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Abstract: Without expert coaching, inexperienced exercisers performing core exercises, such as squats,
are subject to an increased risk of spinal or knee injuries. Although it is theoretically possible to
measure the kinematics of body segments and classify exercise forms with wearable sensors and
algorithms, the current implementations are not sufficiently accurate. In this study, the squat posture
classification performance of deep learning was compared to that of conventional machine learning.
Additionally, the location for the optimal placement of sensors was determined. Accelerometer and
gyroscope data were collected from 39 healthy participants using five inertial measurement units
(IMUs) attached to the left thigh, right thigh, left calf, right calf, and lumbar region. Each participant
performed six repetitions of an acceptable squat and five incorrect forms of squats that are typically
observed in inexperienced exercisers. The accuracies of squat posture classification obtained using
conventional machine learning and deep learning were compared. Each result was obtained using one
IMU or a combination of two or five IMUs. When employing five IMUs, the accuracy of squat posture
classification using conventional machine learning was 75.4%, whereas the accuracy using deep
learning was 91.7%. When employing two IMUs, the highest accuracy (88.7%) was obtained using
deep learning for a combination of IMUs on the right thigh and right calf. The single IMU yielded
the best results on the right thigh, with an accuracy of 58.7% for conventional machine learning and
80.9% for deep learning. Overall, the results obtained using deep learning were superior to those
obtained using conventional machine learning for both single and multiple IMUs. With regard to
the convenience of use in self-fitness, the most feasible strategy was to utilize a single IMU on the
right thigh.

Keywords: deep learning; inertial measurement unit; exercise classification; squat; self-fitness

1. Introduction

The squat is a fitness exercise performed by both athletes and non-athletes to reduce pain, maintain
muscle status, and improve the quality of exercise performance [1–3]. However, when inexperienced
individuals perform squats without professional coaching, the risk of spinal and/or knee injuries
increases [4]. Office workers and other non-athletes may struggle to spend sufficient time and
money to visit a fitness center regularly and receive professional coaching. Thus, the development
of a self-coaching system could help individuals evaluate their own exercise performance without
professional assistance.

Recent studies in the literature have employed inertial measurement units (IMUs) and 3-D motion
capture systems to recognize and assess human motion during exercise [5]. However, 3-D motion
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capture systems are unsuitable for personal fitness because they require large, complex, and expensive
measurement environments comprising multiple motion tracking cameras and markers affixed to
the bodies of subjects. The other method is an image-processing approach that employs deep
convolutional neural networks to learn the image features for activity recognition [6,7] and human pose
estimation [8–10]. Because the video image processing needs high computation power, it is not proper
for self-coaching system in home. By contrast, current IMUs support the acquisition of data in nine
axes by using accelerometers, gyroscopes, and magnetic trackers, and they can be used to measure the
motion and kinematics of body segments. Such IMU systems facilitate the construction of comfortable,
compact, and relatively inexpensive measurement environments. However, along with an IMU system,
a proper algorithm would be required to assess and classify the movements and postures.

Machine learning is typically used to solve regression, function approximation, and pattern
classification problems, and is particularly well suited to solving large-scale and/or complex problems
that are difficult to define mathematically. In existing studies on the assessment of exercise, researchers
have employed conventional machine learning (CML) along with IMUs. For example, Whelan et
al. [11] used three IMUs to evaluate single-leg squat performance by using the random forest classifier
and achieved a classification accuracy of 77%, sensitivity of 77%, and specificity of 78%. By contrast,
O’Reilly et al. [12] evaluated single-leg squat performance by using a back propagation neural network
combined with a single IMU located on the lumbar region of a subject and achieved a classification
accuracy of 56%, sensitivity of 59%, and specificity of 94%. Although the accuracy of squat classification
is proportional to the number of IMUs, the use of multiple IMUs is impractical for a self-coaching system
because of the inconvenience of wearing multiple IMUs. Although CML can estimate probability
density distributions, any unnecessary information or noise in the data will degrade the quality of
the results.

