal to receive the optimized
denoised subband signal in the output of the ANC [32]. In this study, the ANC employs
the adaptive noise reducer-based Gaussian reference signal (ANR-GRS) which has been
elaborated in [18] for reducing noise and optimizing gearbox vibration signals. An adaptive
noise control scheme contains two inputs (the desired input and a reference input) and
one output. As the desired input for the observed signal, the vibration subband is used in
this study, while the reference input is used for a signal that imitates the parasitic noise in
the observed signal. The function of the ANC approach can be described in detail in the
following processes [18]:

1. Generating the reference signal to supply to the reference input of an ANC:

Mainly, there are two types of noise present in the vibration signal: white noise and
band noise. Hence, the reference signal generator creates the output signal behavior which
is homologous with those such as Gaussian signals and white noise signals, as illustrated
in Figure 5. The parameters of a Gaussian signal (a mean and a standard deviation value)
can be adjusted based on the input variable of the shaft rotation speed. The adjustable
Gaussian window, a component for building the entire Gaussian signal, is drawn to adapt
to the frequency space between two consecutive sideband gear frequencies, formulated as
follows:

WGref(p) =
Nt

∑
p=1

e−
(p− Fo)2

2σ2 (3)

where the adjustable parameters (mean value Fo and standard deviation value σ) are
functions of the shaft rotation frequency [18]. Concretely, Fo is proportional to the frequency
of faulty wheel ( fDG) and can be computed as below:

Fo = ε· fDG, (4)

and by linearizing the Gaussian function, the standard deviation is approximated to the
mean value as:

σ = 0.318·Fo = 0.318·ε· fDG. (5)
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Also, the number of sideband segments Nt is calculated using the known parameters
such as the number of samples Ns, sampling frequency Fs, and fault wheel frequency. The
formulation of sideband segments is presented below:

Nt =
2Ns

Fs
· fDG (6)

where the frequency of a faulty wheel ( fDG) is represented as a gear frequency ( fg) which
is defined in Section 2. Therefore, by adjusting the ratio coefficient ε, the Gaussian window
can access the space between two consecutive sideband frequencies in the frequency
spectrum of a vibration signal to reduce the presence of noise. According to specific
conditions defined in [18], first, the coefficient ε is selected from the range of [0.25 0.75],
and then, the Gaussian windows are created with the parameters chosen as shown below:

(1) the mean value Fo is assigned to be in the range:

0.25· fDG ≤ Fo ≤ 0.75· fDG (7)

(2) the standard deviation of the Gaussian windows is selected in the following range:

σ =

{
0.318·ε· fDG when 0.25 ≤ ε ≤ 0.5

0.318·(1− ε)· fDG when 0.5 < ε ≤ 0.75
(8)

By limiting the adjusting values of the coefficient ε, each generated Gaussian window
is positioned completely inside the area between two consecutive sideband frequencies
during the optimization processes in the next steps. This ensures that the adaptive noise
control technique performs reducing band-noise significantly whereas originally preserving
the fault-related informative components as meshing frequencies, its harmonics, and
sideband frequencies [18].

2. The construction of an adaptive filter

The adaptive filter is formed by combining the N-tap FIR digital filter (the coefficient
vector as c(n) ≡ [c0, c1, . . . , cN-1]T) and a least mean square (LMS) adaptive algorithm. The
reference signals are used as the input to the digital filter and its output signals are summed
with the vibration subbands to calculate the output error signals. Based on this error, the
LMS adaptive algorithm tunes the coefficient vectors according to the convergence criterion
of the least mean square error for determining the optimal coefficient vector (c0) and then
identifying the local optimal subbands. The operation of an adaptive filter is functionally
described in Figure 6.
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Figure 6. A functional block diagram of an adaptive noise control module.

