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Abstract: The proposed work aims at exploring and developing new strategies to extend mission
parameters (measured as travel distance and mission duration (MD)) of a new class of unmanned
vehicles, named Micro Air Vehicles (MAVs). In this paper, a new analytical model, identifying
all factors, which determine the MAV power consumption, is presented. Starting from the new
model, the design of a nanoarray energy harvester, based on plasmonics nano-antenna technology is
proposed. The preliminary study was based on a 22,066,058 22,066,058 × 62,800-dipole rectenna array
producing an output power level of 84.14 mW, and an energy value of 2572 J under a power density
of 100 mW/cm2 and a resonant frequency of 350 THz as input conditions. The preliminary analytical
results show a possible recharge of an ultra-fast rechargeable battery on board of a MAV and an MD
improvement of 16.30 min.

Keywords: energy harvester; MAV; power consumption model; nano-antennas; dipole rectenna
array; perpetual flight

1. Introduction

Considered as the eyes and ears behind the enemy lines, today Unmanned Air Vehicles (UAVs) are
playing an important role in global society due to their ability to carry a payload and to their compact
dimensions. These air vehicles can operate and monitor complex scenarios where the presence of
onboard human pilots is unnecessary [1]. Today, thanks to the miniaturization and compact dimensions
of the electronics components, a new class of unmanned vehicles, named micro air vehicles (MAVs),
hand-launched (their weight being less than 100 g) and powered by electric engines, is emerging.
Currently, MAVs can operate where larger UAVs cannot, such as inaccessible and contaminated areas.
Despite some benefits, several technological limits must be overcome. Typically, the mission parameters
of these vehicles are limited to a few meters and minutes. The loss of a MAV’s performance is due to
energy restrictions of the battery on board. Considering a large area to be monitored as fast as possible,
with the current technology, a single drone will be not able to land, recharge the battery and take off

again in a few minutes. Therefore, to make this unmanned technology more attractive it is mandatory
to find a solution for the problem of how to increase the mission parameters [2–4]. The authors suggest
two directions, which are extensively detailed below.

First, a model identifying all factors that determine the power consumption of a drone with a
negative impact on mission parameters is developed and implemented. Starting from the proposed
model, mission parameters can be increased with an energy harvesting (EH) technique. This technique
is capable of extending the mission parameters considering a renewable, intermittent source of
energy [3,5–10]. The Sun is the most important renewable energy source to generate the electricity
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necessary for any human activity. The Sun radiates energy mainly in the form of visible light, and
infrared radiation with small amounts of ultraviolet [11,12].

Solar radiation is usually considered as shortwave infrared (SWIR), radiation typically classified
as belonging to the 0.7 to 2.5 µm wavelength range [13]. The wavelengths in the visible region are
currently harvested using solar cells based on the photovoltaic (PV) effect. However, this technology
has several problems for unmanned applications. Quantum technologies are strongly dependent on
daylight, which makes them also sensitive to weather conditions. Only photons charged with an
energy equal to the silicon bandgap can be harvested efficiently. This effect decreases the solar cell
efficiency to only 21% [11]. A low-cost alternative to PV effect is a novel harvester constituted by
nanosized rectennas (submicron antennas combined with ultra-high frequency diode rectification)
based on plasmonics technology [14,15]. This technology would theoretically allow a more efficient,
direct conversion of electromagnetic radiation (visible light frequency range) into electricity, above the
Shockley and Queisser (S&Q) limit. In contrast to solar cells, which are limited by material bandgaps,
this technology is based on electromagnetic waves that induce a time-changing current at the same
frequency of the wave incident on the antenna surface. This time-changing current can be rectified in
order to produce a direct current (DC) power and to power supply an external load. For this reason,
an ultra-high speed rectifier based on the tunnel effect placed at the feed point of a nano-antenna is
mandatory [16,17]. Therefore, compared to quantum technology, this novel harvester, which can be
seen as a small nano-generator, represents an alternative way to supply power to a MAV for longer
times, even when the Sun is heavily shaded. These new devices, thanks to the development of new
techniques, such as electron beam lithography and atomic layer deposition (ALD), are able to assure
the level of miniaturization required for our purposes [16]. This significantly reduces the size and
weight of the battery, thus improving the mission parameters. This paper is arranged as follows:
Section 2 presents a model based on a commercial quadcopter identifying all factors that determine the
power consumption of a drone with a negative impact on mission parameters. Section 3 describes the
design and simulations of the novel harvester based on plasmonics technology. The harvester circuit
impedance has to be matched with the load (a typical DC/DC converter for harvesting applications) to
optimize the power transfer. Therefore, in this section, an optimal matching between harvester and
load is proposed simply by tuning the impedance of the harvester with that of the load. The harvested
energy stored in a buffer is described in Section 4. Concluding remarks are given at the end of Section 5.

