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Abstract: Visual landmarks are important navigational aids for research into and design of
applications for last mile pedestrian navigation, e.g., business card route of pedestrian navigation.
The business card route is a route between a fixed origin (e.g., campus entrance) to a fixed destination
(e.g., office). The changing characteristics and combinations of various sensors’ data in smartphones or
navigation devices can be viewed as invisible salient landmarks for business card route of pedestrian
navigation. However, the advantages of these invisible landmarks have not been fully utilized, despite
the prevalence of GPS and digital maps. This paper presents an improvement to the Dempster–Shafer
theory of evidence to find invisible landmarks along predesigned pedestrian routes, which can
guide pedestrians by locating them without using digital maps. This approach is suitable for use
as a “business card” route for newcomers to find their last mile destinations smoothly by following
precollected sensor data along a target route. Experiments in real pedestrian navigation environments
show that our proposed approach can sense the location of pedestrians automatically, both indoors
and outdoors, and has smaller positioning errors than purely GPS and Wi-Fi positioning approaches
in the study area. Consequently, the proposed methodology is appropriate to guide pedestrians to
unfamiliar destinations, such as a room in a building or an exit from a park, with little dependency
on geographical information.

Keywords: landmark; pedestrian route; sensor signal; route guidance; smartphone navigation;
Dempster-Shafer theory of evidence

1. Introduction

Computer-assisted pedestrian navigation is an area that requires ongoing research because
of people’s varying abilities [1], the complexity of various environments, the localization problem
in indoor and outdoor environments [2–6], and data modeling [7,8] for navigation applications.
Current researchers and industrial practitioners usually focus on the theory and technology of
locating and guiding pedestrians and often provide shortest-path services. Plentiful localization
techniques contribute the coordinates (x, y, z) of navigation devices that are commonly used to
guide pedestrians location by location through the use of digital navigation maps [9], street view
or scene [10], or visual landmarks [11,12]. Current localization techniques and their corresponding
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pedestrian navigation applications are fully constrained by usability of signals of opportunity [2] in the
environment, for example, absence of Wi-Fi access points (APs), shielding of Global Navigation Satellite
Systems (GNSS), and visibility of landmarks. Typically, however, only a few sensors in smartphones
or navigation devices are used to contribute to localization or navigation, such as Wi-Fi-based
positioning [13,14] and its Kalman filter-based error smoothing [15,16], Bluetooth inquires [17], GPS,
accelerometers [18], and drift compensation algorithm with invisible landmarks [19]. Other signals
from built-in sensors in smartphones or navigation devices are not yet fully utilized in current
navigation applications, for instance the gyroscope, gravity, orientation, light, proximity and so
on. Each sensor has characteristic changes to its signals during the process of pedestrian navigation
as a result of the influence of terrain and pedestrian behavior [1,18,20]. The means of determining
characteristic changes in the signals from built-in sensors in smartphones or navigation devices,
and using them as “invisible salient landmarks” to guide pedestrians has not been addressed in the
literature. These invisible landmarks could be very helpful to understand the real-time locations and
movements of pedestrians for smart navigation applications.

This paper introduces an invisible landmark-based approach to locate pedestrians in indoor
and outdoor environments, that is, an improved Dempster-Shafer (D-S) theory of evidence, which is
proposed to locate pedestrian by considering co-existing phenomena in the form of sensors’ signal
change characteristics. All signals from the sensors are sequenced in a linear reference manner along a
target “business card” route. The target route is requested by the proposer from a specific location
(i.e., entrance of university campus) to a particular destination of him, such as the office. Then,
the changing characteristics of various sensors and their combinations are analyzed to build up the
frame of discernment in the theory of evidence. In this paper, we propose:

(1) An improved D-S theory of evidence is introduced by integrating the co-existing phenomena of
sensors’ signal change characteristics. This approach is distinguished from navigation methods
that use fingerprint-based localization and navigation applications by its focus on the nature of
the combined rather than individual signal changes.

(2) The similarity of real-time data of co-existing sensors to the predefined evidence framework is
defined to refine the basic belief assignment in the theory of evidence.

(3) A match error-based sensor weight assignment approach is proposed to handle conflicts of
evidence processing.

Thus, the invisible landmark-based pedestrian locating approach based on the D-S theory of
evidence is a useful guide to allow newcomers to follow predesigned business card routes.

The remainder of this paper is structured as follows: Section 2 outlines previous research,
while Section 3 describes the sensors in smartphones and their signals, introduces a framework
of the proposed approach, and then describes an improved approach of D-S theory for pedestrian
locating. Section 4 describes the experiments and results and Section 5 states some conclusions and the
direction of future works.

2. Related Work

2.1. Landmark-Based Navigation

Landmark-based navigation tasks are broadly discussed in the disciplines of cognition, neuroscience,
geographical information science (GIS), computing, and communication.

There is rich literature in the disciplines of cognition and neuroscience on the spatial cognitive
aspects of landmark-based instruction. Researchers have studied the perceptual, cognitive, and contextual
aspects of landmarks in wayfinding; for example, landmark-based instructions enable pedestrians
to comprehend efficiently the visual prominence, semantic salience, and structural significance of
landmarks [7,21–24]. These studies focus on spatial behavioral factors of people, for instance, spatial
abilities, spatial cognition, and spatial decision-making [25]. Some other research works have been
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published that investigated the landmark-based spatial cognition of different areas of the brain [26],
neural activity [27,28], environmental psychology [29], and cognitive map and decision-making
recognition processes [30].

In the discipline of GIS, many studies focus on the collection of landmark information, the use
of landmarks in route instructions, and the modeling of landmarks in GIS: for example, discovering
landmark preferences from photo postings [31], extracting landmarks from laser scanning [32],
modeling landmarks using scene graphs [33], including landmarks in routing Instructions [11],
landmark location in localization system for urban areas [34], developing landmark-based pedestrian
navigation models [7] and three-dimensional navigable data models [35], and estimating cartographic
communication performance [36]. Furthermore, some GIS-based pedestrian navigation services or
systems have been developed for personal guidance for indoor and outdoor environments [37–40].