3. The optimization process for selecting the optimal vibration subband

Each vibration subband, processed by an adaptive filter with the input reference of a
parameter- adjustable Gaussian reference signal, results in many subbands in its output
(termed as local optimal subbands) corresponding to the set of specific values of parameters
and appropriate optimal coefficient vectors. At this step, the ANC selects the subband
which has a minimum mean squared value as an output result of the optimization process
(termed as an optimized subband) illustrated in Figure 6. This optimized output subband
is a final output of the ANC module that contains mostly the fault-related informative
components and trivial disturbances or redundant components.

In fact, the signal portions, which reflect the gear states (a meshing frequency, meshing
frequency harmonics, and gear sideband frequencies), are represented mostly in the fre-
quency domain as magnitudes, tones amplitudes, oscillations, frequencies, and the ratios
between them. Thus, it is suitable to use the frequency spectrum of the optimized subband
as the input data to the SSA-DNN so the deep network can explore and automatically
extract the defect characteristic features from its inputs. Additionally, the usage of the
frequency spectrum of the vibration signal reduces the complexity of the DNN. Therefore,
in this paper, the frequency spectrum of the optimized vibration subband calculated by
Fourier transform [33] is used as the input of the SSA-DNN module. The spectrum of the
optimized subband is of ranges from 0 to 10 kHz due to the down-sampling process of raw
one second vibration samples.

3.2. Stacked Autoencoder

A stacked autoencoder is a type of DNN, with a number of hidden layers greater than
one, formed by stacking simple autoencoders for feature discrimination and classification.
To understand the concept of a stacked autoencoder, a simple autoencoder should be
discussed first. It is an unsupervised DNN based on a three-layer symmetrical architecture
for learning the representation of high-level data [34]. An autoencoder functions through
two learning stages-encoding and decoding, as shown in Figure 7. In the encoding stage, it
transforms the higher-dimensional input into a lower-dimensional one. High-dimensional
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input data is compressed by the hidden layer in DNN architecture [35]. Hence, the encoding
path contributes to the principal goal of an autoencoder. In the mathematical expression,
the higher-dimensional input represented as s ∈ RN (i.e., N dimensions) is encoded to a
lower-dimensional space h ∈ RK (i.e., K dimensions), producing the output vector known
as a latent space. The encoder function or the latent space can be represented as follows:

h = fe(Wes + be), (9)

where fe, We, and be are the encoding activation function, weights, and bias of the network,
respectively. From Figure 7, it can be interpreted that the decoding portion reconstructs the
output of a lower-dimensional space that was compressed from higher-dimensional input
using an encoding process. The reconstruction procedure can be expressed as follows:

ŝ = fd(Wdh + bd) (10)

Here fd, Wd, and bd are the decoding activation function, weights, and bias of the
network, respectively. The key goal of the autoencoder is to minimize the reconstruction
loss which is an objective function of an autoencoder. It can be expressed as following [36]:

L(s, ŝ) = ±(||s− ŝ||) = ||s− fd(Wd( fe(Wes + be)) + bd)|| (11)

In this paper, the feature engineering and classification path of the sensitive and
speed invariant gearbox fault diagnosis model is constructed by stacking multiple sparse
autoencoders as a stacked sparse autoencoder (SSA) for determining the small differences
of features between gear defect types which are the basis components for improving classi-
fication accuracy. In the next subsection, the sparse autoencoder algorithm is explained.

Figure 7. The diagram of the two learning processes of an autoencoder.
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3.3. Sparse Autoencoder

Sparsity is a special parameter of autoencoders, which puts a constraint onto the
hidden layer and causes activation of inactive hidden units to discover the tiny differences
in decimated features of data representation more sensitively and robustly than the simple
autoencoder architecture [37]. The constraint of a sparse autoencoder usually embeds a
regularization term to the objective function. Therefore, the regularized objective function
can be expressed as follows [36]:

L(s, ŝ) =
1
N

N

∑
n=1

K

∑
k=1

(skn − ŝ) + β× φweights + γ×Φsparse (12)

