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Abstract: The Internet-of-things facilitates the development of many groundbreaking applications.
A large number of these applications involve mobile end nodes and a sparsely deployed network
of base stations that operate as gateways to the Internet. Most of the mobile nodes, at least within
city areas, are connected through low power wide area networking technologies (LPWAN) using
public frequencies. Mobility and sparse network coverage result in long delays and intermittent
connectivity for the end nodes. Disruption Tolerant Networks and utilization of heterogeneous
wireless interfaces have emerged as key technologies to tackle the problem at hand. The first
technology renders communication resilient to intermittent connectivity by storing and carrying
data while the later increases the communication opportunities of the end nodes and at the same
time reduces energy consumption whenever short-range communication is possible. However,
one has to consider that end nodes are typically both memory and energy constrained devices which
makes finding an energy efficient data transmission policy for heterogeneous disruption tolerant
networks imperative. In this work we utilize information related to the spatial availability of network
resources and localization information to formulate the problem at hand as a dynamic programming
problem. Next, we utilize the framework of Markov Decision Processes to derive approximately
optimal and suboptimal data transmission policies. We also prove that we can achieve improved
packet transmission policies and reduce energy consumption, extending battery lifetime. This is
achieved by knowing the spatial availability of heterogeneous network resources combined with the
mobile node’s location information. Numerical resultsshow significant gains achieved by utilizing
the derived approximately optimal and suboptimal policies.

Keywords: Internet-of-things; heterogeneous networks; data transmission; disruption tolerant IoT;
dynamic programming

1. Introduction

The Internet-of-things (IoT), i.e., the network of tangible objects with embedded sensors, actuators
and network interfaces has had a profound impact on key sectors of economy [1]. Through an ever
growing set of applications that target the diverse needs of both urban and rural environments vast
amounts of data are collected and analyzed so that production and service processes are streamlined
through informed decisions and controls. Examples of such IoT applications include, but are not limited
to, smart cities, smart factories, smart agriculture, parking and traffic management, water management,
e-Health, environment monitoring and education [2].

In a large number of the aforementioned IoT applications utilization of mobile sensor nodes
is preferable or unavoidable [3]. This is especially true for applications that involve wildlife and
environmental monitoring within large, probably uncharted, areas where the deployment of base
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stations, that operate as gateways to the Internet, is typically sparse. It is also true for applications
that utilize mobile devices for data collection such as smart phones and smart vehicles. However,
mobility and sparse deployment of base stations comes at the cost of intermittent network connectivity
and large delays. Studies and experiments have also shown that interference in rural environments can
also cause severe impact on the connectivity and the performance of the networks [4,5]. Delay Tolerant
Networks (DTNs) is a class of network architectures that could address the lack of continuous network
connectivity in IoT networks [6]. On the other hand, DTNs follow a store, carry and forward pattern for
data routing and turn the limited buffer space of mobile sensors to a valuable resource. Furthermore,
a long battery lifetime is a prerequisite for most IoT applications due to the difficulties associated with
charging or replacing batteries once the devices have been deployed. This turns energy consumption
into another limited and thus valuable resource. To tackle both the problem of energy efficiency
and intermittent connectivity, it has been considered [7] to equip mobile IoT devices with network
interfaces that are heterogeneous. Wireless interfaces with a long communication range increase
network coverage while short-range interfaces may reduce the amount of energy consumed by radio
transmissions which are a major source of energy consumption [8].

In this work we deal with the problem of finding an energy efficient packet transmission policy
for a mobile node that participates in a heterogeneous disruption tolerant IoT network. Typically,
whenever a mobile node comes within the communication range of one or more base stations it
transmits all the packets in its backlog using the most energy efficient wireless interface available at
that time. However, this packet transmission policy completely disregards the potential availability
of more energy efficient wireless networks in nearby locations and thus does not capitalize on the
node’s mobility in order to reduce the total energy consumed in packet transmissions over a long
period of time. This some times results to the well-known “ping-pong effect” when the mobile node
movement is not considered in the handover decisions [9]. In this work we consider the advantage
offered by a map with spatial information regarding network coverage within the area traversed by the
mobile node in devising an energy-efficient packet transmission policy. In real-world environments,
there is temporal variation of the wireless network availability, which might induce inaccuracy in the
network availability map that is a central point of the proposed system. However, even in this case,
the proposed scheme does not become inapplicable, since temporal changes can be dealt with other
network mechanisms or the network availability map can be constructed using longer term average
availability measurements. To the best of our knowledge we are the first to formulate the problem at
hand as a dynamic programming problem and utilize the framework of Markov Decision Processes
(MDP) to derive approximately optimal and suboptimal packet transmission policies. Furthermore,
we exhibit that knowledge of the spatial availability of heterogeneous network resources combined with
mobile node’s location information leads to improved packet transmission policies that significantly
reduce energy consumption and thus extend battery lifetime.