By contrast, deep learning (DL) is a technique in which models are constructed by including
multiple neural layers for pattern classification or feature learning [13]. Examples of DL models include
a variety of structures, such as auto-encoders, restricted Boltzmann machines, convolutional neural
networks (CNNs), and recurrent neural networks (RNNs). Among these, CNNs and RNNs are widely
utilized in speech recognition and image-processing applications that involve complex calculations.
An advantage of DL models is their ability to calculate the weight of input data through multiple
layers even if the input data are raw and do not require feature extraction. Recently, many studies have
suggested that DL could improve classification performance. If DL with a single IMU can provide
sufficient accuracy, it can be used in daily life, considering the convenience it provides. Researchers
have shown that multilayer DL architectures can be used to classify exercises, including complex
movement patterns, from raw data without manual intervention [14]. Ordóñez et al. [15] used an IMU
along with a CNN and an RNN combined with long short-term memory models (RNN–LSTM) to
classify various human activities such as opening doors or drinking water. Hammerla et al. [16] used
a CNN and an RNN–LSTM to predict the gait stiffness of Parkinson’s patients. Hu et al. [17] used
a single IMU to detect surface and age-related differences in walking by using RNN–LSTM.

There are several wearable sensors in the market for fitness in gyms and homes. Most of them
measure and recognize the human movement and postures for one part of the body where the sensor is
attached. To be used in self-fitness in home training, the smallest number of sensors as possible should
be used for convenience and a special algorithm is required to classify the right posture from various
aberrant postures from whole body [18]. Many muscle training exercises consist of the repetition
of a movement while maintaining a specific posture of the whole body. Hence, most of the current
products are not suitable for assessing the exercise posture of the whole body.

The objective of this study is to demonstrate that DL improves the squat posture classification
performance obtained from IMU data and to determine the optimal placement of IMUs for self-fitness
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2. Materials and Methods

2.1. Measurement Settings and Experimental Protocol

The IMU used in this study was the MTw Awinda (Xsens Inc., Enschede, The Netherlands),
which includes multiple motion trackers for real-time 3-D kinematic applications and can measure
orientation correctly through a simple setting [19]. In terms of processing, data from a three-axis
accelerometer (±2 g) and a gyroscope (±500 o/s) were first collected at 1 kHz and then transmitted via
Bluetooth to the computer. In the experiments, the IMUs were placed at the numbered locations shown
in Figure 1a, namely the right thigh, right calf, left thigh, left calf, and lumbar region [6]. To maintain
the placement location consistency among different participants, the IMUs were attached as follows.
As shown in Figure 1a, the IMU positions of number 2 and 4 were located at the one-third points
between the patella and pelvis bone. The positions of number 3 and 5 were located at the 1/2 points
between the patella and ankle bone. The position of number 1 was located at lumbar spine number 3.

Figure 1. (a) Inertial measurement unit (IMU) placement: (1) lumbar region, (2) right thigh, (3) right
calf, (4) left thigh, and (5) left calf; (b) definitions of axes used by IMUs; and (c) laptop used for
data processing.

An acceptable squat (ACC) and five forms of aberrant squats that are incorrect squat postures
typically adopted by beginners were performed (Table 1). These five forms are associated with the
anterior knee (AK), knee valgus (KVG), knee varus (KVR), half squat (HS), and bent over position (BO).
The criteria for all of these forms, except HS, were defined by the National Strength and Conditioning
Association. The HS form was added because it is frequently observed among incorrect squat postures.

All the participants were trained by a fitness expert to execute the six forms of squats before
the experiment; they then performed the squats in random order. The fitness expert corrected the
participants’ squat postures to induce the six forms of squats during the experiment, and each repetition
duration was 3 s. The participants were allowed to rest for a minute between trials for a particular form
of squat, and each trial comprised six repetitions. The participants were 39 healthy people with no prior
history of spinal or joint injuries nor diseases. These comprised 20 men and 19 women with an average
age of 22.0 ± 2.64 years, an average height of 166.4 ± 7.76 cm, and an average weight of 59.8 ± 9.90 kg.
The complete dataset consisted of data from 1404 repetitions performed by the 39 participants. All
participants completed the informed consent process before participation. The study procedure was
reviewed and approved by the University of Ulsan Institutional Review Board (No. 2018R0002-002).
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Table 1. Squat classification showing one acceptable and five aberrant forms.

