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Abstract: Despite recent advances in developing landslide susceptibility mapping (LSM) techniques,
resultant maps are often not transparent, and susceptibility rules are barely made explicit. This weakens
the proper understanding of conditioning criteria involved in shaping landslide events at the local scale.
Further, a high level of subjectivity in re-classifying susceptibility scores into various classes often
downgrades the quality of those maps. Here, we apply a novel rule-based system as an alternative
approach for LSM. Therein, the initially assembled rules relate landslide-conditioning factors
within individual rule-sets. This is implemented without the complication of applying logical or
relational operators. To achieve this, first, Shannon entropy was employed to assess the priority order
of landslide-conditioning factors and the uncertainty of each rule within the corresponding rule-sets.
Next, the rule-level uncertainties were mapped and used to asses the reliability of the susceptibility
map at the local scale (i.e., at pixel-level). A set of If-Then rules were applied to convert susceptibility
values to susceptibility classes, where less level of subjectivity is guaranteed. In a case study of
Northwest Tasmania in Australia, the performance of the proposed method was assessed by receiver
operating characteristics’ area under the curve (AUC). Our method demonstrated promising performance
with AUC of 0.934. This was a result of a transparent rule-based approach, where priorities and state/value
of landslide-conditioning factors for each pixel were identified. In addition, the uncertainty of
susceptibility rules can be readily accessed, interpreted, and replicated. The achieved results demonstrate
that the proposed rule-based method is beneficial to derive insights into LSM processes.

Keywords: Shannon entropy; uncertainty; landslide susceptibility mapping (LSM); GIS; Tasmania

1. Introduction

There are a number of natural hazards, which are a threat to both human lives and properties
throughout the world. These include flooding, bushfire, dust storms, coastal processes, and landslides.
Many spatial scientists have contributed to prevent or reduce actual damage from natural hazards
through modeling and production of susceptibility maps [1-9]. Obviously, susceptibility mapping can
be a crucial tool for a wide range of end-users, from both private and public sectors, aimed at hazard
mitigation purposes at both local and international levels. Although susceptibility maps may not be
the best approach for confronting all existing types of natural hazards, in terms of landslide events,
they are both popular and effective [10].

In terms of landslides, up to now, various methodological approaches including heuristic [11-13],
deterministic [14,15] and statistical [6,16,17] methods have been applied for landslide susceptibility
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mapping (LSM). While heuristic methods are subjective to the experts” knowledge, deterministic
approaches restricted to small-scale areas (i.e., 1:25,000-1:5,000) [8,18-20]. This is because of the fact that in
deterministic models there is a need for detailed information on lithological units, soil characteristics, slope
geometry, discontinuity characteristics, and hydrological conditions of the slopes. Therefore, considering
the limitations that apply to heuristic and deterministic methods, statistical approaches have been more
popular for the implementation of susceptibility maps [10].

Taking natural hazards into account, a susceptibility map identifies areas, which are more
or less prone to a potential hazard occurrence using low to high possibility values/classes [3,10].
However, for effective mitigation of natural hazards using management plans, the conditioning factors
of a potential hazard must be also highlighted throughout the spatial domain [10,21]. LSM depicts
where the slope failure may occur spatially [2,10,12,21]. Although to date, statistical methodologies
developed for quantifying variations of landslide susceptibility throughout spatial domain are usually
accurate, the latter requirement of highlighting conditioning factors in a transparent way is often
neglected, especially at the pixel-level [21]. This simply means that it is not often possible for
the experts to retrieve the classification rules at pixel-level. Nonetheless, the proper understanding of
the conditioning factors and scientific methodologies is also crucial to our understanding of mechanisms
of landslides at local (i.e., pixel) level [22,23].

Another disadvantage that limits the application of susceptibility assessment is the subjective
re-classification of susceptibility scores into susceptibility classes (i.e., high, medium and low
susceptibility) using quantile [24], equal interval [13], natural breaks [11,25] or other classification
schemes. This is intertwined with the drawback of subjectivity that is the main limitation of heuristic
methods [26], which can also downgrade “statistical methods”. This is usually because of the fact that there
is a risk that experts/modelers’ expectations will affect the final interpretation and the experts/modelers
will see what they want to see.

Up to now, many researchers applied different approaches that were aimed at developing
novel LSM algorithms, while few may have considered to simultaneously tackle above-mentioned
issues. Considering each one of the above issues individually, a smaller number of researchers
considered highlighting landslide susceptibility rules at the pixel-level compared with reducing
subjectivity. For instance, Chen, et al. [27] applied a new ensemble model by combining ANN,
MaxEnt, and SVM machine-learning algorithms for LSM purposes. However, no susceptibility rule
can be retrieved at the pixel-level using this approach. This limitation applies to a broad range of
statistical and machine-learning approaches that are highly popular in contemporary LSM literature [28].
However, in terms of the latter issue, many researchers attempted to assess and/or resolve the subjectivity
issue of LSM algorithms individually. For instance, Althuwaynee, et al. [29] assessed the efficiency of
LSM models while reducing the subjectivity of knowledge-based approaches. Yan, et al. [30] proposed
anovel hybrid approach for LM by integrating analytical hierarchy process and normalized frequency
ratio methods with the cloud model. A major contribution of this method was applying the cloud
model to reduce the high level of subjectivity induced by experts” opinions in the analytical hierarchy
process method.