2. Several Scenarios Proposed for Electric Power Consumption Model

In this section, in order to determine the thrust and the power consumption of the MAV, the
weight of each component must be estimated. Subsequently, a novel model based on a commercial
quadcopter able to determine the power consumption of a drone with a negative impact on mission
requirements is proposed. The numerical analysis for this model has been carried out through the
software Mathcad R2014 with an academic license.

2.1. MAV Platform Design

In order to determine the thrust and the power consumption of the MAV, the weight of each
component must be estimated. Table 1 shows the total weight of the MAV and all its components [3].

Table 1. Estimated weights of propulsion, payload and avionics components.

Parameter Value Description

mprop 24.4 (g) Propulsion mass
mpayl 6.3 (g) Payload mass
mav 23 (g) Avionics mass (including all cabling)

mairframe 10 (g) Airframe mass
marray 2 (g) Dipole rectenna array mass
Wtot 80 (g) Total Weight MAV
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2.2. A Power Consumption Model for MAVs

This more sophisticated model identifies all factors that determine the power consumption of
a small drone with a negative impact on mission parameters (MD and travel distance) considering
various flight scenarios. MD of a MAV is a function of the power P: MD = f (1/P) therefore, to maximize
MD, it is necessary to minimize the power consumption. This situation triggers the need for strategies
to reduce the power demand onboard drones. An important need is the ability to understand the way
in which power is used and spent. In this way, it is possible to identify what are the factors (maneuvers,
movements and flight profile) that can involve more energy investment, and therefore faster battery
discharge. The factors that determine the power consumption of a drone can be grouped as [3,18]:

(1) Impact of Motion: The motions of a drone can be divided into hovering, vertical and horizontal
moving. This paper investigates the power consumption of a drone in each motion type.

(2) Impact of Weight: We study how different weights of payloads limit their travel distance.
(3) Impact of Wind: The major environmental factor that affects the drone is wind. We study the

power consumption of a drone in headwind conditions.

2.2.1. Impact of Motion: Hovering Condition

In this paper, we are considering a quadcopter as a drone. A quadcopter produces both lift and
thrust by using one or more rotors. In our first case, we have a hovering condition where the thrust of
the rotor is used to completely equilibrate gravity. The thrust T produced by the rotor is [19–21]:

T = 2ρAVw (1)

where ρ = 1.225 kg/m2 is the air density, A is the area of the MAV (0.033 m2), V is the resultant velocity
and w is the induced velocity induced by rotor blades:

V =

√
(w−V sinα)2 + (V cosα)2 (2)

where V is the speed of the object relative to the fluid, α is equal to the angle-of-attack of the rotor plane.
Now, considering only the hovering condition V = 0, so that V = w, and using momentum theory:

T = 2ρAw2 (3)

In hovering condition, the net thrust T of the four rotors pushing the drone up must be equal to
the gravitational force Wtot = mtotg pulling it down:

mtotg = 2ρAw2 (4)

which delivers an expression for the induced velocity:

w =

√
mtotg
2ρA

(5)

The total airplane mass mtot in Equation (5) is represented by:

mtot = mbat + mstruct + mprop + mharvester + mav + mpld (6)

where battery, structure, propulsion, harvester, avionics and payload masses, have to be optimized.
The power needed for the propulsion is given by:

P = DV + Tw (7)
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where D is the drag, V = 0 (hovering condition) and T = mtotg, so Equation (7) becomes:

P = Tw =

√
m3totg3

2ρA
(8)

Therefore, to reduce the ideal power, we need to decrease weight, increase the rotor blade size or
simply fly at a lower altitude with the capabilities to operate with environmental temperatures. The next
step is that of calculating the thrust needed to lift and hover the quadcopter. As rule suggests, thrust
should be more than twice the weight of the quadcopter. Total thrust T will be T = 2.0× 80 = 160 g.
Now, in order to calculate the thrust action on each motor, it is necessary to divide the total thrust T for
the number of motors =160/4 = 40 g. Maximum MD in hovering condition can be written as:

thov =
Emax

Ptot
· η = η ·

( 60
1000

)(C ·Vn

ptot

)
(9)

where efficiency η = 0.80 includes propeller and motor, 60
1000 converts mAh into Amin, C is the battery

capacity (in mAh), Vn is the nominal battery voltage (in Volt) and ptot represents propulsion (taking
four motors into account), payload and avionics power consumption. For this quadcopter, we are
considering a Li-Po battery with an operating voltage of 3.7 V and a capacity of 400 mAh. By taking
into account Equations (5)–(9), the results are w = 1.73 m/s, pprop = 1.11 W (calculated for four
motors), pav = 1.57 W, ppld = 1.21 W, ptot = pprop + ppld + pav = 4.00 W, ptot = 3.88 W without
GPS, ptot = 2.79 W without payload. By using Equation (9) we have thov = 18.16 min, thov = 18.30 min
without GPS, thov = 25.46 min without payload. Figure 1 plots mission duration (MD) in min vs.
capacity in mAh. In several conditions as hovering, hovering without GPS and hovering without
payload, MD increases according to the battery capacity. However, as the capacity of battery extends,
the increase in MD becomes ineffective.
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Figure 1. Mission duration vs capacity.