Squat Description Figure Squat Description Figure

Acceptable
(ACC) Normal squat Knee varus

(KVR)

Both knees
pointing

outside during
exercise

Anterior knee
(AK)

Knees ahead of
toes during

exercise
Half squat (HS) Insufficient

squatting depth

Knee valgus
(KVG)

Both knees
pointing inside
during exercise

Bent over (BO)
Excessive

flexing of hip
and torso

2.2. Preprocessing

In classifying squat postures, it was essential for each repetition to be extracted by the same
number of samples. Because six repetitions were performed in a trial for inducing repetitive exercise
and to ensure convenient data collection, each repetition needed to be extracted from a trial with six
repetitions. In addition, the start and end timing of one repetition had to coincide with those of the
squat data extracted using the other IMUs, which were recording data simultaneously. The extraction
of each repetition was achieved using the Hilbert transform based on the roll angle of the right thigh
because this angle was observed as the most variable standard with the unaided eye when a pilot study
was undertaken. All of the extracted repetitions were raw signals, as shown in Figure 2, and resampled
to 40 samples. Figure 2 depicts the method of building the dataset for one trial. The total number
of repetitions for all the participants was 1404 for one IMU (39 participants × 6 forms of squats ×
6 repetitions).
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Figure 2. Method of constructing dataset for one trial.

2.3. Classification Algorithms

Different approaches were used to train the classification models with the segmented repetitions
of squats in Figure 3. The CML approach was employed for the random forest classification model in
this study. This model was originally designed to overcome the disadvantages of decision trees via the
bootstrap aggregating (bagging) technique. This model includes the following features: mean, median,
max, min, standard deviation, root mean square, range, 25th percentile, 75th percentile, skewness,
and kurtosis. The combination of six axes in the IMU and eleven features in the model implied that 66
features were used for classification in this approach.

We used the CNN–LSTM model for the DL approach, which has produced a state-of-the-art
performance in recognition of human activity using wearable sensor data [15,20]. As shown in Figure 3,
the model comprises three convolutional layers: a recurrent, dense, and softmax layer. The input of the
model is the raw data of the size of 6 × 40 for the single IMU and 12 × 40 for the combinations using two
IMUs. For the output, the model takes a softmax layer, which generates the probability distribution
over the prediction of squat postures. Each convolutional layer had 3 × 3 ×N kernels with stride 1,
where N doubled each layer from 8 to 32 and used the rectified linear units (ReLUs) as the activation
functions. Max-pooling was implemented at the end of every convolutional layer. The recurrent layer
employed the long short-term memory (LSTM) units with 64 cells. We implemented the drop-out on
each convolutional and dense layer. The model was trained in TensorFlow with the Adam optimizer
for 500 iterations [20]. The learning rate was 0.001. Cross-entropy was employed for the loss function.
For the sake of regularization, three same models were trained with a different order of inputs and
different random weight initializations. The prediction of squat postures was made after averaging the
probability distributions produced by these models.
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Figure 3. Processes used to train classification models (random forest and convolutional neural
network–long short-term memory (CNN–LSTM)) via segmented repetitions of squats.

3. Results

The data obtained from the 39 participants were divided equally into ten groups, one group of
which was randomly selected as the test data while the rest were used as training data before the
training model. The training data were used for model training from ten-fold cross-validation. The test
data were used as input data in the classification model that had been trained using the other nine
groups. This process was repeated 9 more times with changing of the participants for the test group,
and the results were averaged. The performance of the classification results was then assessed based
on the averaged accuracy, sensitivity, and specificity.