To account for above-mentioned problems, we apply and further modify a rule-based algorithm,
DoTRules—Dictionary of Trusted Rules—for LSM that was originally applied for transition potential
mapping in cellular automata land-use change models [31]. Our novel algorithm features identification
of transparent rules that define the impact of key conditioning landslide factors at a pixel-level.
Here every unique rule corresponds with at least one pixel of the susceptibility map, as well
as an uncertainty value which quantifies the reliability of the same rule. In the proposed
method, Shannon entropy is benefited to calculate the uncertainty of each susceptibility rule.
Exploring susceptibility rules and their equivalent uncertainties is a beneficial provision to better
understand the core rules involved in slope failure dynamics, which is useful for the implementation of
hazard mitigation plans. In addition, following the recent attempts to reduce the level of subjectivity that
exists in re-classification of susceptibility scores into susceptibility classes [32], we applied probability
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values of classification rules for the final implementation of susceptibility map using a set of “If-Then”
rules. Although various forms of subjectivity may exist in the process of LSM, in the current research,
we only focus on the conversion of susceptibility scores into susceptibility classes.

This study contributes to the better understanding of landslide mechanism at the local level by
introducing a novel transparent rule-based algorithm, where no logical or relational operator is used.
In addition, the proposed algorithm reduces the level of subjectivity that exists in the re-classification of
susceptibility scores into susceptibility classes. As the applications of susceptibility maps are not only
limited to landslide events, these are both valuable assets for better designing of hazard mitigation
plans that are developed based on susceptibility maps. Here, we describe the modified version of
DoTRules algorithm for LSM and demonstrate its application to Northwest Tasmania, Australia.
We discuss the pros and cons of the new LSM approach more generally from the preparation of
landslide susceptibility maps to broader environmental processes where it is necessary to understand
the dynamic mechanism of conditioning factors involved in shaping natural hazards susceptibility.

2. Description of the Study Region

Landslides, for the most part of Australia, are not seen as an utmost threat to urban communities.
However, this general belief is far from the reality of the situation where the history of landslides is
highlighted with devastating events [33]. Since 1842, a total of 88 people have lost their lives due
to 38 fatal landslides [34]. It is almost certain that these statistics are incomplete and that the real
number of fatalities is much higher.

In terms of Tasmania, numerous patches of land are susceptible to slope instability,
whereby the existing records since the 1950s, around 75 houses are seriously damaged by landslides,
or demolished due to substantial damage. Fortunately, there is no occurred fatal incident during this
time window. Nonetheless, these slope failure events are extremely disturbing to those directly affected,
where the financial damage to people and/or the State runs into many millions of dollars. Yet, usually no
insurance company provides cover for landslide damages, nor the Tasmanian government has paid to
compensate for financial loss in the past [35]. No doubt that this type of disasters and its adverse effects
can be avoided when ground conditions are deciphered and fully understood prior to the construction
of properties. Although landslide events can occur anywhere across Tasmania, they have been
mostly active in several areas of the Northwest landscape, the Tamar Valley, as well as specific areas in
and around Hobart, Launceston, and St Helens. Here, in this research, we utilize a landslide inventory of
Northwest Tasmania (Figure 1). Mineral Resources Tasmania (MRT) undertook many activities to deal
with landslides such as LSM, administration of declared or proclaimed areas of slope failure and also
monitoring of a small number of “problematic” landslides. The current landslide inventory that is utilized
for this research is also developed by MRT (https://maps.thelist.tas.gov.au/listmap/app/list/map).

The high frequency and variation of landslide events in the area is due to a range of factors
such as varied topography, climates (including rainfall patterns), and especially a combination of
geologic and geomorphic (land forming) processes. In Tasmania, some slides (i.e., shallow slides) are
often formed in soils developed on Tertiary basalt, sediments and colluvial material. Some others
(i.e., deep-seated landslides) are developed where the unstable slope spreads well below shallow
soils into deeply weathered regolith and/or underlying geological units [36,37]. There are 3030 slope
instability records in the entire state of Tasmania, out of which the selected study area in the Northwest
contains 1152-recorded events. Five major types of landslide movement including slide, flow, fall,
topple, and spread are seen in Tasmania as well as in the studied area, where flows have been the most
common types up to now. In many cases, landslides are actually a combination of different movement
types. Among all the recorded events of Northwest Tasmania, 641 points belong to slides category
(both shallow and deep-seated) are considered in this study. These are a down-slope movement of
material along a distinctive surface of weakness such as a fault, joint, or bedding plane and can occur
on slopes within the minimum and maximum range of 6°-14°, respectively. No doubt, this entangles
the process of LSM [38].
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Figure 1. A location map of the study area. Dots represent the location of occurred various
landslide events.

3. Materials and Methods

3.1. Landslide-Conditioning Factors

In the process of selecting landslide conditioning factor, an initial study of local landslide properties
and their spatial distribution was considered using available MRT reports. Afterward, with respect to
the available peer-reviewed GIS-based LSM research [39-41], an initial group of landslide-conditioning
factors of the study area as well as an inventory of 641 occurred landslide events, have been selected.
Then we assessed the correlations among landslide occurrence and ten conditioning factors [42]
including slope, aspect, distance to main streams, distance to coastal lines, NDVI, mean annual rainfall,
distance to roads, geology, distance to faults, elevation and land-use for Northwest Tasmania. Based on
the findings, we selected the ten aforementioned factors for landslide modeling for this study (Table 1
and Figure 2). In terms of NDVI data, it was ideal to apply a time series that was overlapping with
rainfall data; however, as we did not have access to such data, a mean NDVI raster of Jun 2017-Jun 2018
was applied. This was the most recent data during the methodology implementation.