In Equation (12), β and γ refer to the L2 regularization coefficient and the sparsity
penalty factor, respectively. In the training process of an autoencoder, it is sometimes
observed that the value of γ alters in an inversed way with the values of weight parameters
and behaves proportionally to the latent space h (for example the value of the sparsity
penalty factor increases by decreasing the value of weights and increasing the value of
latent code). Thus, the L2 regularization is introduced for embedding in the cost function
to solve this issue, which can be represented as follows [36]:

φweights =
1
2

L

∑
l

n

∑
i

k

∑
j
(W l

ij)
2

(13)

where L, n, and k represent the number of hidden layers, the number of observations,
and the number of variables in the input data, respectively. Consequently, the sparsity
constraint Φsparse can be formulated as follows:

Φsparse =
L(1)

∑
i=1

KL(ρ||ρ) =
L(1)

∑
i=1

(ρ log
ρ

ρi
+ (1− ρ) log(

1− ρ

1− ρi
)) (14)

where

ρi =
1
m

m

∑
j=1

z1
i
(
sj
)
=

1
m

m

∑
j=1

h(w(1)T
i sj + b(1)i ) (15)

This Equation (14) is known as Kullback-Leibler divergence [38]. Φsparse takes a higher
value when the i-th neuron gives an average activation value ρ because that deviates mainly
from the desired value ρ.

To establish the SSA, several numbers of sparse autoencoders, which have been
individually trained, are stacked and positioned in a form such the input layer is placed
before the series of hidden layers, and a SoftMax classifier [39] represents an output
layer of this network architecture. Hence, all sparse autoencoders, which are stacked,
form the DNA. Figure 8 depicts an example of a DNA with four hidden layers for visual
understanding. This DNA first operates in an unsupervised learning manner, where all
of the SSAs extract useful features and then, in a supervised learning manner, the DNA
executes fine-tuning employing a back-propagation algorithm based on the stochastic
gradient descent [40]. After the training process is completed, the unseen data is used for
evaluating the performance of the DNA.
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Figure 8. The DNA of a Stacked Sparse Autoencoder.

4. Experimental Setup and Tuning DNA Parameters

To validate the effectiveness of feature engineering and classification by the SSA-DNN
in the proposed model, we perform a set of four experiments listed in Table 2. In these
experiments, the SSA-DNN uses the input data as the samples of the frequency spectrum
of the subbands that were optimized by the ANC. The four subsets of gearbox data were
taken based on shaft rotation speed, i.e., each data subset contains 1400 samples in total
for all defect states (200 samples for each class of seven defect states: N, D1, . . . , D6),
which were acquired from the vibration sensor when the shaft rotates at the same speed.
For each experiment trial, the proposed DNA was trained numerous times with diverse
numbers of epochs using samples corresponding to one speed of the shaft and validated
with the dataset collected under two other shaft speeds, then changing samples belonging
to different speeds for all four experiments.

Table 2. Description of the dataset for training and testing with RPM in the experiment setup.

The Experiments Number of Samples The RPM of Data Samples

Experiment 1 Training sample: 1400 The shaft speed: 300 RPM
Testing samples: 2800 The shaft speed: 600 RPM and 900 RPM

Experiment 2 Training sample: 1400 The shaft speed: 600 RPM
Testing samples: 2800 The shaft speed: 900 RPM and 1200 RPM

Experiment 3 Training sample: 1400 The shaft speed: 900 RPM
Testing samples: 2800 The shaft speed: 300 RPM and 1200 RPM

Experiment 4 Training sample: 1400 The shaft speed: 1200 RPM
Testing samples: 2800 The shaft speed: 300 RPM and 600 RPM

4.1. Tuning Parameters for the SSA-DNN

The parameters of the DNA play an important role in classification performance,
so that the tuning process for selecting the optimal values has to be performed [41]. To
construct this model, we have repeatedly tested the proposed model using various values
of model parameters such as the length of recipient input, the sparsity regularization term,
the number of hidden layers, the number of hidden nodes, and the cost function to evaluate
their effect on DNA performance. The following subsections explain the parameter tuning
process in detail.
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4.1.1. Exploration of the DNA Parameter Configurations