In the disciplines of computing and communication, many studies have been conducted on
scene landmark recognition, understanding, and classifications for applications, including robot
navigation. For example, identifying landmarks in urban scenes [41], vision-based indoor scene
analysis for detecting natural landmarks [42], assessing the recognition time in real scenes [43],
projecting dynamic images for scene understanding [44], classifying landmarks in large-scale image
collection [45], visualizing landmarks to support spatial orientation [46], and even developing an
image-based indoor navigation system [47].

2.2. Sensor-Based Pedestrian Localization

Much research work has focused on the usage of inertial sensors in smartphones or navigation
devices for pedestrian localization, for example: GPS, infrared [48], Ultra Wide Band (UWB) or
ultrasound [49,50], laser [51], Wireless Local Area Net (WLAN), Wi-Fi [52] or Li-Fi [53], radio-frequency
identification (RFID) [54], Bluetooth [55], wireless sensor network [56], light-emitting diode
(LED) [57], Global System for Mobile Communications (GSM) [58], and other inertial sensor-based
localization [59–61]. The general positioning approaches are based on the theory of fingerprinting
or triangulation, for instance, to overcome the effects of multipathing and shadowing [62] in the
positioning environment. A recent publication [4] proposed a turbo received signal strength (RSS)
model-based indoor algorithm for crowded scenarios. The main perspective of these sensor-based
pedestrian localization research works was feature analysis of sensor signals related to digital
geographical maps, fingerprinting [4], or activities [18]. In these studies, several sensors or information
fusion-based approaches of using several signals from sensors were used to contribute to pedestrian
localization. A recent, robust crowdsourcing-based indoor localization system that makes full use of
signals collected by smartphones from multiple sensors for pedestrian localization was presented [3].
It adopts a novel and promising perspective to solve the pedestrian localization problem. Our study
was inspired by this approach and tries to make full use of signal features that are highly correlated
with predefined pedestrian navigation routes to ensure accurate route guidance in both indoor and
outdoor environments.

3. Materials and Methods

3.1. Sensors Signals in Smartphones

Nowadays, the functionality of smartphones far exceeds simple communication. Current
expectations are such that phones have applications for entertainment, practice, and learning. Thus,
smartphones integrate more and more sensors (e.g., GPS, Wi-Fi, light meter, magnetometer, gyroscope,
and accelerometer) to meet people’s expectation for technological assistance in day-to-day existence.

The sensors in smart phones can be classified as three categories: motion, environmental,
and position sensors. A gyroscope, as a motion sensor, can effectively detect data changes caused
by pedestrian movement. The light sensor is an environmental sensor, which can measure light
intensity in the pedestrian’s environment. GPS, Wi-Fi and magnetometer sensors are position sensors
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although it is influenced by the Sun. GPS sensors can determine a person’s position both indoors
and outdoors. Wi-Fi can be used to triangulate a pedestrian’s location and provide internet services
for them. This paper will use the gyroscope, light sensor, GPS, Wi-Fi, and magnetometer sensors to
match the locations of pedestrians with predetermined routes that connect origins and destinations,
and recode all the signals of these sensors while traveling along the route.

3.2. Framework of the Proposed Approach

This paper proposes an invisible landmark-based navigation guidance approach, based on the
D-S theory of evidence, which aims to guide pedestrians to their destination smoothly by following
business card route. The business card route is represented by a sequence of signals detected by the
smartphone’s sensors between the origin and the destination of this route. The proposed approach
compares the real-time signals in smartphones with the precollected signals of the business card route
so as to sense the current location of pedestrian.

Figure 1 illustrates the framework of the proposed approach. This approach requires the initial
collection of all signals of smartphone’s sensors along the whole business card route. These precollected
signals are used to build up the frame of discernment in the theory of evidence by applying two
important steps. The first step is to detect signal change characteristics, including significant
changes and unchanged patterns. The second step is to divide the routes into route segments
according to the changes of the signals. The combination of signal changes forms the frame of
discernment, which provides fundamental evidence to the process of signal feature matching while
pedestrians navigate, dependent only on their smartphones. When a pedestrian follows the predefined
business card route, they need to check their locations with the help of a navigation app on their
smartphones. This app will compare the real-time signal of the smartphones with the frame of
discernment by evidence checking according to the combination rule of evidence for each route
segment. The determination is closely dependent on the basic (belief) probability assignment (BPA) [63]
and the proposed weighted combination of evidence in the theory of evidence.
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3.3. Pedestrian Location Matching Algorithm Based on an Improved Dempster-Shafer Theory of Evidence

This section introduces the basic concept and approach of the D-S theory of evidence, and then
proposes improvements for determining the location of pedestrians.

3.3.1. The D-S Theory of Evidence

The D-S theory of evidence, also known as the theory of belief functions, is an efficient Bayesian
framework for approximate reasoning and decision-making in uncertain environments, which was
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originally proposed by Dempster [63] and improved by Shafer [64]. There are three key components
of the theory: defining the frame of discernment, obtaining the basic belief for one question from
subjective probabilities for a related question [64], and Dempster’s rule for combining such degrees of
belief [63].

Let θ = {θ1, θ2 . . . , θn} denote the set of all possible situations for a given event, which is called
the frame of discernment [64]. Each element of this set is independent of the others, i.e., θi ∩ θj =

φ, ∀i, j = {1, . . . , n}. The frame of discernment in this paper is derived from smartphone sensor data.
The D-S theory of evidence assigns a belief mass to each element as a basic probability assignment
function m : 2θ → [0, 1] , which satisfies the following conditions: the mass of the empty set m(φ) = 0
and ∑

A∈θ
m(A) = 1. The function m is a BPA on θ. Then, if A is a subset of θ, m(A) is a function

which can be interpreted as the degree of belief that that the set A belongs to the set θ, which satisfies
0 ≤ m(A) ≤ 1, ∀A ∈ θ&A 6= φ. In practice, Shafer’s framework can use an interval [Bel(A), Pl(A)] to
represent the belief about propositions. The interval is bounded by two values of the belief function
(Bel) and the plausibility function (Pl) [64], where Bel(A) measures the total belief that the object
is in A, and Pl(A) measures the total belief that can move into A. The two functions are defined
as follows:

Bel(A) = ∑
B∈A

m(B) (1)

and
Pl(A) = ∑

B∩A=φ

m(B) (2)

Therefore, the interval represents the level of uncertainty based on the evidence in the framework.
For example, the interval [0, 0] implies that it is completely unsupported; whereas, the interval [1, 1]
indicates full support.