A typical grid cell approach was applied to assess landslide susceptibility because it is the most
popular method referring to the current literature [43]. Here, all 11 landslide-conditioning factors
were at different resolution; therefore, they were spatially resampled to 10 X 10 meter cell resolution,
where the whole study area is composed of 11782 x 8303 cells.

As per the model requirement, all landslide conditioning factors (Table 1) must be re-classified into
H discrete classes. This can be simply done by re-classifying data with reference to existing literature
or analyzing training data. Clustering is a second option for this purpose which is a more objective
approach. In this paper, we have re-classified the data and selected these intervals by referring to
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the existing LSM literature. In terms of landslide points, almost all of the selected landslides belong
to slide-type landslides. In terms of landslide inventory, 250 landslides were randomly selected for
training purpose while 391 landslides were selected to test the susceptibility map. The preparation of
data used for this research was done in ArcGIS 10.4 environment.

Table 1. Selected landslide-conditioning factors based on literature review, relevant data source,

description and number of discrete classes (H).

Criteria Data Source Description H
. . This is the slope angle derived from a digital
1. Slope Mineral Resources Tasmania (MRT) elevation model (DEM) of the 10 metre Lidar DEM. 9
2. Aspect Mineral Resources Tasmania (MRT) The compass direction that a slope faces derived 9
from the same source as slope.
3. Mainstreams Land Information System The relative Euclidian distance of each desired 9
) Tasmania (LIST) pixel from the closet mainstream.

. Land Information System The relative Euclidian distance of each desired

4. Coastal lines . . . 10
Tasmania (LIST) pixel from coastal lines.
The normalized difference vegetation index (NDVI)
5. NDVI Australian Bureau of Meteorology representing vegetation density and condition 9
from Jun 2017 to Jun 2018.

. . A monthly average of a 30 years rainfall (base
6. Rainfall Australian Bureau of Meteorology climatological datasets) from 1961-1990. 8
7. Road Land Information System The relative Euclidian distance of each desired 9

: Tasmania (LIST) pixel from the closet road.

8. Geolo Mineral Resources Tasmania (MRT) This Tasmania Geology map is derived from 10

) 24 the 1:250,000 scale digital geology of Tasmania.
9. Faults Mineral Resources Tasmania (MRT) The re}atlve Euclidian distance of each desired 9

pixel from the closet geological fault.
10. Elevation Mineral Resources Tasmania (MRT) The representation of the l.and surface elevation 9
from 10 metre Lidar source.

11. Land use the Australian Land Use The Tasmanian land use map containing 116 10

’ and Management (ALUM) land-use sub-classes for the current study area.

12. Landslides

Mineral Resources Tasmania (MRT)

A number of 641 records containing both active

and inactive landslides.

A 10-meter digital elevation model (DEM) form Mineral Resources Tasmania (MRT) was used
to model topographical features including elevation, slope, and aspect, where each of these layers
was re-classified into nine different classes. Topographical data are conventionally applied in LSM
models [44,45]. According to the training data, the landslides points are highly frequent in low
elevation class (i.e., class 1) whereas they are almost normally distributed throughout different classes
of the slope with a maximum frequency at class 3 (~7°-12°). In the case of aspect, a bimodal trend
can be observed, wherein landslide points are highly frequent around class 1 and 9 (i.e., Northwest
and Northeast).

In this study, four distance layers were used namely, distance from main streams [46], coastal
lines [47], roads [47], and faults [48]. They were prepared using the Euclidean distance tool in ArcGIS
environment. The first two layers are important parameters that control the saturation degree of
the material on the slope, the rest affect the slope stability.

In terms of distance to roads and faults, it has generally been observed that the probability of
landslide occurrence increases as the distance decreases. These two layers are considered because
of their correspondence to worsening of slope equilibrium conditions and contribution to terrain
permeability, respectively. For all these layers, the high frequency of landslide events is localized
around lower classes (i.e., class 1 and 2) which stand for lower values of distance. All these layers
were obtained from the Land Information System Tasmania (LIST) except the latter one (i.e., the faults
layer), which was obtained from MRT. The Euclidean distance for each layer was then re-classified into
nine classes, apart from for the distance from coastal lines that was classified into 10 classes.
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Figure 2. Eleven applied landslide-conditioning factors involving: (a) Slope; (b) aspect; (c) distance to
main streams; (d) distance to coastal lines; (e) NDVI; (f) mean annual rainfall; (g) distance to roads;
(h) geology; (i) distance to faults; (j) elevation; (k) land-use, and (1) landslide/non-landslide inventory
database used for training the model.

The normalized difference vegetation index (NDVI) and rainfall (monthly average rainfall),
both from Australian Bureau of Meteorology (BOM) were other remaining continuous
landslide-conditioning factors that were sub-grouped into nine and eight classes respectively
due to methodology requirement. The maximum number of landslide events was recorded
within class 7 of NDVI and class 3 of rainfall (the maximum rainfall is at class 8). The NDVI
represents vegetation density from Jun 2017-Jun 2018 while the rainfall data is a monthly average
of a 30 years rainfall. Many researchers reported that NDVI is conversely related to landslide
probability [49]. However, rainfall is usually a triggering factor of landslide [50].