From the results, we observe that the drone can maintain a sufficiently steady flying altitude with
steady power consumption.

2.2.2. Impact of Motion: Vertical Condition

When considering a vertical condition, the MAV rises and falls quickly. This happens if the thrust
of the four MAV rotors is greater than the mass and gravity force. Figure 2 shows the forces on the
MAV during the flight [18,22–25].
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FThrust − FGravity − Fd = m
.
v (10)

FThrust = T , represents the thrust force, FGravity represents the gravity force, Fd represents the
aerodynamic drag, m is the mass of MAV and ν is the speed of the object related to the fluid.
Fd can be written as:

Fd =
1
2
ρAv2CD (11)

where: ρ = air density (kg/m3); A = top area of the MAV; ν = speed of the object related to the fluid
(m/s); CD = drag coefficient (dimensionless constant fixed at 0.80 in this case study). When replacing
the values, Equation (10) can be rewritten as:

T −mtotg−
ρ

2
cDAe f f v2 = mtot

.
v (12)

where: T = total motor thrust (N); g = gravity of Earth (9.81 m/s2). Equation (12) can be rewritten as:

T
mtot
− g−

ρ

2mtot
cDAe f f v2 = 0 (13)

From (13) we get the maximum climbing rate (vertical speed):

vver =

√
2

T −mtotg
ρcDA

(14)

The thrust to weight ratio TWR = T/W = T/mtotg is the main dynamic characteristic that will
determine the drone flight profile. To take off a MAV needs TWR > 1 so it has a net acceleration
upwards. When hovering, thrust is purely vertical, as the MAV pitches forward, the thrust acts at
an angle named angle of attack α shown in Figure 2. The angled thrust is made up of a vertical and
horizontal component. The last component acts on the MAV so as to move it forward. This requires the
TWR to be at least 1.3 for an approximate maximum angle of attack of 40 degrees. When introducing
the thrust over weight ratio in Equation (14) we get the climbing rate as a function of the thrust-weight
ratio TWR:

vver =

√
2mtotg
ρcDA

·

√
(TWR− 1) (15)
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The thrust weight ratio has to be greater than 2. Beside the thrust weight ratio, the maximum
climbing rate is a function of the weight (mtotg) and the size (area A) of the quadcopter, as well as the
aerodynamic drag coefficient CD. The power consumption of the propulsion motor will be:

pprop = Tvver = T

√
2mtotg
ρcDA

·

√
(TWR− 1) (16)

With Equations (14)–(16), we have the results vver = 2.24 m/s, pprop = 1.43 W (calculated for four
motors), pav = 1.57 W, ppld = 1.21 W, ptot = pprop + ppld + pav = 4.21 W. By using Equation (9) tver =

17.20 min. Figure 3 plots power propulsion (W) vs. vertical speed (m/s) of one motor. Electric power
consumption of the propulsion motor increases slightly and linearly when the drone ascends steadily.
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2.2.3. Impact of Motion: Horizontal Condition

In this condition, the drone moves horizontally without altering neither its altitude nor its cruising
velocity. In forward flight condition, Equation (12) can be rewritten as [18,22–25]:√

1−
(mtotg

T

)2
· T −

ρ

2
cDAe f f v2 = mtotv (17)

due to the air drag, the quadcopter will reach a speed limit without further acceleration:√
1−

(mtotg
T

)2
·

T
mtot
−

ρ

2mtot
cDAe f f v2 = 0 (18)

From Equation (18), we can calculate the horizontal speed as:

vhor =

√√√√
2
√

1−
(mtot g

T

)2
· T

ρcDAe f f
(19)

By using the thrust-weight ratio TWR and substituting T = TWR·mtot·g we get

vhor =
4

√
1−

1
TWR2

√
2mtotg
ρcDAe f f

√

TWR (20)
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The first square root requires for the TWR to be at least 1.3. The effective area Aeff is a function of
the forward pitch angle α. To simplify the calculation we only take into account the vertical projection
of the quadcopter top area:

sinα = Ae f f /A = mtotg/T = 1/TWR (21)

and as a result we get:

vhor =
4

√
1−

1
TWR2

√
2

T
ρcDA

√

TWR (22)