In the case of multiple sources of evidence, the BPAs could be combined to yield a new BPA
function M, which is defined as follows according to Dempster’s combination rule:

M(A) =


1
K ∑

A1∩A2∩···∩An=A
m1(A1) ·m2(A2) · · ·mn(An) A 6= φ

0 A = φ
(3)

K = ∑
A1∩···∩An 6=φ

m1(A1) ·m2(A2) · · ·mn(An) = 1− ∑
A1∩···∩An=φ

m1(A1) ·m2(A2) · · ·mn(An)

where K is a normalization constant, mi is the BPA of evidence i, and Ai is the subset of evidence i.
Two main factors can lead to conflicts of evidence in the theory of evidence, namely: sensor

unreliability, caused by equipment failure or limitations, and incomplete knowledge of the world [65].
As long as discernment distributions are not completely consistent, conflicts of evidence will occur
during evidence fusion and have a great influence on the accuracy of the result of evidence combination.
Two main methods are used to solve this evidence conflict. One is improving the combination rule,
which starts from the original flaws of the evidence synthesis. The most representative method
proposed by Yager [66] assumes that conflicting evidence also carries some useful information that can
be assigned to unknown items and effectively used. The other is the modification of the sources of
evidence in order to avoid a conflict of evidence [67].

3.3.2. Improved Approaches of D-S Theory for Pedestrian Location

This paper improves the D-S theory by combining the accompanying rules of evidence and
their processing of conflicts of evidence. In the implementation of D-S, this paper generates evidence
frameworks for individual route segments. Each segment has some associated evidence from sensors.
The following subsection will firstly introduce the path division, and then introduce the consequential
improvement in D-S theory.
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3.3.2.1. The Evidence Framework Based on Sensor Changes in Target Routes

Before establishing the frame of discernment, the user conducts several complete walks along
the target business card route, and collects the sensor data of the smartphone on this route using
any sensor data acquisition application. For each sensor, this study divides the route into segments
according to the changes in its data. Consequently, this study could obtain the route segment set
for each kind of sensor, namely, LMagx, LMagy, LGyro, LLight, LWi−Fi, and LLon&Lat, which are used to
establish the evidence framework based on divided route segments. Each route segment must have at
least one sensor change feature. The combination of change features within a route segment build up
the evidence framework for each route segment.

The first kind of sensor is a magnetometer, which is an instrument that measures the direction
and strength of a magnetic field at a particular location. For a fixed point, the geomagnetic
field can be decomposed into two horizontal components and a component that is perpendicular
to the ground (x, y, z). The vector sum of the two horizontal components points to magnetic
north, so the geomagnetism in the current environment can be identified only using the
magnetometer x- and y-component data. In some locations, magnetometer readings are stable,
but the magnetic values change when the environment is changing. Specifically, it may exhibit
a sudden increase or decrease in value, and the variation in change quantity can reach 20 µT
or more. The character of both the changes and lack thereof in the environment can be used
as evidence of discernment. For example, Figure 2 illustrates two turns and the associated
significant changes in magnetometer data. Consequently, this route can be divided into five
segments based on the change features exhibited by the magnetometer, which indicate turns along
the route. Based on the above division, this study could generate route segment sets LMagx
and LMagy according to the x- and y-component data of magnetometer individually. The route
segment set LMagx =

{
L1magx, L2magx, L3magx, L4magx, L5magx

}
in Figure 2a, and LMagy ={

L1magy, L2magy, L3magy, L4magy, L5magy
}

in Figure 2b.
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The second kind of sensor is the gyroscope. This sensor is able to detect the angular velocity of a
moving object, which allows the recognition of turning. In the process of turning, the absolute value
of angular velocity obtained by the gyroscope will increase significantly. However, in the situation
of smooth walking, the z-axis value of the gyroscope is nearly zero. The positions of left and right
turns correspond to the peaks and troughs of the gyroscope data, respectively, as shown in Figure 3.
Any simple moving window algorithm can detect the peaks and troughs in the data. The found
peaks and troughs can be used to divide the target route into segments for constructing the evidence
framework, such as the route segment set Lgyro =

{
L1gyro, L2gyro, L3gyro, L4gyro, L5gyro

}
in Figure 3.
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The third kind of sensor is the light meter. Figure 4 illustrates an example of light intensity
data within variable and stable environments, which can be distinguished by the first differential
of light intensities, and indicates the divided segments by light intensity. Five thresholds
{{−250, 250}, {−200, 200}, {−150, 150}, {−100, 100}, {−50, 50}} were trialed as the first difference
in light intensities. The experiment showed that a threshold of {−100, 100} resulted in segmentation
that was close to reality. Each segment had a unique light characteristic, either of fluctuation or stability.
The route segment set Llight =

{
L1light, L2light, L3light, L4light

}
in Figure 4.
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The other sensors are for Wi-Fi and GPS and the processes associated with them are very similar.
The Wi-Fi signal distribution has a certain range, and the mobile phone can accept that signal anywhere
within that range. Therefore, Wi-Fi Media Access Control (MAC) address along the target route could
be used to divide it into segments. Each segment has a limited Wi-Fi MAC address set and the
neighbor segments will have a different Wi-Fi MAC address. For example, the route segment set
LWi−Fi = {L1Wi−Fi, L2Wi−Fi, L3Wi−Fi, L4Wi−Fi, L5Wi−Fi, L6Wi−Fi, L7Wi−Fi} in Figure 5. Similarly,
the route can be divided into segments according to the change of the latitude and longitude of GPS
data along the segments. The route segment set Llon&lat = {L1lon&lat, L2lon&lat, L3lon&lat, L4lon&lat} in
Figure 6.
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This study divides the target route into many tiny segments by intersecting the route segment
set of all sensors, which is viewed as the frame of discernment, θ. A schematic diagram of the
derived framework is shown in Figure 7. Each tiny route segment has a characteristic combination of
sensors, namely, θ =