Finally, geology and land-use maps obtained from MRT and the Australian Land-Use
and Management (ALUM) were the last groups of spatial data in the present research. Landslides are
greatly controlled by the geological properties of the land surface [46]. Many researchers also emphasized
the importance of land-use and land-use characteristics on the stability of slopes, and they used these



Sensors 2019, 19, 2274 7 of 20

parameters to assess the conditioning factors of landslides [51]. These two landslide conditioning
factors were originally discrete variables. However, as the number of classes was unnecessarily high,
we re-classified them into 10 classes. This gave us a more consistent dataset. In terms of geology map,
it contains the detailed corresponding units (e.g., soils and rock), ages, weathering, structure, and geology
source information. Most of the landslides in this area are within basalt or basalt-derived soils (class 10).
In terms of land-use, landslides are observed in multiple classes of land-use considering their proximity
to coastal lines.

3.2. Description of DoTRules with Modifications for LSM

DoTRules is a simplified rule-based algorithm for exploring rules and their corresponding
uncertainties that can be applied to predict the future behavior of spatial phenomena such as in landslide
susceptibility maps. Here, multiple sets of rules were implemented based on involved categorical/discrete
data. The rule implementation is accomplished using a concatenation of discrete predictor variables
and then measuring their relevant entropy as an estimate of reliability/uncertainty [31,52]. The procedure
of DoTRules for LSM was implemented in R [53] and consisted of the following six steps.

STEP 1: Preparing test and train data.

The training set is characterized by a set of pixels I = { i3, iy, ..., i}, where each pixel i in
the training set I has a value x;; for each of the independent landslide-conditioning criteria | = {j1, j»,
.+, jut. In this study, 11 conditioning criteria (Table 1) exist and all of them are discretized variables.
These discretized landslide-conditioning variables can be either derived from native categorical data
(e.g., land-use class, geology etc.) or re-classified continuous data (e.g., distance from roads, distance to
coastal lines etc.). Therefore, each x;; can adopt one of a fixed set of possible classes H that is specific to
that criterion (Table 1). Although each criterion j has a different set of classes H, for sake of simplicity,
here we do not index H by j. Each pixel i has also a corresponding landslide label ; from L{1: Landslide,
0: Non-landslide}.

STEP 2: Prioritising landslide-conditioning criteria based on Shannon entropy.

We estimated the frequency of pixels i within each criterion class h in H occurring within each
landslide class / in L, represented as pfij:

P = 3 [xij — 7 forVIinL, hinH, and jin | (€))
iel
where [ ... ] are Iverson brackets where [Q] (quantity) equals 1 if true, and O if false. The term

Y. [xij = h] is the number of pixels in criterion class . The p;l], must be calculated each conditioning
i€l
criterion j in J, in a similar fashion.

In this study, the Shannon entropy is the measure of uncertainty. Entropy is described
as the quantitative measure of system disorder, instability, and uncertainty [54,55]. Here, we calculate
the entropy of landslide/non-landslide occurrences within each landslide-conditioning criteria class
across all criteria j.

= 1 1 ! (2)
€hj Phj ™ Phj
leL

Afterward, to calculate the entropy for each j in J, the weighted average entropy of all 1 in H

classes (ey;) is calculated by the proportion of cells in each class:

ej = Zehjz [xij = h]/IIl 3)

heH iel
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where [I] is the set of pixels in the training dataset as explained in STEP 1. The landslide-conditioning
factors were then ranked and prioritized according to their average entropy e;. Here, the lower entropy
stands for the higher priority of landslide-conditioning factor being assessed, which is represented by
the ordered set of criteria priority J'.

STEP 3: Creating a rule-set.

We now concatenate pixel criteria values x;; as per criteria priority |* in order to form
a rule-set D. The concatenation of two or more characters is the string formed by them in a series
(i.e., the concatenation of 31, A7, and 5# is 31A75#). Equation 4 illustrates the pixel values for criteria
ranked in order of priority (i.e., the lowest entropy) concatenated for each pixel (row) i, thereby creating
a unique rule for each pixel in the training dataset.

X X12 ... X1y x| o Xz Xy Xyp d1
X1 X2 . Xaj Xy X21 X22 e X x| da

D=1 <+ 0 = - = fp = : : : =/ | ®
Xi1 X2 o Xij xijp| Xno XxXpo T Xip o Xjp d;
X1 yp ) Uy Xy oo T Xy Xy dy

Afterward, every rule within the dictionary has maintained its single landslide class [; € L,
following the concatenation and extraction of rules. Those duplicated rules where pixels have exactly
the same values for all criteria were then aggregate, leaving a parsimonious new rule-set of unique
rules D’ derived by aggregating D. The frequency of occurrence of all potential classes / in L was then
calculated for each unique rule d”in D":

Ly 1= f(hp) f(ho)

Ly | = | f(ka) f(hpo) )

LI'D’I > f(l|£>'|1) f(l|1.3'|o)

The landslide class (i.e., “0”, “1” from set L) with the highest frequency (i.e., the mode) is then
assigned to each corresponding unique rule d’.