The remainder of this paper is organized as follows. In Section 2 we present past work related
to the problem at hand. In Section 3 we present the specifics of the problem, our model and it’s key
assumptions. Section 4 presents a formulation of the problem as a MDP and iterative algorithms for the
derivation of optimal and suboptimal policies. Section 5 presents numerical results for the evaluation
of the proposed policies. Finally, we conclude with Section 6.

2. Related Work

Although it has been clear for many years that a major challenge for the IoT is its ability to cope
with the high network dynamism, it is only recently that DTNs have been identified as potential
enablers for the IoT. For example in [10] the authors develop a Bundle Protocol (BP) convergence layer
for IEEE 802.15.4-based networks and evaluate it through a use case that involves an elevator carrying
a sensor. Another example is [11] where a basic implementation of a BP binding for Constrained
Application Protocol (CoAP) is proposed, as a means to enable delay tolerant IoT, and some first
experimentation results are presented that validate the feasibility of the approach.
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There are numerous other works where IoT, Wireless Sensor Networks and DTNs coexist. In [12]
the authors present opportunistic IoT, which addresses information dissemination and sharing within
and among opportunistic communities which are formed by the movement and opportunistic contact
among humans bearing smart devices. In [13] the authors discuss the notion of a Challenged IoT
and propose Direct Interaction with Smart Challenged Objects, a technique that enables objects
to convey their interface directly to other mobile users. In [14] the authors present a novel buffer
management algorithm for DTNs, called SmartGap, that estimates the value of each packet by means
of its contribution to the reconstruction of the original signal to be transmitted. More recently, in [15]
the authors present a collection of survey papers related to DTN routing as well as most of the
aforementioned works that utilize DTNs in order to tackle IoT related problems.

A work that is more closely related to ours, in terms of the network architecture considered,
is [7] where the authors consider a DTN with intermittent connection between mobile nodes that
are equipped with two radio interfaces. The first one is a long-distance radio which is used for
neighbor discovery while the second one is a 802.11 interface used for data transmission. Furthermore,
the authors consider using battery powered stationary nodes, called “Throwboxes” in order to increase
the number and frequency of contact opportunities for the mobile nodes. The authors tackle the
problem of reducing the energy consumed in neighbor discovery and, more specifically, their objective
is to maximize the number of packets being forwarded by Throwboxes under an average power
constraint by utilizing mobility prediction. Similar to [7] the authors in [16] consider solar powered
mobile nodes in a DTN that again have two wireless interfaces. The first one is a 802.15.4 interface
which is used by a power management module that is responsible for negotiating complex wakeup
rules whenever a potential contact with another mobile node is feasible, while the second one is a
802.11a used for data transmission. The focus of this study is again to minimize energy consumption
related to the discovery of communication opportunities. Unlike the previous two works we utilize
both the long and short range interface for data transmission while we do not consider the problem of
neighbor discovery.

Finally, in [17] the authors provide a comprehensive survey of DTN related works that
consider the use of throwboxes as performance enhancers. The works surveyed [17] consider a
wide range of problems related to the use of throwboxes such as their cardinality, placement criteria,
buffer management, network topology, mobility characteristics of nodes, application requirements,
and cooperation of throwboxes among themselves and with other nodes. However, none of these
works works addresses the same problem or considers a system model that is similar to the one
we consider.