{
LMagx ∪ LMagy ∪ LWi−Fi ∪ LLight ∪ LGyro ∪ LLon&Lat

}
. In this implementation, θ

is represented as:

θi = { Magx =
(

Magxs, Magxave|s=1, Magxmax|s=2, Magxmin|s=2, Magxslope|s=2

)
,

Magy =
(

Magys, Magyave|s=1, Magymax|s=2, Magymin|s=2, Magyslope|s=2

)
,

Gyro = (Gyros),

Wi− Fi =
(
Wi− FiMACNum, Wi− FiMACname1, . . . , Wi− FiMACnameNum , Wi− FiRSSI1, Wi− FiRSSInum

)
,

Light = (Lightmax, Lightmin, Lightave),

Lon&Lat = (Lonstart, Latstart, Lonend, Latend)}

(4)

θ = {θ1, θ2, . . . , θi, . . . , θn} (5)

where i is the serial number of a route segments in the target route, and θi is the discernment within
route segment i. The status of magnetometer data along the x- and y-axis Magxs = {1, 2} and
Magys = {1, 2} is such that 1 indicates that the data are stable and 2 indicates an obvious change
in the data. Magxave|s=1 is the average of the x-component of the magnetometer data when the
status is 1. Magxmax|s=2, Magxmin|s=2 and Magxslope|s=2 are the maximum, minimum, and slope of
magnetometer data in the x-orientation. Magyave|s=1, Magymax|s=2, Magymin|s=2, Magyslope|s=2 have
similar meanings in the y-orientation. Gyros is the status of walking reflected by the gyroscope
data, Gyros = {−1, 0, 1}, which indicates turning left, walking straight ahead, and turning right,
respectively. Wi− FiMACNum and Wi− FiRSSINum indicate the number of Wi-Fi MAC addresses
and Wi-Fi RSSI respectively along the route segment and Wi− FiMACname1, . . . , Wi− FiMACnameNum

and Wi− FiRSSI1, . . . , Wi− FiRSSINum are the list of them. Lightmax, Lightmin, Lightave represent the
maximum, minimum, and average light values in this route segment. Lonstart, Latstart, Lonend, Latend
are the longitude and latitude of the start and end points of the route segment.

The determination of the above mentioned evidence framework is based on single data source.
To a certain extent, the framework would bring about incorrect segment results due to external
interference. For example, when encountering a temporarily parked vehicle in the process of
targeting road, the record of magnetometer would fluctuate and generate redundant segment points.
In addition, when data collector changes direction in order to avoid pedestrian, the record of gyroscope
reaches peak or valley, which also affects the correctness of the framework. In order to eliminate
above mentioned interferences, this paper optimizes the framework by using multiple repeated
data sources. In this paper, each sensor data were collected nrp times. They were divided as
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Lall
Magx =

{
L1

Magx, L2
Magx, · · · , L

nrp
Magx

}
, · · · Lall

Lon&Lat =
{

L1
Lon&Lat, L2

Lon&Lat, · · · , L
nrp
Lon&Lat

}
according to

the above method. Then, this paper found the common segmentations of framework was the optimized
framework of sensors. Figure 8 illustrates all frameworks of gyroscope. Lr

Gyro is the framework

segmentation result of gyroscope in the collection of the rth times, and s is the distance between
two adjacent median points of a given segment route. Since the given GPS accuracy is about 15 m,
if the distance between two points is less than 15 m, the two points are considered as a same position.
Hence, this paper uses 15 m as the threshold to remove segment points whose median points are far
from other median points. Moreover, the characteristic of the segmented section between each two
deleted segment points is assigned as same as their previous section. For example, the characteristic of
the deleted section {c2, d2} is a straight walk, which is identical with the one of the sections {b2, c2}.
After this common segmentation finding, this paper could get a suitable framework for possible
pedestrian navigation situations.
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3.3.2.2. Basic Belief Assignment

Co-existing relationships of evidence are common phenomena for smartphone sensors used
to locate pedestrians as a result of similarities in activity behaviors and constraints in a navigation
environment. Usually, the best evidence is when they have co-existing relationships that can reflect
the uniqueness of the actual scene in space and time sequences. Therefore, the basic selection rule of
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co-existing relationships between sensors is that the sensor data feature can be readily detected by
simple filtering algorithms, such as moving windows, and the combination of sensors in each route
segment or the sensor features presents an obvious difference between the neighboring route segments.
For smartphones’ sensors in pedestrian navigation environments, the data from the magnetometer,
Wi-Fi, and GPS are independent environmental information, and these data obtained at each route
segment could become evidence of a unique environment. The gyroscope mainly detects the changes
(or turns) in the journey through the environment so that the gyroscope can be added to the evidence
framework when the real-time gyroscope data exhibits changing features. For example, Figure 9 shows
an example of the co-existing relationship of sensor signals in a target route. Areas #1 and #2 are two
subset locations of the framework. The sensor data characteristics of the two subsets are listed in
Table 1. In area #1, the x- and y-components of the magnetometer data show a sudden increases and
decreases, respectively; the gyroscope shows features that are consistent with a right turn, and the
light data are in keeping with features observed outdoors. Therefore, there is a co-existing relationship
between the signals of the x- and y-components of the magnetometer, the gyroscope z-component,
and the light-level. Therefore, the values of the four sensors in area #1 can be viewed as an evidence
combination for defining the basic belief probability distribution. Similarly, for area #2, the gyroscope
does not have a co-existing relationship of evidence with other sensors because the gyroscope exhibits
stable behavior. Therefore, the combination of evidence and the probability distribution only include
data of sensors such as the magnetometer x- and y-components, light, and Wi-Fi.
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Table 1. An example of the co-existing relationships of sensors in a subset of framework.