STEP 4: Calculating and mapping the uncertainty of LSM.

Considering every unique rule d” from our rule-set D’, a Shannon entropy value was then
calculated based on the frequencies of each possible landslide/non-landslide class (Equation (5)),
for a considered pixel, using Equation (2). This can inform both the spatial distribution of uncertainty
in susceptibility mapping and provides transparent transition rules for developing better hazard
mitigation plans. The spatial distribution of uncertainty was quantified and may be mapped by
the entropy of each unique rule back to the pixels corresponding to each rule. Each pixel was then
allocated to the landslide/non-landslide class with the highest frequency for its corresponding rule.

STEP 5: Classifying susceptibility values of the test dataset.

Using a simplified rule-based algorithm and frequency analysis, we describe the process of
generating the dictionary of trusted rules, where every single rule corresponds with its most likely
class (i.e., “1” for landslide and “0” for non-landslide). The landslide occurrence class may now be
predicted for the rest of the study area (i.e., the test dataset). For this purpose, we simply followed
an identical process to generate required rule-sets for the test dataset, similar to the training dataset.
Afterward, we matched every rule from the test data with its alike rule in the dictionary of trusted
rules that are tagged with the most likely outcome (i.e., landslide/non-landslide).



Sensors 2019, 19, 2274 9 of 20

STEP 6: Handling null values

As there is always a chance to encounter new cells in the test dataset where the current
combinations of criteria states are not experienced in the training set, it is possible to encounter
‘null” values using the proposed LSM method. To resolve this issue, we sequentially removed the least
important/informative (i.e., highest entropy and lowest ranked) landslide-conditioning factor or criteria
J' from our analysis and then we re-executed steps 3-5. In this research, our proposed rule-based method
was executed ten times for eleven landslide-conditioning factors of Table 1 and therefore, there were
10 rule-sets involved in susceptibility mapping of Northwest Tasmania. This way, we generated many
rule-sets (i.e., a sub-rule set), which they contain fewer criteria classes in each run. The means that by
moving from rule-set one (primary rule-set) to rule-set 10 (the most simplified rule-set), rule-sets will
contain fewer unique rules d’ (in the corresponding D’) and respectively ‘null” records. For each pixel,
existing votes of all potential classes I in L are summed and translated as landslide/non-landslide
occurrence probabilities.

STEP 7: Susceptibility classes

Finally, to reduce the level of subjectivity in forming LSM, a set of If-Then fuzzy rules were applied
for conversion of susceptibility values to susceptibility classes through merging two probability maps that
are achieved by rules aimed to quantify “1” (i.e., landslide) and “0” (non-landslide) labels (Figure 3).

As explained above, following our proposed rule-based method, every output pixel has two
distinguished susceptibility “values” including landslide and non-landslide occurrence (resistance).
Accordingly, the location of each pixel in the above 2D scatter plot determines the susceptibility “class”
of that pixel. For instance, if the y (i.e., landslide occurrence probability) value of the scatter plot is
above 0.66 while the x (i.e., non-landslide occurrence probability) value of the scatterplot is below 0.33,
then the susceptibility score for that pixel is VH. Obviously, data breaks (currently 0.33 and 0.66) can be
modified by users; however, the current breaks are selected to preserve equal intervals on x and y axis.

3.3. Methodology Implementation

Our research methodology is implemented using the following four-phase experimental design
(see Figure 4). In phase 1, we collected the required data for simulation from different resources.
Considering the fact that landslide-conditioning factors from Table 1 are measured not only in different
units (e.g., nominal, ordinal, etc.) but also in different scales (e.g., interval, and ratio scales, etc.) [56],
there was an urgent need for data resampling and standardization. This arises from the innate need to
combine all landslide criteria into the single output in the evaluation process. Therefore, in phase 2,
we converted our dataset into raster format with the same spatial dimensions and then we re-classified
each landslide-conditioning factor to H discrete classes, as shown in Table 1. Referring to the existing
susceptibility mapping literature, there is no optimal method for choosing the most appropriate number
of classes (i.e., H) for data discretization; these are generally selected according to the preferences of
the DMs [11,57]. In phase 3, the proposed method is applied for susceptibility mapping, followed by
an integration of achieved probability maps using proposed If-Then rules based on the proposed 2D
scatter plot (Figure 3). Finally, the achieved results were mapped and the corresponding accuracy of
our LSM was assessed in phase 4.
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Figure 4. Schematic representation of the four-step methodology implementation.

4. Results

After layer standardization of landslide-conditioning factors, the LSM was implemented
and the resultant susceptibility map was produced using non-landslide occurrence probability
(i.e., resistance) (Figure 5a) and landslide probability map (Figure 5b) calculated by applying modified
DoTRules for LSM. Notably, as the output LSM only contains four classes of VH, M, L, VL, there are
no H susceptibility classes (please see Figure 5) recognized by the defined If-Then rules. In addition,
an entropy map was developed which demonstrates the uncertainty of achieved susceptibility map
at a local scale (see Figure 5c).