The accuracy of squat posture classification decreased as the number of IMUs reduced (Table 2).
For five IMUs, the classification accuracy of CML was 75.4%, and that of DL was 91.7%. In the case of
combinations using two IMUs, the combination with IMUs on the right thigh and right calf exhibited
the highest performance. In this case, the accuracy was 73.9% for CML and 88.7% for DL. When the
IMU on the lumbar region was included, the squat classification accuracy reduced to 34.6% for CML
and 57.3% for DL. These results indicate that tracking the IMU displacement on the lumbar region
does not aid squat classification. In the case of a single IMU, the best result was obtained from the IMU
on the right thigh, with an accuracy of 58.7% for CML and 80.9% for DL.
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Table 2. Squat classification performance of conventional machine learning (CML) and deep learning
(DL) for five IMUs, two IMUs, and one IMU.

Number
of IMUs Placement of IMUs

Random Forest (CML) CNN–LSTM (DL)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

5 IMUs
Right thigh, right calf,

left thigh, left calf,
and lumbar region

75.4% 78.6% 90.3% 91.7% 90.9% 94.6%

2 IMUs

Right thigh and
lumbar region 63.2% 64.6% 87.6% 83.9% 85.6% 90.4%

Right thigh and right calf 73.9% 76.8% 89.5% 88.7% 90.5% 95.7%

Right calf and lumbar region 66.0% 70.1% 86.1% 86.2% 87.1% 87.6%

1 IMUs

Right thigh 58.7% 66.7% 88.9% 80.9% 80.0% 93.1%

Right calf 57.6% 62.7% 82.2% 76.1% 78.9% 92.8%

Lumbar region 34.6% 38.6% 68.1% 46.1% 50.3% 79.0%

4. Discussion

The experimental results indicated that the squat classification for both single and multiple IMU
configurations was more accurate when using DL than when using CML. When five IMUs were used,
the classification accuracy of DL was 16.3% higher than that of CML. For a single IMU, the classification
accuracy obtained using an IMU on the right thigh for DL was 22.2% higher than that for CML and the
classification accuracy obtained using an IMU on the right calf for DL was 18.5% higher than that for
CML. Furthermore, although the classification accuracy of 80.9% for 6 classes with a single IMU is
insufficient for use in daily life, it is much higher than that in previous studies. This indicates that DL
can overcome the limitation of inconvenience from multiple IMUs.

The confusion matrix shown in Table 3 indicates that the DL model trained using data from the
right thigh is considered to include some features of the movement of the upper body. Table 3c,d
indicates that the accuracy of CML is low for some forms of squats. When the IMU is placed on the right
thigh, the squat classification accuracy for BO and AK is lower than that for the other squats. In fact,
BO is largely reflected in the movement of the upper body, and AK is reflected in the movement below
the knee. By contrast, Table 3a indicates that the classification performance of DL improves the overall
accuracy considerably for BO and AK. This is because DL is more powerful than CML in learning the
complex mechanisms of closed kinetic chain exercises such as the squat [11,21]. Since each body part
moves interactively in the closed kinetic chain exercise, the data from each body part contains hidden
features related to the movement of another body part in different squat posture [22,23]. The main
challenge of this study was to train these hidden features by optimizing the location of the sensor.
We found that the right thigh is the optimal location of the placement of a single IMU.

The current study has several limitations. The dataset used in this study was obtained from
39 participants performing six trials of six forms of squats. However, the size of the dataset was
insufficient to optimize the performance of the DL model. In addition, when the squats were classified
into acceptable and aberrant squats, the number of acceptable repetitions (6) and aberrant repetitions
(30) was unbalanced. Another limitation is that the subjects performed the squats in various postures
with the supervision of experts in order to perform squats in specific forms. To develop self-fitness
applications, additional research of exercise assessment tools and methods would be required. Reilly
et al. [24] developed a mobile app, which automated the process of creating individualized exercise
feedback systems. They employed personal classification with a random forest classifier which is
specialized in the evaluation of a particular person performing the exercises and requires a smaller
dataset. Their systems achieved 89.50% accuracy for assessing aberrant and acceptable squats with
a single IMU. By contrast, the deep learning approach of this study can assess six forms of squats
at 80% accuracy without an exercise expert with a single IMU. These results can help to develop
an application that a beginner can use to get feedback, without coaching, when they perform aberrant
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squats. With additional work to enhance the performance, our solution could provide meaningful
feedback to the persons who exercise at home. It will be helpful to increase the effect of exercise and to
prevent the risk of injuries for beginners.