Mag x Mag y Gyr z Light Wi-Fi

#1
Increase Decrease Right turn Stabilization 47√ √ √ √ √

#2
Stable Stable Stable Fluctuation 20√ √ √ √

After selecting sensors as a co-existing sensor combination for each route segment, our proposed
approach calculates the similarity of the real-time data of co-existing sensors with a predefined evidence
framework, according to the following Equations (6)–(15):
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SimMag(Magx, Magx′) =



f
(

Magxave|s=1, Magx′ave|s=1

)
Magxs = Magxs

′ = 1
f
(

MagxMax|s=1, Magx′Max|s=1

)
+

f
(

MagxMin|s=1, Magx′Min|s=1

)
+

f
(

Magxslope|s=1, Magx′slope|s=1

)
/3 Magxs = Magxs

′ = 2

0 Magxs 6= Magxs
′

(6)

f (x, x′) = 1−
∣∣x− x′

∣∣/x (7)

SimGyro(Gyros, Gyro′s) =

{
1 Gyros = Gyro′s
0 Gyros 6= Gyro′s

(8)

SimWi− Fi
(
Wi− Fis, Wi− Fi′s

)
= SimName

(
Wi− Fis, Wi− Fi′s

)
× SimRSSI(WF ∩WF′) (9)

where

SimName
(
Wi− Fis, Wi− Fi′s

)
=

1
2

f (Wi− FiMACnum, Wi− FiMAC′num) +
|WF ∩WF′|
2|WF ∪WF′| (10)

SimRSSI(WF ∩WF′) =
wRSSI

n ∑
i∈WF∩WF′

(RSSIi − RSSIi′)/|RSSIi| (11)

WF = {Wi− FiMACname1, · · · , Wi− FiMACnameNum},
WF′ =

{
Wi− FiMAC′name1, · · · , Wi− FiMAC′name1

}
.

(12)

SimLight(Light, Light′) =

 f
(

LightMin, Light′Min
)
+

f
(

LightMax, Light′Max
)
+

f
(

LightAve, Light′Ave
)

/3 (13)

Here, wRSSI is the weight relatively to weight of Wi-Fi Mac address while matching the sensors
with predefined evidence framework. RSSIi and RSSIi′ are RSSI measurement values of Wi-Fi access
point i in evidence framework and it in the real-time data set.

The light sensor is more complex than other sensors in that the intensity of light varies greatly
across time and climate. The most accurate match result can be obtained when the light condition
of Light is similar with the Light′. Hence, this paper introduces a light similarity method which
considers the continuity of data. In this method, the intensities of light under different light
conditions are processed according to Section 3.3.2.1. The light segment result can be obtained as
Llight =

{{
L11

light, · · · , Ln1
1
light

}
, · · · ,

{
L1c

light, · · · , Lnc
c
light

}}
, c denotes the amount of light condition,

such as day, night, sunny day, cloudy day, etc. Lici
light is the ith section when light_condition = ci.

Then, we calculate the SimLight of real-time data with Llight according to Equation (13) in m
times. The number of successful match results in different light conditions is represented as
Numi, i ∈ [1, c] ∩ 0 < Numi < m. If light_condition = ci and Numci = Max(Num), we regard
the ci as the most similar light condition of real-time data. Finally, the segment route whose light
condition is ci is selected.

Table 2 is an example of selection of light segment. LightΓ represents the Γth real-time light data.
Llight − LightΓ represents the match result of segment data under different light conditions.

Llight − LightΓ =

{
0 success
1 f ailure

(14)

SimLon&Lat(Lon&Lat, Lon′&Lat′) = f (Lonstart − Lonend, Lon′start − Lonend)+

f (Latstart − Latend, Lat′start − Latend)
(15)



Sensors 2018, 18, 3164 13 of 26

where SimMag, SimGyro, SimWi − Fi, SimLight and SimLon&Lat represent the similarity of the
magnetometer, gyroscope, Wi-Fi, light, and latitude and longitude. Magx′, Gyro′, Wi − Fi′, Light′,
Lon&Lat′ are the real-time data of sensors that need to be checked for matching the location of
pedestrians with the route segment of the evidence framework. Therefore, for real-time data of sensors,
this approach will generate a similarity matrix as follows:

SimMagx1 SimMagx2 . . . SimMagxn

SimMagy1 SimMagy2 . . . SimMagyn
SimGyro1 SimGyro2 . . . SimGyron

SimWi− Fi1 SimWi− Fi2 . . . SimWi− Fin

SimLight1 SimLight2 . . . SimLightn

SimLon&Lat1 SimLon&Lat2 . . . SimLon&Latn


(16)

where n is the number of discernment in the frame of evidence theory.
In order to improve the error tolerance performance of the matching process, this study finds

the five most similar discernments in the frame of evidence using Equations (6)–(15), and ranks them
with levels of 1–5. Table 3 lists the values of 1–5 and their corresponding evaluation characteristics.
The Equation (17) shows an example of a similarity matrix with 6 discernments.

SimMagx
SimMagy
SimGyro

SimWi− Fi
SimLight

SimLon&Lat



1 5 2 3 4
3 2 1 4 5
5 4 1 2 3

2 3 1 4 5
4 1 3 5 2

1 4 5 2 3


⇒



0.44 0.08 0.22 0.14 0.11
0.14 0.22 0.44 0.11 0.08 2.28
0.08 0.11 0.44 0.22 0.14

0.22 0.14 0.44 0.11 0.08
0.11 0.44 0.14 0.08 0.22

0.44 0.11 0.08 0.22 0.14


(17)

The Equation (17) gives an example of similarity matrix with 6 discernments (left part of⇒) and
its probability matrix m(S) (right part of⇒).

This study uses Equation (18) to calculate the probabilities of the five most similar discernments.
The probability is used to build up a basic belief assignment of each sensor for real-time sensor data.

m(Si) =
(Vi)

−1

i=5
∑

i=1
(Vi)

−1
(18)

where m(Si) denotes the probability value of the focal element whose similarity level is i. The right
part of Equation (17) shows the probability matrix corresponding to the similarity matrix of the left
part of Equation (17).

By combining the co-existing rules of evidence, this study proposes an improved theory of
evidence combination formula as follows.

M(A) =


1
K ∑
∩Ai=A

∏
1≤i≤n

mi(Ai) A 6= φ, Fi 6= 0

0 A = φ
(19)

where K is a normalization constant, mi is the BPA of evidence i, and A is the subset of evidence
framework. Fi 6= 0 means that only the evidence i with characteristic changes are used in the basic
belief assignment and evidence combination.
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Table 2. Example of selecting light segment result.