Equation (22) becomes:

vhor =
4

√
1−

1
TWR2

√
2mtotg
ρcDA

TWR (23)

The top area A can be calculated also taking into account the motor-to-motor distance (MTM) and
the propeller size (rprop):

A =
1
2

MTM2 + 3 ·πr2
prop =

1
2
(0.16)2 + 3π(0.046)2 = 0.033 m2 (24)

The power consumption for propulsion will be:

pprop = Tvhor = T 4

√
1−

1
TWR2

√
2mtotg
ρcDA

TWR (25)

For longer MD, it is necessary to fly under ideal conditions (no wind and at a room temperature
of 20 ◦C). However, the movement during the flight creates a fluid-air displacement of intensity equal
to vhor but in the opposite direction (vair = vhor) therefore, the power is obtained by assuming that the
body drag (FD) is proportional to airspeed (vair):

pprop = FD · vair =
1
2
ρCDAv3

air (26)

By considering Equations (22)–(26), the results are vhor = 4.20 m/s, pprop = 4.80 W (calculated for
four motors), pav = 1.57 W, ppld = 1.21 W, ptot = pprop + ppld + pav = 7.57 W. By using Equation (9) thor =

9.38 min. Figure 4 plots the electric power consumption of the propulsion motor (W) vs. horizontal
speed (m/s) for one motor. Electric power consumption, which is calculated for one motor increases
slightly and exponentially when the drone flies along the horizontal direction.Sensors 2019, 19, x FOR PEER REVIEW  8 of 22 
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Figure 4. Electric power consumption for one motor vs. horizontal speed.
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2.2.4. Impact of Weights

The MAV owes its success to its ability to carry a payload. However, the weight of a payload
limits the mission parameters in particular travel distances. We observe that power consumption
increases almost linearly when the weight of a payload increases. The maximum weight of a payload
depends on the thrusts that the motors can produce. By considering a payload of 6 g, Equation (26)
shows that pprop = 4.80 W and ptot = 7.57 W. Equation (27) shows, known the motor efficiency and
specific energy of the battery, how the payload’s weight could affect the travel distance of a MAV.
D’Angelo estimates the energy requirement to be [18,22–25]:

d
1− vr

(
mv + mp

370ηr
+

ptot

vc

)
(27)

The travel distance d in meters is:

d =
2 · Eb(1− vr)(mp+mv

370ηr +
ptot
vc

) (28)

where Eb is the source specific energy of the battery (for Li-Po 100–265 Wh/kg), mp = payload mass
(grams), mv = vehicle mass (g), r = lift-to-drag ratio, η = power transfer efficiency for motor and
propeller, ptot = power consumption of MAV in W, vr = ratio of headwind to airspeed and vc = cruising
velocity of the aircraft in m/s. The values used in Equation (28), to calculate the travel distance d are
Eb = 100–265 Wh/kg, vr = 0.3, mp = 6 g, mv = 74 g, η = 0.8, r = 3, ptot = 7.57 W, vc = 4.20 (m/s).
Figure 5 plots the travel distance vs. payload. The aircraft’s travel distance is roughly proportional to
the payload mass. As payload mass increases, the total weight of the aircraft increases. Increasing the
weight raises the minimum speed of the aircraft and reduces the travel distance.
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Figure 6 plots the travel distance as a function of cruising velocity and motor efficiency.
The variation of motor efficiency with cruising velocity leads to increased travel distance. This means
that power will increase because the motor will have to spin faster and absorb more current.
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2.2.5. Impact of Wind

Wind condition is a major environmental factor that affects the power consumption of a MAV.
We are only considering the flight of a MAV in headwind conditions. In this scenario, the motors are
forced to generate more thrust to maintain a horizontal condition and thrust requires power. The drone
was set to fly with a wind speed of 7 m/s. Equation (25) will be re-written considering the power
needed to overcome FD in headwind conditions [18,22–25]:

pprop = FD · vwind =
1
2
ρCDAv3

wind (29)

By considering Equation (29), we have the results vwind = 7 m/s, pprop = 22 W (calculated for four
motors), pav = 1.57 W, ppld = 1.21 W, ptot = pprop + ppld + pav = 24.78 W. By using Equation (9) twind =

3.17 min.
Figure 7 plots the electric power consumption of the propulsion motor (W) vs. wind speed (m/s)

for one motor. Electric power consumption calculated for one motor increases exponentially when the
drone flies along the horizontal direction in headwind condition. In fact, in this condition, the motor
will have to spin faster and absorb more current.
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Figure 7. Power consumption of propulsion for one motor vs. wind speed.