In terms of landslide-conditioning factors, typically, in DoTRules, the greater value of the entropy
for a spatial attribute corresponds to the smaller attribute’s importance. Thus, there will be
a lower discriminant power of that attribute in LSM process with higher entropy (see Table 2) [58].
Therefore, the distance from coastal lines and elevation criteria were considered as the two first
important landslide-conditioning factors with lowers entropy values. As a result, the objectively
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obtained variables priority for LSM using Shannon entropy looks worthwhile to provide further insight
into local landsliding mechanisms.

o awom o s an o
Landslide Probability F Entropy
—h 1 6. —gh 1

Resistance

pr—]

(a) (b) (c)

380000 4200?0 460090
L

Susceptibility Map
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= ® Landslide test points «©
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o
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- 3
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(d)

Figure 5. Achieved results of methodology implementation including (a) non-landslide occurrence

probability (resistance), (b) landslide probability, (c) entropy (i.e., uncertainty) of susceptibility mapping,
and (d) LSM.

In addition, for developing better hazard mitigation plans, susceptibility rules that are shaped
within various rule-sets can be individually explored for each pixel (Table 3) and the resultant
susceptibility values can be visualized (see Figure 5). Table 3 demonstrates the different variation of
a distinct landslide rule in the study area that is reshaped in every iterative implementation of rule-sets
for Northwest Tasmania. This is just an example of many rules that can be extracted using DoTRules,
where the priority of landslide casual criteria and their discrete state/value is identified in shaping
landsliding mechanisms is revealed for each corresponding pixel. This sort of detailed information is
highly valuable for the development of landslide hazard mitigation plans.
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Table 2. Landslide conditioning variables priority rank and the corresponding entropy values.

Rank Variable Name Entropy Score

1 Coastal lines 0.272
2 Elevation 0.378
3 Rainfall 0.437
4 Land use 0.488
5 Geology 0.540
6 NDVI 0.557
7 Road 0.579
8 Slope 0.659
9 Faults 0.659
10 Aspect 0.664
11 Mainstreams 0.671

Table 3. Accuracy metrics of implemented LSMs for Northwest Tasmania.

Rule-set ID Rule (Composed of Discrete H Values) Frequency Matching Landslides  Entropy

1 1.1 130 125 0.163
2 113 79 75 0.200
3 1.1.3.9 35 34 0.129
4 1.1.3.9_10 25 25 0
5 1.1.3.9.10_7 10 10 0
6 1.1.3.9.10_7_1 7 7 0
7 113910712 1 1 0
8 1139107129 1 1 0
9 11391071295 1 1 0
10 1.1.3.9.10_.7_1.2.952 1 1 0

4.1. Validation of the Susceptibility Map Using AUC Estimate

To develop a reliable LSM procedure, it is required to validate the resultant susceptibility maps
and determine their prediction capability. This is often assessed by using independent test data,
which were not used through early LSM process [11]. Thus, as explained in Section 3.1, the landslide
inventory database was divided into two parts, including 250 training and 391 test landslide points.
Therefore, the accuracy of the proposed LSM in the study area was evaluated by calculating the receiver
operating characteristics area under the curve (AUC) [11,59,60], where the frequency of known test
landslide occurrence in various susceptibility classes is assessed. Here, the achieved AUC value
(ranging from 0.5-1.0), is a quantitative measure of prediction accuracy, where closer values to 1
indicate that a more reliable result is achieved. On the other hand, closer values to 0.5 indicate to
the less reliable result as opposed to the former state [11,61].

In pursuance of further implementation of the ROC evaluation technique, a precise and comprehensive
test dataset was prepared using 391 landslides and 391 randomly selected non-landslide points of the study
area. Subsequently, the AUC value of 0.934 was obtained with an estimated standard error of 0.012
(see Figure 6). A further detailed summary statistics of ROC analysis is demonstrated in Table 4.
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Figure 6. The receiver operating characteristics area under the curve for the proposed LSM.

Table 4. Accuracy metrics of implemented LSMs for Northwest Tasmania.

Summary Statistics Achieved Values
Number of Cases 782

Number Correct 677 (86.5% of total)
AUC 0.934

Std. Dev. (Area) 0.012

Accuracy 86.6%

Sensitivity 92.6%

Specificity 80.6%

Pos Cases Missed 29

Neg Cases Missed 76

4.2. Validation of the LSM by Overlaying Technique

In the second validation process, the LSM result was evaluated using the test landslide locations,
accordingly, these 391 points were overlaid on the susceptibility map of proposed hybrid GIS-based
LSM (see Figure 5c). The result shows that approximately about 84.4 percent of the recorded landslides
(330 landslides) occurred in the very-high susceptibility zone, which only covers less than 11 percent
of the study area, while there are 29 recorded landslides in the low and very-low susceptibility zones.
The number of occurred landslide events in moderate susceptibility zone is 32. In terms of the produced
LSM, no pixel was assigned to the high susceptibility zone while only a few pixels were assigned
to the low susceptibility zone (see Figure 7). The number of assigned pixels to each susceptibility
class is subjected to change following the modification of If-Then rules within the 2D scatter plot.
However, the equally-spaced low, medium and high bounds of x and y axis in Figure 3 showed the most
straightforward approach.
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Figure 7. Histogram landslide susceptibility occurrence within each susceptibility class.