Light Condition Llight − Light1 Llight − Light2 Llight − LightΓ Llight − Lightm Num Max (Num)

1 0 0 0 0 /
2 0 1 0 m-2 /

/
C 1 0 1 m-1

√

Table 3. Level of similarity and their evaluating characteristics.

Values Evaluating Characteristics

1 Extremely high
2 High
3 Medium
4 Low
5 Relatively low

3.3.2.3. Conflict of Evidence Processing

In the process of evidence combination, two factors affect the accuracy of sensor data, one is
data latency, the other is external interference. Conflicts of evidence may exist in the matching
process of sensor data and evidence. Therefore, it is necessary to deal with this issue during evidence
combination. Several approaches have been proposed to manage conflicts in D-S evidence theory,
such as, averaging [65], and combining conflict evidence [67], and weighting evidence (evidence
pretreatment) [68,69]. Assigning a small probability value to the frame of discernment is a practical
operation when determining the basic belief assignment. Therefore, this study combines the approaches
of Yager combination rules [66] and weighted evidence to handle the conflict of evidence.

Weighting evidence is crucial to improving the accuracy of the evidence combination results in
the case of different evidence association rules. The weights are usually subjectively assigned, or can
be objectively calculated in the presence of historical data sets [70]. In this study, the sensor data
sets of the target route are precollected to build the framework of discernment. Hence, they can be
preprocessed with objective calculations to obtain the weights for the evidence before the evidence is
combined. The detail determining process of sensor’s weight is described as follows:

Figure 10 illustrates an example of calculating the matching errors for assigning weights of sensor
i. Let Ns indicate the number of sensors, q represents the repeated times of collecting historical data set
along the target route, θ is the frame of discernment of the target route, and u is the number of labelled
points. The matching error can be estimated by comparing the location of the labelled points with
the corresponding matched route segments. Li

jω indicates the matched route segment of sensor i at
times ω for the corresponding labelled point j. This study assigns the weight of sensor i according to a
basic rule that if the matching error of a sensor is smaller, the weight of this sensor is higher. Therefore,
the weight of sensor i is defined as follows:

wi =

(
1

uq

u
∑

j=1

q
∑

ω=1
Di

jω

)−1

Ns
∑

i=1

(
1

uq

u
∑

j=1

q
∑

ω=1
Di

jω

)−1 (20)

Di
jω =

∣∣∣∣Locj − (θ
Li

jv
start + θ

Li
jv

end )/2
∣∣∣∣ (21)
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where Locj is the location of labelled point j in θ, and θ
Li

jv
start, θ

Li
jv

end represent the start and end locations of
Li

jω . For example, in Figure 10, the calculated distances between the matched points and labelled point

1 are D11, D11, D1q-1, D1q. Here, 1
uq

u
∑

j=1

q
∑

ω=1
Di

jω = [(D11 + D11 + . . . . . . + D1q-1 + D1q) + (D21 + D21 + . . .

. . . + D2q-1 + D2q) + (D31 + D31 + . . . . . . + D3q-1 + D3q)]/3q in the case of sensor i.
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where iw  denotes the weight of evidence i . 

4. Experiments 

This section introduces the experimental environment and collected data for a target route. Then, 
it gives the calculated frame of evidence of the improved approach, which is similar as a system 
training. Finally, this section demonstrates the advantages of the proposed approach by comparing 
the matched results with those obtained by the traditional D-S theory, GPS locations outdoors, and 
Wi-Fi locations indoors. 
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Then, this study improves the theoretical formula for evidence by employing two strategies.
The first is to assign a small probability to the whole frame θ, which makes the inconsistency of
evidence negligible [67]. The other strategy is to add weights of the sensors belonging to the evidence,
which reflect the accompanying influence of sensors on estimated results. Therefore, the improved
theory of evidence combination formulas can be further defined as

M(A) =


1
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(22)

where wi denotes the weight of evidence i.

4. Experiments

This section introduces the experimental environment and collected data for a target route. Then,
it gives the calculated frame of evidence of the improved approach, which is similar as a system
training. Finally, this section demonstrates the advantages of the proposed approach by comparing the
matched results with those obtained by the traditional D-S theory, GPS locations outdoors, and Wi-Fi
locations indoors.

4.1. Experimental Environment and Data

The experiment was conducted on the campus of Wuhan University and a business card route
for pedestrians from the entrance of Wuhan University to the No. 2 School Building was selected
(see Figure 11). This study collected the sensor data of the route on 10 occasions by a data acquisition
application written by the authors and run in the Android operating system of a VIVI X6 smartphone.
The first instance was used to build up the frame for discernment, while the data collected on the
other nine times were used to calculate the weights of sensors in the proposed approach. In addition,
this study selected nine labelled points to check the matching error of the proposed approach. The nine
labelled points are waypoints along the trajectory. Of them, six points were located outdoors and the
other three were indoors. During the data acquisition process, sensor data were sampled at a frequency
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of 20 Hz, and the collected data were stored as a separate .txt file for each repetition. The collected files
were processed in MATLAB.
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The data format collected in this study is listed in Table 4:

Table 4. Example of experimental data format.

Timestamp Longitude Latitude Gyroscope z-axis Light

20171203135331900 114.XXXXXXX 30.XXXXXXX 0.013504496 24,475
20171203135332100 114.XXXXXXX 30.XXXXXXX 0.013215541 24,182

Magnetometer x-axis Magnetometer y-axis Wi Fi MAC Wi Fi Name Wi Fi RSSI

−34.5 −22.859 e0:4f:bd:80:09:69 ChinaNet-3upP −73
−34.5 −23.1 e0:4f:bd:80:09:69 ChinaNet-3upP −73
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Here, RSSI is received signal strength indicator, which is a measurement of how well your device
can hear a signal from an access point or router. Due to the situation that RSSI have large fluctuation
over the same distance and are attenuated, this study used the radio propagation model [71] to estimate
the relationship between the signal strength indicator and distance. To reduce the influence of RSSI
measurement on the evidence framework, this study set a relatively low weight (e.g., wRSSI = 1/10) to
RSSI values of the evidence of Wi Fi MAC.