Figure 8 plots MD in vertical, horizontal and in headwind condition. In these conditions, MD
increases as a function of the battery capacity. However, as the capacity of battery extends, the increase
in MD becomes ineffective.
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Figure 8. Mission duration vs capacity.

3. Economical Alternative to PV

This section describes the design and simulations of a novel harvester based on plasmonics
technology, which is able to improve mission parameters. Moreover, to optimize the power transfer, an
optimal matching between harvester and load is proposed.

3.1. Novel Harvester to Power Small Aerial Vehicles

The model presented above shows that the weight of the battery plays one of the most important
roles in determining the mission parameters of a flying object. Energy harvesting gives the opportunity
of reducing dimensions and weight of the battery reducing the total weight of a MAV and consequently
decreasing the amount of energy required to power it. This harvester is called nano-rectenna. The term
results from joining “rectifying circuit” and “nano-antenna” [17], i.e., a novel answer to the power
issues of the MAVs. Figure 9 shows the block diagram of the energy harvesting system proposed.
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Figure 9. Block diagram of an energy harvesting system.

Each rectenna contains a receiving antenna, a rectifier circuit, a DC-DC step-up converter, a storage
device and a load as shown in Figure 9. These nano-antennas use excited localized surface plasmons
to induce electrons flow along the antenna, generating alternating current (AC) at the same frequency
of the incident wave [17]. Subsequently, the rectifying circuit receives the AC from the dipole metallic
strips. After the rectifier, the output presents a unidirectional current flow and a not constant voltage.
To make this output voltage constant, a capacitor is usually added at the rectifier’s output. The battery
and load need to be fed at a specific and regulated voltage value. A DC-DC boost converter is
introduced after the rectifier, so a low output voltage of the rectenna array can be increased to a typical
battery voltage. After the DC-DC block, the energy is then stored in the energy storage device, often
chosen as a rechargeable battery/supercapacitor. These flexible dipole rectennas are thought to be
incorporated into the frame of a MAV [26]. In the following paragraph, the complete characterization
of a rectenna in Figure 9 is presented.
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3.2. Internal Nano-Antenna Impedance Evaluation

The antenna operating in receiving mode can be represented by a voltage source Vopen and an
input impedance in series ZA = Rin + jXin · Vopen represents the open circuit voltage at the terminals of
the antenna when the load is not connected. ZA represents the impedance of the antenna characterized
by a resistive component Rin defined as the sum of the radiation resistance Rrad and loss resistance Rloss
and by a reactive component Xin (that is equal to zero at resonant frequency). In order to evaluate
the nano-antenna impedance, the study has been carried out focusing on aluminum [27] nano-dipole
antenna shown in Figure 10.
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Figure 10. Schematic representation of the aluminum nano-dipole antenna, defining its
geometrical parameters.

Aluminum is a low-loss metal whose permittivity at the frequency of interest is ε(ω) = ε′(ω) +
iε′′ (ω) = −90.56 + i38.56 where ε′(ω) and ε′′ (ω) respectively represent real and imaginary parts of
the complex permittivity ε(ω) [14,28]. The numerical analysis in this section was performed with a
commercial full-wave 3D electromagnetic simulator CST Studio Suite 2016.

The dipole consists of two identical arms of length L. At 350 THz ( λ = 857 nm) we set antenna’s

length L as L =
λe f f

2 =
λ
2

ne f f
= 80 nm, where ne f f = 2.8, numerically extracted for λ = 857 nm from [28]

represents the effective refractive index, λe f f represents the effective wavelength experienced by the
plasmonic dipole, which is shorter than the free-space wavelength λ0. The width and the height of the
arms are fixed respectively at 10 nm and at 15 nm. The gap G between the two arms is fixed at 5 nm.
The substrate on which the aluminum nano-antennas are patterned is assumed to be a silicon dioxide
(SiO2) (the substrate thickness is fixed at 50 nm, length and width are fixed respectively at 350 nm and
100 nm, the related dielectric permittivity is 4.82 and the dielectric loss tangent is 0.002). The feeding
point at the center of the antenna is set to a lumped port instead of a real diode for simplicity [29,30].
In general, the maximum transferred energy obtained when the antenna is resonant is measured at
the minimum of the return loss (S11) parameter shown in Figure 11. The antenna is resonating at
350 THz with a return loss of −45 dB. At this value of return loss, the maximum power transmitted to
the antenna is 99.87% [15].