The length of the recipient input is the size of a single sample which is inputted to
the DNA, it is also known as the value of higher-dimensional representation of the input
layer. According to [41], this parameter is the first important factor for recognizing the
complex features that can be well supported for the classification of MTCG fault types to
build up the sensitive gearbox fault diagnosis model. Therefore, a larger recipient input
length helps the DNA to extract better representative features. Nevertheless, a huge size
of the input increases the computational complexity of the model, while a reasonable
size of the input can provide both a reasonable quality of feature extraction and well-
proportioned computation complexity. As mentioned in Section 3.1, the one second raw
vibration signals were sampled at a frequency of 65,536 Hz, resulting in 65,536 points
in the time domain. This raw signal was preprocessed by three-time down sampling
accompanied by low-pass filtering before entering the ANC module. Hence, there are
21,845 (65,536/3) data points in the optimized time-domain signals received in the output
of the ANC module. By applying the Fourier transform to these signals, the symmetrical
frequency spectrum of each optimized subband containing an imaginary part (this part
represents a spectrum of the signal in the negative frequency) and a real part (for the
frequency tones greater than zero) is received. The real part that represents a real frequency
spectrum of an optimized subband with 10,922 (21,845/2) data points is used as the input
to the DNA. The usage of a large number of data points at the input layer might increase
the computational complexity; however, the effectiveness of fault identification might
not be improved significantly. On the contrary, a further reduction of the input size will
lead to the reduction of frequency resolution and hence, it might cause challenges for
the model when identifying the MTCG defect types. Thus, the length of the recipient
input with 10,922 points of an optimized subband represents a rational trade-off between
the classification performance and computational complexity for the sensitive and speed
invariant MTCG gearbox fault diagnosis model.

Similarly, the number of neurons in the hidden layers also influences the performance
of the DNA. Although there are no exact guidelines for selecting the number of neurons
for a hidden layer of an autoencoder, this parameter directly impacts the process of feature
extraction. Based on the functionality of the autoencoder, the number of nodes in the
first hidden layer has to be lesser than the length of the recipient input for compressing
the higher-dimensional data. To adjust the parameters of node number and sparsity, in
this paper we create a fine-tuning dataset which is formed by randomly picking 100 data
instances corresponding to each class under each rotation speed condition. Hence, the fine-
tuning dataset consisted of Nsamp ×Nclass ×Nspeed = 100× 7× 4 = 2800 data instances
in total. Figure 9 illustrates the relationship between the reconstruction error curve and
the number of nodes for the first hidden layer obtained while training the autoencoder
on the fine-tuning dataset during 350 epochs. This curve demonstrates that the number
of 3000 nodes in the hidden layer, which is greater than 20% of the input size (10,922),
leads to smaller reconstruction errors. A further increase in this number minorly affects the
reconstruction error, but the computational complexity would be increased significantly.
Thus, it is recommended to keep the number of nodes for the hidden layer at less than 35%
of the input size. This criterion is applied to the remaining hidden layers in the proposed
model, so the number of nodes in each consecutive hidden layer is in the range from 20%
to 35% of the number of nodes in the previous layer.



Sensors 2021, 21, 18 14 of 23

Figure 9. The dependence graph of reconstructed error MSE and the number of nodes in the first
hidden layer.

The sparsity penalty can be used for improving the forward learning process of
an unsupervised autoencoder, whose purposive activity orients to manifest the highly
representative features. To evaluate the effect of the sparsity penalty, the reconstruction
error is mostly considered for the experiment the value of sparsity penalty parameter
in the first autoencoder (the first hidden layer is selected with number hidden nodes as
3000). Figure 10 demonstrates the relation between the value of the sparsity term and the
reconstruction error, which is a mean square error (MSE) in this study, achieved when
training the autoencoder on a fine-tuning dataset during 350 epochs. It is observed that
values of sparsity penalty in the range from 0.05 to 0.15 are better than the remaining
values, and a value of 0.08 is the optimal one leading to the minimum MSE. Hence, this
value has been chosen as a penalty factor for all the hidden layers in the proposed model.