4.2. Implementation of the Proposed Approach

Figure 12 illustrates the data of the target route from the first collection. The red points in
Figure 12a–e represent the segmentation points of sensor data. Figure 12f shows the constructed frame
of discernment for the proposed approach.
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In addition, five pieces of data in daytime and the same numbers in nighttime are selected to
examine the accuracy of the proposed light condition selection method based on the continuity of
light. In Table 5, Day time and Night time are two kinds of light conditions defined in our framework.
As shown in Table 5, the accuracy achieves 100%.

Table 5. Selection of light segmentation based on continuity of data matching.

Real-Time Light Condition Day Time Night Time Accuracy

Day time 5 0 100%
Night time 0 5 100%

Based on the determined framework, this study calculated the basic belief assignment of each
sensor in the frame of discernment shown in Table 6. In this table, A1, . . . , An are subsets of the
evidence framework θ. The basic belief assignments of each sensor for the sub-proposition m{An} are
listed, which is calculated according to the five most similar sensor data. According to the approach
of Murphy [67] for combining belief functions when conflicts of evidence occur, setting m{θ} = 0.01
helps to avoid failure or error caused by conflicts of evidence. The initial probabilities of the five
most similar sensors were defined to be 0.44, 0.22, 0.14, 0.11, and 0.01, which are explained in the
methodology (see Section 3.3.2.2).

Table 6. Basic belief assignment of each sensor in the frame of discernment.

Mag x Mag y Gyro z Wi-Fi Light GPS

m{A1} 0.44 0.08 0 0.08 0.12 0.44
m{A2} 0.22 0.44 0.08 0.44 0 0.11
m{A3} 0.14 0.22 0.44 0 0.44 0.08
m{A4} 0.11 0.14 0.22 0.14 0.22 0.14
m{A5} 0.08 0.11 0.11 0.11 0.14 0
m{An} 0 0 0.14 0.22 0.08 0.22
m{θ} 0.01 0.01 0.01 0.01 0.01 0.01

After using the repeated data from collections 2 to 9, this methodology can be used to calculate
the distribution of weights of co-existing evidence by the rule that a sensor with a smaller average error
has a greater weight in the methodology. Because of the repeatable characteristics of sensors, such as
the magnetometer, Wi-Fi, light and GPS along the target route, and two clear conditions of changing
and unchanging characteristics of the gyroscope, this study classifies the co-existing situations of
sensors into two class, namely, the co-existing situations with and without gyroscope. Table 7 gives the
calculated weights for each sensor in the two co-existing situations by using repeated data. GPS is
not used in the segments where the GPS signal does not change during a period of time. In the study,
the default time threshold is 4 s, which is flexible and can be customized by users.

Table 7. Weight of evidence.

Situations Mag x Mag y Gyr z Wi-Fi Light GPS

Outdoor
With gyroscope 0.003 0.004 0.205 0.143 0.005 0.64

Without gyroscope 0.007 0.012 0 0.397 0.016 0.568

Indoor
With gyroscope 0.01 0.01 0.75 0.223 0.007 0

Without gyroscope 0.02 0.034 0 0.92 0.026 0

4.3. Experimental Results and Comparative Analysis

To estimate the performance of the proposed approach in terms of match success rate and
positioning error of results, this study selected nine (black) labelled points along the target route shown
in Figure 11 and recorded the actual locations of them manually when collecting the sensor data.
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4.3.1. Comparison of Match Success Rate

The match success rate is the ratio of the success match cases among all experimental cases. Here,
the match success rate is calculated as:

MSR =

10
∑

i=2
MSi

n
, MSi =

{
1 success

0 f ailure
(23)

where MSR is the match success rate, and MSi indicates the match status of the element i.
Table 8 gives the match success rate of the nine labelled points along the target route. In this

table, #1–#9 indicates the labelled points, 1©– 10© are the serial numbers for data collection, each one
of which is a complete collection of sensor data from the origin point to the end point of the target
route. The 0 or 1 in the table denotes the match success status by the corresponding approaches,
where 0 represents a match failure and 1 represents a successful match.

Table 8. Match success rate of the proposed approach and traditional D-S theory.

Labelled
Point

Approach
Serial Number of Data Collecting Match Success

Rate1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

#1
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 1 0 0 1 0 1 0 1 50%

#2
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 0 0 0 0 0 0 0 0 10%

#3
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 0 0 0 0 0 0 0 0 10%

#4
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 0 0 0 0 0 0 0 0 10%

#5
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 0 0 0 0 0 0 0 0 10%

#6
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 1 1 1 1 1 1 1 1 0 90%

#7
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 1 1 0 1 0 1 1 0 60%

#8
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 0 1 1 1 0 1 0 1 60%

#9
Proposed approach 1 1 1 1 1 1 1 1 1 1 100%

Traditional D-S theory 1 0 0 0 1 1 0 1 1 1 60%

From Table 8, this study found that the proposed approach could achieve the 100% match success
rate for all nine of the labelled points, while the average match success rate of the traditional D-S
theory is about 40%. This finding demonstrates the performance of judgment in the case of conflicts of
evidence and verifies the feasibility of the proposed method in this study. The proposed method in our
paper only use the characteristics of the invisible landmarks to locate pedestrians. Therefore, it can
against changes of speed and the time elapsed between invisible landmarks. No matter the distance of
two gyroscope events is short or long, the framework section in intermediate time always regarded as
the straight section. This method considers it is still between the two invisible landmarks.

4.3.2. Positioning Error of Results

To compare the location error of results, this study uses multiple sensors and GPS when outdoors
and multiple sensors and Wi-Fi when indoors. The positioning errors of these approaches, which are
the difference between the matched route segments and the actual locations, were evaluated using
the nine labelled points. Tables 9 and 10 present positioning errors in the outdoor (see Figure 11) and
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indoor environments, respectively. The average positioning error of the proposed approach is less
than 5 m outdoors, and less than 3 m indoors, which can meet the positioning needs of pedestrian
navigation. Furthermore, the mean positioning errors are smaller than those using GPS or Wi-Fi alone.
To estimate the reduced extent of the proposed approach, this study defines a concept of reduced
percentage (RP) of positioning errors by the proposed approach when comparing with GPS as follows:

RP =
Egps − EpDS

Egps
× 100% (24)

where Egps and EpDS denote the positioning errors of the GPS and the proposed D-S approach.
The reduced percentages for the six labelled points outdoors are between 15.9% and 54.4% (see Table 9).
The equivalents for the three labelled points indoors are 10.1% to 62.6%. Clearly, the results for both
the indoor and outdoor environments demonstrate that they offer improved positioning accuracy.