To determine the input impedance, the gap is excited by a default Gaussian pulse at the frequency
of 350 THz. Figure 12 shows input impedance of a dipole antenna in resonance condition: (a) input
resistance Rin = 1055 Ω and (b) input reactance Xin = 0 Ω.
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3.3. Effective Area Evaluation

A parameter usually used in the antenna theory is the effective area Ae f f of the antenna calculated
by Equation (30) [16]:

Ae f f =
V2

openZ0

4E2
i ZA

(30)

During the simulation, the nano-dipole was irradiated by a linearly polarized plane wave at a
frequency value of 350 THz with an arbitrary amplitude of 1 V/m. By assuming, for Vopen the simulated
value of 5 × 10−5 V as reported in Figure 13, calculated when the load is not connected, for the intrinsic
impedance of free space Z0 a value of 377 Ω, for the nano-dipole impedance ZA a value of 1055 Ω and
for the incident electric field Ei a value of 1 V/m, the value of nano-dipole effective area Ae f f calculated
by (30) is 223 nm2.
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3.4. Electrical Parameters Evaluation

The energy radiated by the Sun with a temperature equal to 5778 K follows the Plank’s blackbody
radiation formula [16]:

Wλ =
2πhc2

λ5(e
hc
λkT − 1)

(31)

where h is the Plank’s constant equal to 6.63 × 10−34 [J s], c is the speed of light equal to 3·108 [m/s],
T is the temperature [k], and K is the Boltzmann’s constant equal to 1.38 × 10−23 [J/K]. To obtain the
power density (Poynting vector) on the antenna we are integrating Wλ between λmin and λmax:

S =

λmax∫
λmin

Wλ(λ, T)dλ (32)

In this case, the actual Poynting vector has been obtained by taking into account the radiation
efficiency ηrad whose values depend on the wavelength and by integrating Wλ in the operating range
of the optical nano-antenna, i.e., between λ1 = 300 nm and λ2 = 1200 nm [31–33]. This range
of wavelengths is commonly used in literature because it covers the visible and infrared interval.
Equation (32) can be rewritten as:

S′ =

λ2∫
λ1

Wλ(λ, T)ηrad(λ)dλ (33)
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The available power on the load matching condition has been evaluated as:

P = Ae f f · S′ (34)

Table 2 shows the values of the actual Poynting vector and the corresponding power on the load
in matching conditions by considering a dipole with arm length of 80 nm.

Table 2. Poynting Vector and Optimal Power.

L [nm] Actual Poynting Vector <S’> [W/m2] Power P [nW]

80 70 15.6

The maximum value of the electrical field has been calculated as:

Ei =

√
2 · |〈S′〉| ·

√
µo

εo
(35)

where
√
µo
εo

is the intrinsic impedance of free space Z0 equal to 377 Ω. Figure 14 shows the equivalent
circuit, which serves to calculate the output voltage V0 obtained when the load is connected to the
nano-antenna [16]
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Figure 14. Equivalent circuit for the calculation of the output voltage V0.

Assuming the impedance matching condition between the antenna ZA and the load ZL, the output

voltage V0 is equal to
Vopen

2 . Table 3 shows the values of the incident electric field, of Vopen and of the
output voltage V0 for dipole arm length of 80 nm.

Table 3. Electric Field, Vopen and Output Voltage V0.

L [nm] Ei [V/m] Vopen [µV] Vo [µV]

80 230 50 25

Unfortunately, the results above show that the output power and voltage of a single rectenna
tuned at 350 THz are very low, of the order of nW and µV, respectively. These values are limited to the
characteristics of the metal insulator metal diode (MIM) or multi insulator metal diode (MIIM) [11,34].
For aeronautic applications, a MAV requires high current and low voltage. Consequently, an
arrangement in array is necessary. The dipole rectenna elements are connected in series and parallel
to meet the requirement of increased power. To obtain an efficient power transfer, the coupling
between the impedance of the array and the impedance of the DC-DC boost power converter is
required. Therefore, the array resistance has to be sufficiently low and close to the DC-DC resistance.
Consequently, a reduction in power loss is achieved.
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3.5. Design of a Rectenna Array

3.5.1. Impedance Matching

The rectenna model used in this paper is reported in [3]. To calculate the impedance matching
supposed above, the diode junction capacitance CD can be neglected because it behaves as a low
pass filter and only the DC component can be considered. The current flowing in the circuit can be
expressed as [16]:

I =
Vopen

RA + RDRL
RD+RL

= Vopen ·
RD + RL

RA(RD + RL) + RDRL
(36)

The total power in the circuit can be expressed as:

PTOT = Vopen2
·

[
RD + RL

RA(RD + RL) + RDRL

]
(37)

The power in the antenna, in the diode and in the load are shown below:

PA = Vopen2
·

[
RD + RL

RA(RD + RL) + RDRL

]2

·RA (38)

PD = Vopen2
·

[
RL

RA(RD + RL) + RDRL

]2

·RD (39)

PL = Vopen2
·

[
RD

RA(RD + RL) + RDRL

]2

·RL (40)

The best impedance matching condition is obtained when the value of RD is much larger than
the values of RA and RL, on the contrary, RA and RL must be equal. Therefore, the optimal matching
can be achieved by a rectenna array whose equivalent impedance equals the impedance ZIboost of the
DC-DC boost converter.