Figure 10. The relation graph between the sparsity term and the reconstruction MSE.
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The number of hidden layers plays an important role in the learning process. There
exists a general opinion that a higher number of hidden layers results in better accuracy,
but also reduces the generalization ability of the network [40]. In this work, a series of
experiments to determine the number of hidden layers were performed while varying their
number from three to six, as shown in Table 3. From this table, it can be observed that
a number of hidden layers greater than three leads to the smallest reconstruction errors.
Regarding a higher number of hidden layers, the reconstruction error does not change
significantly; however, the computational time can be increased dramatically when making
the architecture deeper. Therefore, to select a suitable number of hidden layers, the time
performance also should be considered.

Table 3. The reconstruction error with the sets of numbers of hidden layers and their nodes.

Number of Hidden Layers Nodes per Each Layer Reconstruction Error

3 3500/1500/500 16.312 × 10−3

3 3000/1000/300 15.189 × 10−3

4 4000/1800/600/200 9.745 × 10−5

4 3500/1500/500/200 6.887 × 10−5

4 3000/1000/300/100 4.698 × 10−5

5 6000/2000/800/250/80 3.783 × 10−5

5 5000/1800/600/200/60 4.2 × 10−5

5 4000/1400/400/160/60 4.034 × 10−5

6 8000/4000/1500/500/200/60 1.439 × 10−5

6 7000/3000/1000/400/150/50 1.907 × 10−5

6 6000/2500/800/300/100/50 2.543 × 10−5

The complexity of computation of the architecture, in general, can be measured as an
average time required for one training cycle of DNA. Figure 11 shows the time consumption
of different SSA-DNN deep architectures with various numbers of hidden layers and nodes
in them during the training process. In this figure, the DNAs with higher numbers of
hidden layers and nodes requires more time for training due to the depth of the architecture.

Figure 11. The training time consumption of SSA-DNN architectures with different numbers of
hidden layers and nodes in them.
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4.1.2. Parameter Selections of the SSA-DNN Model

Through the experiments in the previous subsection, it was observed that with the
increase of DNA architecture complexity, the reconstruction error was getting smaller
while the time needed for training the deep architecture was increasing. However, from
Table 3 it can be seen that after reaching certain numbers of hidden layers and nodes,
the further increase of architecture complexity leads only to minor reductions of the
reconstruction error. From this observation, it can be concluded that the actual number of
highly representative features is limited, and thus, when the DNA attempts to extract more
features from its input, which might be redundant and not representative, they would
not affect the resulting reconstruction error significantly. The structure of a DNA should
contain several numbers of hidden layers to adequately perform dimensionality reduction
of the input data, where each hidden layer analyzes its input to perform both feature
extraction and selection to receive the higher-level representative features. These features
are then used for discriminating the MTCG defect types during the classification process.
Because of the challenge of constructing the speed invariant fault diagnosis model for
MTCG gearbox systems, the parameters are selected to prioritize the small reconstruction
error with acceptable execution time consumption. Regarding the architectures with five
or six hidden layers, the reconstruction errors are relatively small in comparison with other
architectures, though, the time consumed for the training process is much higher and the
error values are not much larger. Therefore, in this study, the number of hidden layers is
selected as four with the amounts of nodes (i.e., number of features) in them as 3000, 1000,
300, and 100 neurons for the first, second, third, and fourth hidden layers, respectively.
The finalized optimal parameters of the SSA-DNN model are listed in Table 4, and its
architecture is shown in Figure 12.

Table 4. The optimal selected parameters for constructing the SSA-DNN model.