5. Discussion

Although to date statistical methodologies for implementation of LSMs are usually accurate,
the existing obligation for model transparency, especially at the pixel level, is often overlooked.
Nonetheless, the proper understanding of the properties of conditioning factors and scientific
methodologies is also crucial to our understanding of mechanisms of landslides at local (i.e., pixel)
level [15,16]. For instance, what are the priorities and class values of each conditioning factors for
a considered pixel (See Tables 2 and 3). Another disadvantage that limits the majority of LSM is
the subjective re-classification of susceptibility scores into susceptibility classes (i.e., high, medium,
and low susceptibility). This increases the subjectivity of LSM where elevated levels of subjectivity can
affect the quality of hazard mitigation plans. Therefore, in this study, a rule-based GIS-based susceptibility
mapping approach was proposed with an especial focus on model transparency at local scale while
reducing the existing subjectivity of final re-classification of the developed LSM. While the transparency
of the model is aimed at increasing the awareness of hazards, risk, and vulnerabilities, the proposed
re-classification scheme reduce the level of subjectivity that exists in re-classification of susceptibility
scores into susceptibility classes.

5.1. Model Transparency and Spatial Information Extraction

Considering the high frequency of slope failure being in place in several areas of
Northwest Tasmania, there was a demand to conduct an accurate landslide susceptibility map.
In terms of landslides, the expected quality of mitigation plans depends not only on the model accuracy
but also on model transparency and the level of information gain at a local scale [62]. DoTRules is
a rule-based algorithm where rules reveal the discrete state/value of prioritized landslide-conditioning
factors at a local scale (i.e., pixel-level). Although every rule can be matched to more than one pixel,
as explained before, every pixel is corresponding to one and only one rule from a certain rule-set
(i.e., 10 rule-sets in the current study). Each integer value composing a rule stands for criterion class
in H of a desire landslide-conditioning factor. The order of landslide-conditioning factors in each rule
within every developed rule-set can be seen in Table 2, while Table 3 demonstrate examples of the same
landslide rule within different rule-sets. Thus, regardless of data scale and accuracy, the present
study aimed to explore local mechanisms of landslide susceptibility in Northwest Tasmania. This is
an integrated strategic LSM framework with an emphasis on structuring the decision-making process
problem. Within this approach, Shannon entropy was employed to determine the criteria prioritization
and quantify the reliability of susceptibility rules that are applied to a pixel through the spatial domain.

In this respect, the lower the landslide entropy of a criterion, the higher the weight is. In other words,
the lower landslide entropy within certain criteria (i.e., starting from the distance to coastal lines to aspect)
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indicates the presence of predictive spatial frequency and vice versa. According to the obtained results,
“distance from coastal lines” is the most important spatial factor in shaping landslide mechanisms
throughout Northwest Tasmania (Table 2). On the other hand, “distance from mainstreams” is the least
important spatial criteria considering the obtained entropy value. This only applies to the current
LSM using the existing dataset. Usually, changes in the quality of landslide-conditioning factors
(i.e., data resolution) may affect the computed priority order. For instance, different scales of geology
maps do not belong to the same priority importance value, where a higher resolution one is usually
more helpful. Similarly, the priority order of NDVI data may also be subject to change if an ideal
time-series is applied. In addition, as well as global prioritization of landslide-conditioning factors using
Shannon entropy, various rules that are developed within multiple rule-sets define the importance
of each criterion class h in H. For example, a majority of landslide events have coincided within
the first class of “distance from coastal line” criterion class. This further proves that the proposed
susceptibility mapping technique is a promising tool for integrating multiple raster-based criteria
for LSM, while there is not sufficient knowledge about the criteria weights with respect to landslide
mechanism of the study region. The calculated entropy map as a measure of uncertainty also clarifies
the reliability of susceptibility rules that are applied to each pixel. Therefore, the location of unreliable
predictions that is defined with a high level of uncertainty (i.e., entropy) can be identified. This is of
prominent importance in developing reliable hazard mitigation plans, where further insight into LSM
procedure is provided.

5.2. Reducing Subjectivity of Final LSM

Regardless of the susceptibility mapping method, the re-classification of susceptibility scores into
a defined susceptibility class is repeatedly applied in LSM [12,63]. This may be done by dividing the existing
minimum and maximum cell susceptibility values into four or five susceptibility classes. Various approaches
such as quantile [24], equal interval [13], natural breaks [11,25] etc. may be applied to delineate several
susceptibility zones namely, very-high, high, moderate, low, and very-low. Although the characteristic
of adopted re-classification strategy directly affects the quality of LSM, the explanation of the basis or
the rationale behind the applied approach is often overlooked. Noticeably, the level of subjectivity during
this procedure may harm the quality of LSM and subsequent hazard mitigation plans where the definition
of very high, high, moderate, low, and very low susceptibility classes directly depends on the minimum
and maximum susceptibility values and the selected re-classification approach.

Here, in this research, we proposed a set of If-Then rules based on a 2D scatter plot to
interactively classify the outcome of landslide and non-landslide occurrence probability (resistance)
using the proposed LSM method. As opposed to the existing approaches for re-classifying susceptibility
values, in the proposed scheme, availability of the minimum number of pixels for every susceptibility
class is not guaranteed. For instance, in terms of the current LSM, the “moderate” susceptibility
class is 18,443 hectares, which could be even less if a smaller number of pixels meet the requirement
according to Figure 3. This indicates the fact that the objective definition of different susceptibility
classes is data-driven, and not susceptible to intrinsic errors of experts” knowledge.