To our knowledge our work is the first one to address the problem of finding an energy efficient
packet transmission policy for a mobile node that participates in a DTN IoT network where mobile
nodes are equipped with two wireless interfaces for data transmission.

3. System Model and Definitions

We consider a rectangular surveillance area that is subdivided into smaller square-shaped cells as
shown in Figure 1. Each cell within the surveillance area is identified by the Cartesian coordinates of
its center, i.e., by a pair (x, y), where x = 1, 2, . . . , X and y = 1, 2, . . . , Y. Furthermore, each cell may
host a Low Power Wide Area Network (LP-WAN) base station [18], featuring wide-area connectivity
for relatively low power and low data rate devices that is not provided by legacy wireless technologies.
LP-WAN base stations may use technologies such as LoRa [19,20], SigFox [21] or NB-IoT [22]. What is
more, each cell may also host a Low Power Personal Area Network (LP-PAN) base station, i.e., a base
station that supports higher bit rates and lower power consumption albeit at a much sorter range
compared to an LP-WAN base station. An example of a LP-PAN base station could be an 802.15.4 base
station [23]. Finally, cells may host both types of base stations. Let Ap and Aw, be integer matrices
whose elements take values in the set {0, 1} to indicate that a specific cell lies within the communication
range of at least one LP-PAN and LP-WAN base station, respectively, e.g., aw

xy = 1 (aw
xy = 0) indicates
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that cell (x, y) lies (doesn’t lie) within the communication range of one or more LP-WAN base stations.
We note here that the optimal way to choose the base station to associate with, among many base
stations of the same type, is beyond the scope of this work. Given Ap and Aw, we may compute a
network availability matrix as An = Ap + 2Aw which enables us to present network availability in
a single figure (see Figure 1). More specifically, cells that lie exclusively within the communication
range of at least one LP-PAN or at least one LP-WAN base station are respectively marked with 1 and
2, while cells that lie within the communication range of both types of base station are marked with a
3. Cells that lie outside the communication range of all base stations lack network connectivity and are
marked with a 0.

We note here that in this work we do not consider the temporal variation of the network availability
map, however, this does not necessarily render our proposed scheme inapplicable. The key idea here
is that the efficiency, and not the applicability, of the derived packet transmission policy depends on
the accuracy of the network availability map, which in turn depends on the process and specifications
of its construction. For example, to mark a specific network type as available in a specific cell of the
network availability map one could pose the most stringent constraint on its temporal availability,
thus producing a map that rarely changes as time passes by. What is more, temporal changes in
network availability can be dealt with other network mechanisms, such as packet retransmissions,
although we do not consider such mechanisms in this work. We do expect though that, even in the
absence of such mechanisms, the proposed packet transmission policy will not result in a complete
breakdown of network service although it will definitely be suboptimal. We emphasize here that
utilization of mobile nodes that may offer opportunistic connectivity, as well as the creation of the
network availability map is beyond the scope of our work. For recent work, related to the subject of
network availability map creation, such as network topology inference and spatial availability and
reliability of wireless links the interested reader may refer to [24–27].

Figure 1. Example of the network availability map for a rectangular surveillance area divided in
square-shaped cells.

Next, we consider a mobile node that is appropriately equipped with a LP-PAN interface,
a LP-WAN interface and sensors. The mobile node performs a two-dimensional random walk within
the surveillance area collecting data either through its sensory equipment or by reception of packets
from its neighboring nodes. We assume that the random walk evolves in stages of equal duration
indexed by k = 0, 1, . . . . At the beginning of the k-th stage the mobile node identifies its current cell
(xk, yk) through some localization mechanism that we assume to be exact and the number of packets
mk in its backlog. We assume that the node’s backlog is finite with a maximum capacity of M packets.
Values xk, yk and mk constitute the state of the system at stage k, which we denote with the column
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vector sk = [xk, yk, mk]
T . The state of the system summarizes all past information that is relevant for

future optimization.
Given its current state the mobile node must make a decision regarding the wireless interface to

use and the number of packets to transmit or drop. We denote the set of all possible decisions, termed
controls, with U = {(uw, up, um) : uw ∈ {0, 1}, up ∈ {0, 1}, uw + up 6= 2, um = 1, 2, . . . , M}, where
uw, up are binary variables indicating the selection of the LP-WAN and LP-PAN interface respectively
and um is the number of packets to transmit or drop from the backlog. Equation uw + up 6= 2 indicates
that the sensor is not allowed to use both interfaces at the same stage by prohibiting both uw and up

to be equal to one at the same stage. On the other hand, if both uw and up are zero we distinguish
two cases based on whether um is zero or a positive integer. In the first case the mobile node will not
transmit any packets while in the latter it will drop um packets.