Input Size
(Sample Length) Number of Layers Number of Nodes Sparsity Constraint Activation Function

10,922 4 3000, 1000, 300, 100 0.08, 0.08, 0.08, 0.08 Logistic sigmoid
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5. Result and Discussion

The main function of the ANC is to perform noise reduction and to preserve the
fault-related useful components existing in the vibration signals. To collect the informative
content of the vibration sample, where the content represents numerous fault-related com-
ponents that are useful for designing the sensitive fault diagnosis model, the analog signals
from the vibration acceleration sensor were digitized with a high sampling frequency of
65,536 Hz every one second. Thus, a 1-sec length data sample is used to monitor several
rotation cycles (from three to thirteen rotational cycles depending on the rotation speed
from 300 RPM to 1200 RPM) to collect fault-related vibration characteristics with some
special oscillations. After data collection, the digitized vibration samples were filtered by a
digital low-pass filter with the cut-off frequency of 10,000 Hz accompanied with the down-
sampling process to remove the high-frequency components (i.e., components located
in spectrum higher than 10,000 Hz) which are out of operation range of the acceleration
sensor, and to preserve the vibration components with intrinsic fault-informative features
following realistic operation of a gearbox system. That is the first step for preprocessing
data to remove the redundancy in the raw vibration signals. The vibration subbands output
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from a low-pass filter are inputted into the ANC module for a fine-optimizing process for
noise reduction. In the range of the frequency spectrum less than 10 kHz, the ANC uses
adaptive windows to access and remove white noise and band noise remaining between
two consecutive sideband frequencies along the frequency spectrum. Figure 13 demon-
strates the superiority of the ANC module for the de-noising process. Here, the red dotted
circles indicate the noise frequency component zones of the input signals which were
reduced significantly in the optimized subband outputted from the ANC. Moreover, the
amplitudes of the sideband frequency tones, the meshing frequency, and its harmonics are
kept unchanged when the vibration subband flows through the ANC module (the dashed
blue and black circles). The outputs of the ANC are the optimized vibration subbands
represented in the frequency domain for the expression of the energy distribution. These
spectra are used as inputs to the SSA-DNN module for extracting the representative latent
features by an unsupervised learning technique, the autoencoder, which is a part of the
SSA-DNN module.

Figure 14 illustrates feature spaces for seven defect types of an MTCG gearbox using
some of the discriminative features extracted by sparse autoencoders from the frequency
spectra of optimized subbands under different rotational speeds. This figure shows that the
data instances corresponding to different signal classes are well separable in feature space.
Here, the samples belonging to one defect type are placed closely, whereas the samples of
different defect types are located separately in the visualized feature space. These distinct
features are extracted by stacking the sparse autoencoder layers and are used to enhance
the performance of the deep architecture using a back-propagation algorithm to minimize
the reconstruction errors and then, finally, to classify gearbox defects. For fault diagnosis
performance evaluation, we compared the results of the proposed model with previous
models such as ANC and SVM [18] (model 1), ANC and ANN (model 2), stacked denoising
autoencoder [42] (model 3), and the spectra imaging of vibration signal [43] (model 4).

Figure 13. Frequency spectrum analysis of the vibration subband (for fault state D2 at 900 RPM) in
the comparison between an input and output subband of the ANC module.
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These results are presented in Table 5. The performance is evaluated using the four
cases of experiment setup expressed in Table 2. The training dataset of each experiment
contains 1400 vibration samples (200 vibration samples for each defect state of seven
states as N, D1, D2, D3, D4, D5, D6) for each rotational speed to construct the deep
architecture network model. The testing process is performed by 2800 vibration samples
of two different rotational speeds. By executing four experiments, the vibration samples
of four rotational speeds are used for training set in sequence, whereas two datasets of
rotational speeds, which are different from rotational speed in training dataset in each
experiment, are consumed for the testing process. In these experiments, models 1 and 2 use
the statistical features extracted from time and frequency domains, whereas the remaining
models use autonomous feature extraction methods based on the unsupervised learning
approach (model 3) and vibration imaging approach (model 4). Models 1 and 2 use the
optimized subband output from an ANC module to extract twenty-one feature parameters
and then, using these feature vectors, classify fault types using SVM and ANN, respectively.
Manually extracted features in models 1 and 2 cause a challenge when classifying multi-
level tooth cut gear defects. Their fault classification results were around 68% ± 10% for
model 1 and 59.4% ± 10% for model 2, fluctuating over four experiments. The construction
of DNA in model 3 is performed by replacing the four sparsity autoencoder hidden layers
with two layers of denoising autoencoders using the optimal regularization terms and
parameters from [42] and removing the ANC module from the proposed model. In model 3,
the input data are the vibration subbands outputted from the down sampling and low-pass
filtering process, with the denoising and feature engineering processes performed using
the objective functions with the embedded manifold regularization. The fault identification
results achieved by this model were about 82.88% ± 8% in four experiments.
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Table 5. Classification results of the referenced and proposed models in four experiments based on
various rotating speed data.