5.3. Decision Aiding and Planning

Looking into the contribution to decision aiding, this study presents an integrated strategic
susceptibility mapping procedure using an objective method which determines criteria priorities by
solving mathematical models. This is executed without any consideration of the decision maker’s
preferences, as it is a convention in subjective methods, such as the analytical hierarchy process
(AHP) method [12], ordered weighted average (OWA) method [64], Delphi method [65] etc. In other
words, this article introduces a transparent and yet objective approach that applies a rule-based
approach, which could be a useful geospatial tool for integrating multiple features/attributes that
affect the LSM process. This can largely compensate for the absence of expert DMs or the lack of local
knowledge about the study area when it comes to producing quality LSM. In addition, a worthwhile
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set of information can be achieved through the implementation of DoTRules for LSM. For instance,
in terms of Northwest Tasmania LSM, the strength of using “slope” as an indicator of landslide
susceptibility is questioned. No doubt that slope angle plays a crucial rule in forming slope failure [39];
however, not every steep slope is susceptible to landslides. The extracted rules out of methodology
implementation look beneficial to shed lights on predisposing conditions of slope failure. In case
the correspondence of slope and occurred landslide events is not easy to measure, to communicate,
then that it is a crude indicator and does not accommodate the significant local conditioning factors
that will contribute to landslide susceptibility (e.g., distance to coastal lines, elevation). The use of
low-quality slope may over-predict areas that are not truly susceptible to landslides. The same applies
to other landslide-conditioning factors and often ignored prior to the implementation of LSM through
a subjective approach.

Geology is also a substantial conditioning-factor for landslide susceptibility [66,67]. The underlying
geology typically controls what surficial material may be available and the degree to which the substrate
is susceptible to movement. However, its use as a broad indicator of landslide susceptibility throughout
the Tasmanian boundaries may be significantly diluted by the current scale and accuracy. In addition,
the intent of much of the available geological mapping is not focused to be utilized in LSM. In simple
words, the existing geology maps of Tasmania were mainly produced for mineral exploration purposes
(with an especial focus on subsurface geology). Although these maps are informative, yet, they are
not always the best for sub-regional modeling of slope failure. In fact, the surface geology is often
of much greater importance to landslide susceptibility; nonetheless, the existing geology map was
assessed among top five conditioning factors and yet beneficial for modeling landslide susceptibility of
the study area. In this study, the implementation of DoTRules for LSM considerably revealed the actual
measure of importance for every landslide-conditioning factor through a data-driven approach.

5.4. Limitation of the Proposed Methodology in LSM

While all sort of methods based on information theory, such as our proposed algorithm, have shown
considerable merits, they also have their own constraints. Although our methodology, as an objective
scheme, is not dependent on experts’ knowledge and decision-making experience, it still relies
on the quantification of defined landslide-conditioning factors using step-by-step mathematical
computation. This is dependent on the existence of a concise and representative database. In terms of
the current study, the availability of a comprehensive landslide inventory was quite advantageous in
obtaining the desired outcome. However, the inefficiency of a small sample size for training purposes
will be a major hindrance and particularly striking. As this problem is of great importance, therefore,
exploring the ways to reduce the mentioned problem may be a fertile ground to be addressed in
future studies. For instance, applying landslide polygons instead of landslide points may provide
a considerable increase in the number of training pixels that may improve the quality of final LSM.
We believe that more interests from researchers to apply the proposed methodology on a larger sample
size of data is vital to unwrap the potential capabilities of DoTRules aimed to incorporate generalizable
results in LSM.

6. Conclusions

In this research, we strived to present details of a novel rule-based approach for landslide
susceptibility mapping (LSM) coupled with a case study of Northwest Tasmania. As long as data
preparation requirements are fulfilled, we expect that our LSM methodology is also compatible with
other landslide inventories that are customized for different study areas depending on the existing
driving forces of slope failure. The proposed rule-based methodology showed promising results for
susceptibility mapping as it tackles two major limitations. Firstly, it highlights the conditioning factors
of landslide mechanism at a local scale (i.e., at pixel-level) that is often neglected in many landslide
susceptibility studies. Secondly, intrinsic bias and probable errors of experts’ preferences corresponding
to the subjective re-classification of LSM is minimized. Noticeably, apart from the highlighted
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subjectivity issue of identifying the relative importance of landslide conditioning factors, that is
well regarded in the LSM literature, the subjective re-classification of susceptibility values is another
disadvantage. The latter issue limits the application of LSM, and aside from heuristic approaches,
also applies “statistical methods” as a downgrading factor. This is usually because of the fact that there
is a risk that experts/modelers expectations affect the final status of LSM, which are far from reality.
The projected LSM approach involves a thoughtful elaborative of landslide-conditioning factors
while seeking expert opinion (i.e., for weighting or re-classification procedures) is not necessary. This is
performed by constructing a mathematical approach with a high level of objectivity and promising
accuracy. Considering the fact that the proposed rule-based method has the advantage of a more
objective implementation, it can be used for the implementation of landslide susceptibility maps within
different geographic locations where there is not enough knowledge of existing landslide mechanisms.
Even if there were enough knowledge of the study area, that is always possible to face conflicting
experts’ ideas or notions that are far from reality. This is a decent opportunity to contribute to decision
aiding while doing LSM missions. Finally, as the application of susceptibility mapping is not only
limited to landslide hazard mitigation, applying similar framework can be taken into account for
the implementation of other types of susceptibility maps such as flood susceptibility maps and more.
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