3.5.2. DC-DC Boost Power Converter

Figure 9 shows a DC-DC boost converter introduced after the rectifier, so a low output voltage of
the rectenna array can be increased to a typical battery voltage [35–37]. By following this approach, an
LTC3108 DC/DC boost converter, is used [38]. LTC3108 produces an output voltage up to 5 V with
a peak current of 4500 µA under 500 mV input voltage and a resistance of 3 Ω as input conditions.
The knowledge of the DC-DC impedance (3 Ω) is important for obtaining the optimal matching with
that of rectenna array.

3.5.3. The Equivalent Circuit of an Array of Optical Rectennas

The equivalent circuit of an array of optical rectennas is shown in Figure 15. Each cell consists of
an antenna with the rectifier placed in the gap. The equivalent resistance of a single rectenna RRECT
can be expressed as [16]:

RRECT =
RARD

RA + RD
(41)

Currently, the state of the art indicates a diode resistance RD around 1.2 MΩ [39], whereas the
value of RA is equals to 1055 Ω. If N rectennas are connected in series (matrix column), the value of the
column resistance RCOL becomes equal to:

RCOL = N ·RRECT = N ·
RARD

RA + RD
(42)
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RCOL is higher than the DC-DC resistance, therefore the impedance matching between the array
and the DC-DC boost converter is not satisfied. To obtain the maximum power transfer between the
rectennas array and the DC-DC converter, it is necessary to decrease RCOL connecting in parallel M
column. Therefore, the equivalent resistance of an array is given by:

Req, array =
N
M
·RRECT =

N
M
·

RARD

RA + RD
(43)

and the ratio of N/M is obtained as:

N
M

= Req, array ·

(
RA + RD

RA ·RD

)
(44)
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With this method, the series connection, allows the open circuit voltage to be increased whereas
the parallel connection gives the degree of freedom needed to achieve the impedance matching with
the load. In a matrix arrangement, the dipoles are considered as simply connected in series-parallel,
however, the practical realization of this matrix would require a further study to avoid parasitic
interactions among them; this aspect will be investigated in the future. To achieve the voltage matching
between the optical rectenna array and the DC-DC converter, the rectenna array output voltage has to
be greater than the lower input voltage of the DC-DC converter. For this case study, the maximum
output voltage of the array V0,array is fixed at 1000 mV (this value will decrease to 500 mV when the
matching load is connected to the array). N can be obtained as [16]:

N =
VO, array

VDC
=

2VIboost
Vopen
π

(45)

where the DC value can be obtained from the Vopen multiplied for 1
π (which corresponds to an half-wave

rectifier). From Equation (45), it is possible to calculate the value of M:

M =
N

Req, array ·
(RA+RD

RA·RD

) (46)

The array area can be expressed as:

Aarray = N ·M ·Adipole (47)

Table 4 shows the values of N and M for a nano-dipole which arm length is of 80 nm.
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Table 4. Parameters of a Rectennas Array.

L [nm] ZIboost [Ω] VDC [µV] Vo,array [mV] N M

80 3 16 1000 62,800 22,066,058

By considering Equation (47), the rectenna array area, constituted by dipoles, which arm length, is
of 80 nm is 23 cm2.

3.5.4. Load Power and Energy Evaluation

In order to evaluate the available power on the load, the whole array of rectennas can be simulated
as the equivalent circuit shown in Figure 16 [16].
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The impedance matching condition between the rectenna array Req,array and the load Ziboost has
been assumed. The input impedance Ziboost is considerate equal to 3 Ω. The load power can be
calculated by:

Pload =
V2

out
ZIboost

(48)

where the output voltage Vout on the load Ziboost is equal to N VDC
2 . Under matching impedance

conditions, the array output power and the boost input power are the same and equal to 84.14 mW.
Figure 17 shows the curve of solar radiation versus time during a typical July day in a southern Italian
region. It should be noted that the maximum of the solar radiation is at the Zenith. The energy that
can be delivered by a rectenna array can be expressed as:

ξday =

∫
t

Parray
R(t)
Rmax

dt (49)

where R(t) is the solar radiation versus time, Rmax is the value of solar radiation at Zenith and Parray

is the maximum value of the array power. By considering Equation (49), the obtained energy is
equal to 2572 J. By taking into account the above results, Equation (9) shows improvements for the
mission parameters.