Models Training Set
(1400 Samples)

Test Set
(2800 Samples) Accuracy

I

300 RPM 600 RPM, 900 RPM 62.78

600 RPM 900 RPM, 1200 RPM 79.83

900 RPM 300 RPM, 1200 RPM 67.13

1200 RPM 300 RPM, 600 RPM 62

Average accuracy by four experiments 68

II

300 RPM 600 RPM, 900 RPM 65

600 RPM 900 RPM, 1200 RPM 48.10

900 RPM 300 RPM, 1200 RPM 73.5

1200 RPM 300 RPM, 600 RPM 51

Average accuracy by four experiments 59.4

III

300 RPM 600 RPM, 900 RPM 90.66

600 RPM 900 RPM, 1200 RPM 79

900 RPM 300 RPM, 1200 RPM 85.50

1200 RPM 300 RPM, 600 RPM 76.35

Average accuracy by four experiments 82.88

IV

300 RPM 600 RPM, 900 RPM 41.15

600 RPM 900 RPM, 1200 RPM 39.55

900 RPM 300 RPM, 1200 RPM 48.26

1200 RPM 300 RPM, 600 RPM 51.72

Average accuracy by four experiments 45.17

The proposed model

300 RPM 600 RPM, 900 RPM 95.51

600 RPM 900 RPM, 1200 RPM 97.32

900 RPM 300 RPM, 1200 RPM 99

1200 RPM 300 RPM, 600 RPM 96.1

Average accuracy by four experiments 97

These results can be observed because many fault-related components stay hidden in
the background noise which can only be detected by the application of signal processing
methods. Regarding model 4, the raw 1-sec vibration signal with 65,536 points was firstly
down-sampled by four times with a 10 kHz low-pass filter integrated for antialiasing to
obtain the vibration subband with 16,384 data points. Then this subband is segmented in
series without overlap by using windows of 1024-point size to attain sixteen segments of
1024-point vibration subbands. Then, each 1024-point window containing the vibration
subband is transformed from the time domain to the frequency domain by FFT to obtain a
513-point sized vibration frequency spectrum. This process was repeated eight times by
randomly picking eight segments of 1024-point vibration subbands from sixteen segments.
These spectrums were stacked to form the 513 × 8 grayscale image corresponding to each
raw 1-sec vibration sample. This image was later converted to a binary image by an 8 ×
4 sized filter and the threshold (0.7). Hence, the binary image containing 4014 components
in the frequency domain was used as the input to the ANN with three layers (input, hidden
with three nodes, and output layers) for classification. The fault classification results of
model 4 on the dataset used in this paper were about 45.17%± 6% during four experiments.
By analyzing the experimental results of the referenced models, it can be seen that the
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sensitive and speed invariant fault diagnosis model proposed in this study outperformed
their fault diagnosis performance with results around 97% ± 2% during four experiments
showing small accuracy deviations when alternating the shaft rotational speeds of the
MTCG gearbox system.