For each system state only a subset of the decisions in U will be available to the mobile node,
unless of course both types of network are available in the current cell and the backlog is full.
To determine the set of available controls in each state we note that given the current state of the
system sk, and the network availability map, the mobile node can determine the available types of
network in the current cell and restrict the range of values for uw and up accordingly. Furthermore,
the number of packets in the backlog mk is an upper bound for the number of packets the mobile
node can transmit or drop, i.e., um ≤ mk. Additionally, we assume that the mobile node preemptively
transmits or drops packets so that the backlog can always accommodate the maximum number of
new packets Wmax

m that may be generated during the current stage. This queue management strategy,
although atypical, results in a significant state space reduction since dropped packets are not explicitly
accounted for in the state vector. To enforce the latter constraint on the set of controls we require that
um ≥ max{0, mk + Wmax

m −M}. Finally, to simplify notation, we note that the set of available controls
in any state sk remains unchanged across stages, i.e., it is independent of index k. Thus we may drop
index k from vector sk and its elements and summarize the constraints discussed above for any state
s = [x, y, m]T ∈ S as follows,

U(s) = {(uw, up, um) : uw ∈ {0} ∪ {aw
x,y}, up ∈ {0} ∪ {ap

x,y},

max{0, m + Wmax
m −M} ≤ um ≤ m, um ∈ N}, (1)

where um represents packet drops only when no network is available, i.e., when both uw and up are
equal to zero and um > 0.

At the beginning of the next stage the state of the mobile node will change as a result of the
control uk = (uw

k , up
k , um

k ) ∈ U(sk) applied at the k-th stage and the random variables of the system.
A random variable of the system is Wm

k , which is an integer random variable indicating the number
of new packets added in the backlog during the k-th stage by the sensory equipment of the mobile
node. We also consider the pair of integer random variables W∆x

k and W∆y
k that represent the random

displacement of the mobile node along the x and y axis respectively. We assume that the system’s
random parameters are independent of their values in previous stages. Furthermore, we assume that
Wm

k is uniformly distributed between 0 and Wmax
m for all cells within the surveillance area. On the other

hand, the probability distributions of W∆x
k and W∆y

k are not the same for all (xk, yk). This dependence
on (xk, yk) stems from the fact that the mobile node will follow a different moving pattern in case it
reaches a cell that lies on the border of the surveillance area. More specifically, the node will either
remain in the same cell or move to a neighboring one as long as this transition does not cross the
boundaries of the surveillance area. However, if the mobile node is in a cell that lies on the boundary
of the surveillance area it will either remain on the boundary or bounce back into the surveillance
area. Thus, for all k = 0, 1, . . . , we have that W∆x

k is uniformly distributed in the set {−1, 0, 1} given
1 < xk < X, uniformly distributed in the set {0, 1} given xk = 1 and uniformly distributed in the set
{−1, 0} when xk = X. W∆y

k is identically distributed to W∆x
k .
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Given the current state of the system sk and the control uk the state of the system at the beginning
of the (k + 1)-th stage will be,

sk+1 =

 xk+1
yk+1
mk+1

 =

 xk + W∆x
k

yk + W∆x
k

mk − um
k + Wm

k

 . (2)

We note in Equation (2) that in order to derive mk+1 we subtract from mk all um
k packets selected for

transmission. This is equivalent to stating that all transmissions attempted within stage k are successful
or considered successful by the mobile node. A mobile node will always consider a transmission
successful, i.e., it will not attempt to retransmit a packet, when it does not require an acknowledgment
of reception from the base station. This latter assumption regarding the configuration of the mobile
node is justified by the fact that our focus is on IoT applications where energy efficiency is the major
priority. To this end we consider the most energy efficient configuration for both the LP-WAN and
LP-PAN protocols. This partially accounts to selecting the Aloha protocol for medium access control
(MAC) and transmitting packets without requiring an acknowledgment of reception. The proposed
configuration is supported by the 802.15.4 standard ([28], Section 4.5.4.2-3) for LP-PANs and is a typical
configuration for LP-WANs [29].