Table 9. Positioning errors (in meters) of the proposed approach (abbreviated as “Our” in the table)
and GPS in outdoor environments.

Labelled
Point

Locating
Method

Serial Number of Data Collecting Mean Error
(m)

RP
(%)1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

#1
Our 0.21 5.94 2.22 8.34 10.71 1.68 1.68 2.43 10.71 3.39 4.73

42.9GPS 0.57 24.15 2.21 14.55 14.55 2.21 4.24 3.94 14.55 1.91 8.29

#2
Our 0.18 2.79 1.83 4.98 6.21 8.7 3.15 1.83 1.83 1.83 3.33

51.2GPS 0.51 8.66 4.58 10.73 10.73 10.73 8.66 4.58 4.58 4.58 6.83

#3
Our 0.51 2.34 6.6 3.51 1.11 3.51 1.77 1.26 0.57 1.35 2.25

19.1GPS 0.51 0.64 8.55 3.79 1.01 3.79 3.79 3.04 1.01 1.69 2.78

#4
Our 0.48 2.73 4.92 3.30 1.65 1.77 3.3 4.23 2.91 1.86 2.71

28.7GPS 0.51 0.64 6.38 5.25 5.25 0.64 8.03 4.99 3.64 2.25 3.80

#5
Our 0.51 1.83 2.28 0.93 2.19 2.28 1.23 2.28 2.19 2.28 1.80

54.4GPS 0.51 4.31 2.93 1.16 2.93 4.31 14.59 2.93 2.93 2.93 3.95

#6
Our 0.54 5.37 15.27 10.5 14.07 10.5 12.39 14.73 7.14 9.45 9.99

15.9GPS 0.54 6.30 17.21 11.81 13.13 13.13 15.86 18.56 10.43 11.81 11.88

Table 10. Positioning errors (in meters) of the proposed approach (abbreviated as “Our” in the table)
and Wi-Fi in indoor environments.

Labelled
Point

Locating
Method

Serial Number of Data Collecting Mean Error
(m)

RP
(%)1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

#7
Our 0.15 3.00 2.40 3.00 3.00 3.00 3.00 0.78 16.74 14.91 4.99

62.6Wi-Fi 0.99 2.75 12.475 5.875 2.75 2.75 2.75 0.675 17.70 12.45 6.12

#8
Our 0.39 2.19 5.91 1.5 7.98 1.35 2.94 1.5 1.5 0.63 2.59

10.1Wi-Fi 0.63 1.375 1.925 3.075 3.075 1.375 3.625 3.625 6.475 3.625 2.88

#9
Our 0.21 1.77 3.57 3.03 3.03 1.62 3.03 0.6 3.03 0.6 2.05

53.2Wi-Fi 0.6 1.225 1.225 4.40 5.375 1.5 9.875 3.3 1.225 14.975 4.38

Figure 13 illustrates the average positioning errors of all nine labelled points obtained by the
proposed approach, GPS and Wi-Fi. Among them, the positioning accuracy at the turning position is
better than other positions, which may be because sensors, such as gyroscopes and magnetometers,
have obvious characteristics when turning. Furthermore, the synthesized results of the proposed
approach are obviously better than those derived from GPS or Wi-Fi alone. However, there is a
large positioning error for point #6, probably because the path along point #6 is severely blocked by
trees, and the weight of GPS is higher than other sensor in the outdoor environment. Furthermore,
the intersection area around point #6 is large, and the gyroscopes and magnetometers do not have
obvious changing characteristics. This indicates the need to reduce positioning error through the use
of more sensitive evidence.
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5. Conclusions

In this study, the changing characteristics and combinations of various sensors’ data in
smartphones or navigation devices are viewed as invisible salient landmarks for predefined business
card route of pedestrian navigation. This study introduces an improved Dempster-Shafer theory of
evidence to find invisible landmarks along predesigned pedestrian routes without using digital maps
by integrating the co-existing phenomenon of sensors’ signal change characteristics. This approach
distinguishes navigation methods from fingerprint-based localization and navigation applications
by focusing on combinational features of signal changes, rather than on individual signal changes.
Moreover, it integrates a proposed similarity measure of real-time data of co-existing sensors with
a predefined evidence framework for refining the basic belief assignment in the theory of evidence,
and a match error-based sensor weight assignment approach for handling the conflict of evidence
processing. Furthermore, this paper optimizes the framework for possible pedestrian navigation
situations by using multiple repeated data sources to eliminate temporally incorrect segment results,
e.g., the external interference when encountering a parked vehicle or avoiding pedestrians. In this
approach, the frame of discernment is utilized according to the path division by sensors’ characteristics.
The real-time pedestrian’s sensor data features are extracted to contrast and match with the framework.
As result, this study improves the evidence theory to fuse the matching results of each sensor and
infer a pedestrian’s location. The proposed approach is tested in the real experiment environment
of pedestrian navigation. The experimental results shows the proposed approach could achieve the
100% match success rate for all labelled points, while the average match success rate of the traditional
D-S theory is about 40%. This approach also improved the positioning accuracy of 15.9% and 54.4%
for labelled points outdoors and 10.1% to 62.6% for labelled points indoors when it is compared with
GPS or Wi-Fi alone in the study area. These experiments demonstrate that the proposed approach
outperforms those based on GPS or Wi-Fi alone in the study area. Also, this approach can be applied
seamlessly both indoors and outdoors for newcomers to follow predesigned business card routes.

There is scope for further research following this proposed approach. The first avenue it to
combine the mapless pedestrian navigation with digital maps, which aims to make full use of visual
and invisible landmarks within pedestrian navigation environments. The second avenue is to improve
positioning sensors or create an adaptive smartphone-dependent sensor weight assignment method.
The third avenue is to produce invisible landmark-based navigation maps and integrate these invisible
landmarks into current landmarks or point-of-interest-based pedestrian navigation data models.
The fourth avenue is to create comparative navigation in future work.
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