In the future, we plan to investigate whether the squat posture classification can be improved by
collecting more data, which would provide better self-fitness results using a single IMU system, and we
plan to combine classical motion analysis and deep learning, which could enhance the algorithm’s
performance. Another future research area is to identify other DL models that can be used to classify
exercises, which would allow the single IMU system to be used for the rehabilitation of athletes and
musculoskeletal patients as well. In addition, if the IMU data for other exercises, such as deadlifts,
were to be collected, it would allow a single system to be used to classify multiple exercises and provide
posture-related instructions to prevent injuries. Finally, we plan to do experimentation that compares
the performance of squats on beginners trained by an expert, instructed by a self-fitness application,
and a untrained group.

The single wearable IMU sensor and DL-based posture classification algorithm can be used for
a self-training system with a smartphone app at home. In the case of the squat, the sensor attachment
on the thigh is convenient and effective for providing feedback on aberrant postures which happens
frequently in the beginners. This sensor system can also collect more data from many persons with
consent, which can be used to enhance the performance of the algorithm. For the other popular
exercises for muscle training, like the crunch, plank, and leg-raise, the concept of this study can be
used and integrated as a home trainer with a smartphone and wearable sensor.

Table 3. Confusion matrix for (a) right thigh and (b) lumbar region when squats were classified using
a single IMU with DL, and confusion matrix for (c) right thigh and (d) lumbar region when squats were
classified using a single IMU with CML. The predicted class refers to the classification provided by
an expert, whereas the actual class refers to the classification provided by the mean values of the class
in which the subject actually operates.

(a) Right thigh with DL (b) Lumbar region with DL

Predicted Values Predicted Values

ACC AK KVG KVR HS BO ACC AK KVG KVR HS BO

A
ct

ua
lV

al
ue

s ACC 114 29 43 18 0 30

A
ct

ua
lV

al
ue

s ACC 80 21 59 49 13 12
AK 43 92 14 22 20 43 AK 28 82 11 51 44 18
KVG 24 23 170 0 0 17 KVG 76 11 105 24 16 2
KVR 28 19 3 168 2 14 KVR 39 33 22 87 40 13
HS 0 13 0 4 188 29 HS 6 32 13 19 149 15
BO 34 46 26 4 34 90 BO 15 31 4 17 23 144

(c) Right thigh with CML (d) Lumbar region with CML

Predicted Values Predicted Values

ACC AK KVG KVR HS BO ACC AK KVG KVR HS BO

A
ct

ua
lV

al
ue

s ACC 114 29 43 18 0 30

A
ct

ua
lV

al
ue

s ACC 71 22 62 34 28 17
AK 43 92 14 22 20 43 AK 33 56 18 46 31 50
KVG 24 23 170 0 0 17 KVG 62 18 87 17 21 29
KVR 28 19 3 168 2 14 KVR 41 45 38 52 43 15
HS 0 13 0 4 188 29 HS 23 31 19 49 74 38
BO 34 46 26 4 34 90 BO 15 31 20 8 16 144

5. Conclusions

This study is to demonstrate that deep learning improves the squat posture classification
performance from IMU data and to determine the optimal placement of IMUs for self-fitness application.
The classification performance of six forms of squat postures using a single IMU on the right thigh
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showed an accuracy of 80.9% with the deep learning approach. This technology can be used for
providing feedback on aberrant squat postures.
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