For MD the improvements with the harvester only in horizontal condition has been of 16.30 mins.
With a hybrid system (battery and harvester), the improvements in horizontal and headwind conditions
have been respectively of 50 min and 15.30 min. For travel distance, the improvements with the
harvester only have been of 1903 m and with a hybrid system of 5845 m. In headwind condition,
considering the hybrid system, the improvement has been of 3047 m. The preliminary results above
show that a dipole rectenna array with 22,066,058 elements in parallel and 62,800 elements in serial
connections are sufficient to recharge a small battery on board a MAV. Finally, the angle of incidence
of solar radiation on a dipole rectenna array embedded into the frame of a MAV may vary with the
instantaneous change in orientation of a flying MAV. When the pole orientation of rectennas does
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not match with the electric field of the incident solar radiation, the rectenna may not generate a
high output power. To overcome this polarization problem, a polarization-free dipole rectenna array
configuration with six difference polarity directions is mandatory. For this application, the state of the
art recommends a typical arranging of the dipole rectenna elements in a circle [40–42].
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4. Energy Storage

Figure 9 shows the working principle of the novel harvester. From this figure, it is possible to see
that the harvester does not feed the load directly but recharges a small battery. In fact, the harvester
has an intermittent nature, which makes the voltage and current unstable. On the other hand, the
battery output can supply the load with a stable voltage and current. For EH application is imperative
to use rechargeable batteries.

In this study, a Li-Po ultra-fast rechargeable battery with 3.7 V nominal voltage and a capacity of
just 400 mAh is used, taking into account the tradeoff between battery life and its size. To extend the
mission parameters, Equation (50) explains, as at any instant t, the available energy must be greater or
equal to the required energy for supporting the load:

Eharvested(t) + Estored(t) ≥ Eload(t) + Eloss(t) (50)

where Eharvested is the generated energy at any instant t by optical dipole rectenna array, Estored is the
energy stored in a storage device (battery), Eload is the energy required from the load and Eloss is the
energy dissipated due to the Joule effect. The maximum charge current rate fixed from the DC-DC
boost converter is 4500 µA. During the normal operation, a Li-Po battery is discharged only for 20% of
its capacity, therefore the recharging time is of 2.5 h. At this state, it is easy to recharge the battery with
the power delivered by the energy harvester, rather than charging the battery at a later stage, when it is
fully discharged. This preliminary study shows that the current flow of this energy harvester is not
enough to fastly charge the battery while the MAV is mid-air, however, in the near future, a hybrid
system constituted by this energy harvester and a novel battery able to be recharged during the flight,
in less than 1 min, could power the system indefinitely [43–45].

5. Conclusions

In this paper, a possible solution on how to improve mission parameters (MD and travel distance),
for a micro air vehicle (MAV) has been given. This paper has been divided into two different parts.
Initially, we have proposed a model that identifies all factors that determine the power consumption
of a drone. The results of the MD for several scenarios proposed shown that in hovering condition
MD is 18.16 min. In vertical conditions, MD is only 17.20 min. In horizontal condition, MD is only
9.38 min. Finally, in worst-case condition, i.e., in headwind conditions, MD is only 3.17 min. MD



Sensors 2019, 19, 1771 19 of 21

and travel distance are limited by the capacity of the energy storage system. In the second part, to
answer on how to improve mission parameters, we have designed and simulated a harvester using
a flexible optical dipole rectenna array tuned at a frequency of 350 THz thought to be implemented
into the frame of a MAV. Moreover, a novel method to make the impedance of the harvester match
that of load has been proposed. In light of the results above, Equation (9) shows improvements for
the mission parameters. For MD, the improvements with the harvester only in horizontal condition
have been of 16.30 min. With hybrid system (battery and harvester), the improvements in horizontal
and headwind conditions have been respectively of 50 min and 15.30 min. For travel distance, the
improvements with harvester only has been of 1903 m and with hybrid system of 5845 m. In headwind
condition, by taking into account the hybrid system, the improvement has been of 3047 m. This is
in line with theoretical and simulations results because the power captured by the nano-antennas is
largely lost on the rectifier. Finally, in the next future, a hybrid system constituted by this harvester and
a novel battery able to be recharged during the flight in less than one-minute could power the system
indefinitely. In light of the considerations, which were obtained from the results discussed above,
we can assert that nano-antennas, although still at the initial stage and not of immediate application,
represent a new, stimulating and not yet consolidated topic, which will be able to foster new research
activities in the aeronautic field.
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Abbreviations

The following abbreviations are used in this manuscript:

UAVs Unmanned Aerial Vehicles
MAVs Micro Air Vehicles
MD Mission Duration
EH Energy Harvesting
SWIR Shortwave Infrared
PV Photovoltaic
TWR Thrust to Weight Ratio
AC Alternating Current
DC Direct Current
MIM Metal Insulator Metal diode
MIIM Multi Insulator Metal diode
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