Additionally, to verify the stability of the proposed algorithm, the experiments de-
scribed above have been performed five times. The classification accuracies and their
averages computed over five experimental trials are presented in Table 6. From these
results, it can be seen that the proposed model demonstrates stable fault classification accu-
racy in independent trials of the experiments performed for training and testing subsets
containing samples collected under different operating conditions, i.e., rotating speed.

Table 6. Fault classification results of the proposed model obtained during five experimental trials.

Training Set
(1400 Samples)

Testing Set
(2800 Samples)

Experiment Trials Average
Accuracy (%)#1 #2 #3 #4 #5

300 RPM 600 RPM
900 RPM 93 96.87 95.7 93.85 98.15 95.51

600 RPM 900 RPM
1200 RPM 97.68 98.2 94.95 100 95.78 97.32

900 RPM 300 RPM
1200 RPM 100 100 99.68 98.19 97.15 99.00

1200 RPM 300 RPM
600 RPM 98.00 94.28 95.47 97.9 94.87 96.10

Controlling the noise embedded in the vibration signals is essential for the sensitive
detection of multi-level cut tooth faults in gearbox systems. The presence of a high noise
level can cause misidentifications of fault types and thus reduce the fault classification
accuracy. Noise reduction is a complex problem, and it is not always possible to com-
pletely resolve this issue by signal processing or feature engineering techniques. Therefore,
simultaneous usage of the ANC and SSA-DNN methods is an efficient approach for signif-
icant noise reduction while preserving the original fault-related information of the gear
vibration characteristic, which is useful for fault identification. The design of a sensitive
and speed invariant model requires exploration of the representative features that can be
used for discrimination of multi-level tooth cut gear defects and maintaining its reliable
performance under the operating speed fluctuation conditions in the gearbox system. In
general, the manual feature extraction methods cannot satisfy those requirements, thus
the unsupervised approaches based on deep neural networks are well-suitable for extract-
ing the latent representative features by the process of minimizing reconstruction errors
during the operation of a back-propagation algorithm in the DNA. The SSA-based DNN
constructed in this research satisfies the requirements for constructing the proposed model,
such as extracting the representative feature space, selecting the most defect-related useful
features for classification, and finally, achieving high fault classification results.

6. Conclusions

This study presents a novel method which combines an ANC and an SSA-DNN to
utilize their advantages for constructing a sensitive and speed invariant fault identification
model for gearbox systems with multi-level tooth cut gear defects. The ANC technique is
created based on the analysis of vibration characteristics of a gearbox system to generate
the speed-dependent reference window signals with adjustable parameters, according to
the noise types presenting in the raw vibration signals. Then, these generated window
series were adaptively adjusted to access the space between two consecutive defect-related
frequency tones and remove the noise along the whole frequency range of vibration
signals. The ANC optimizes the input vibration signal for outputting the optimal subband
which contains mostly the defect-related frequency tones with the integration of low-
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level background noise. Then, the frequency spectra of these optimal subbands are used
as the input to the deep network architecture. This network is built up by stacking
sparse autoencoders as the hidden layers of the network and using a Softmax activation
function at the output layer for extracting latent representative feature spaces and selecting
the most defect-related discriminative features for identifying the multi-level tooth cut
fault types under the condition of various shaft rotational speeds. The effectiveness of
the proposed model is validated by experiments performed using the vibration dataset
containing MTCG gearbox defects collected under four different rotational speeds. To
validate the property of speed invariance for the proposed model, the experiment was
arranged as four sub-experiments using the datasets corresponding to each rotational
speed. Each sub-experiment uses a one-speed dataset to construct and train the model.
Then this given model is used for fault identification using two datasets collected under
other speed conditions. This procedure was performed four times using the different speed
datasets for building the model in each. The average classification result achieved over four
experiments was 97%, which outperforms the techniques used for comparison. Moreover,
the classification results shown by the proposed model did not fluctuate significantly
(2–3%) when applied to different speed datasets, which evidences that the prosed model is
speed invariant and can be used for identifying multi-level tooth cut defects in a gearbox
system under varying rotational speeds.
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