With every state transition, as driven by control uk, there is an associated cost. In the case of
packet transmissions the associated cost is the amount of energy required to transmit um packets over
the selected interface. In the case of packet drops we assume a virtual energy cost per packet to prevent
the mobile node from dropping packets freely. We denote with El and Ew the energy cost for the
transmission of a single packet by use of the LP-PAN and LP-WAN interfaces, respectively, and with
Ed the virtual energy cost related to a packet drop. We assume that El and Ew are fixed for all cells
and equal to the average energy consumption induced to the mobile node for the transmission of a
packet for a given interface. This assumption is justified by the fact that El and Ew are uncontrollable
system parameters within the context of our work. Equation (3) presents the state transition cost as
described above,

g(sk, uk) = um · [(1− uw
k )El + (1− up

k )Ew + (1− up
k )(1− uw

k )Ed]. (3)

We are interested in minimizing the total energy consumption accumulated over an horizon,
i.e., an number of stages, expressed as follows,

Jπ(s0) = lim
N→∞

E
Wk

k=0,1,...

{
N−1

∑
k=0

γkg(sk, uk)
∣∣s0

}
, (4)

where s0 is the initial state of the system, expectation is taken with respect to the joint probability
mass function of the random variables comprising Wk = (Wm

k , W∆x
k , W∆y

k ) and γ is a discount factor,
i.e., 0 < γ < 1, indicating that the importance of energy consumption decreases with time. Finally,
π represents a policy, i.e., a sequence of functions π = {µ0, µ1, . . . }, where each function µk maps
states to controls for the k-th stage. For a policy π to belong to the set of all admissible policies Π,
functions µk must satisfy the constraint that for stage k and state sk controls are selected exclusively
from the set U(sk).

In order to minimize Equation (4) we must apply an appropriate control uk at each stage k given
state sk. However, decisions cannot be viewed in isolation since one must balance the desire for
low cost at the current stage with the avoidance of high future costs due possibly unfavorable state
transitions. For example, the mobile node might avoid to transmit packets at the current stage and
state, a decision that will always result in zero energy consumption, yet, due to its random walk, at the
next stage it may find itself in a cell without network connectivity and a full backlog due to new packet
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arrivals. As a result of its last decision the mobile node will now have to drop packets, possibly at an
excessive cost.

4. Transmission Policy

To deal with the dynamic program presented in Section 3 we capitalize on the computational
methods provided by the framework of MDP The problem at hand constitutes a MDP since the state
and decision spaces are finite, the distributions of the random system parameters are independent
of each other, independent of their past values and invariant over time, i.e., the system is stationary
and as a result state transitions are independent of past states and controls, given the current state sk
and control uk, and finally, the cost function is additive over time. The MDP can be described by the
probability of transition between states,

P{sk+1 = j|sk = i, uk = u} = pij(u) = P{xk+1|xk} · P{yk+1|yk} · P{mk+1|mk, uk}. (5)

From this point on we will utilize the Markov Chain notation introduced in Equation (5),
whereby pij(u) is the probability that the system will make a transition to state j given that the
system is in state i and decision u was made. For the MDP under consideration, given that 0 < γ < 1,
there exists an optimal stationary policy π = {µ, µ, . . . }, i.e., a policy that applies the same control
function µ at all stages ([30] Section 2.3). What is more, the control function µ will be independent of
the initial state of the system and deterministic [30], i.e., each time the system is in state i, µ(i) will
make the same decision u. We will refer to a stationary policy π = {µ, µ, . . . } as stationary policy µ.
Our objective is to find a stationary policy µ∗, from the set of all admissible stationary policiesM⊆ Π,
that minimizes total cost in Equation (4), i.e.,

µ∗ = arg min
µ∈M

Jµ(i), for all i ∈ S. (6)

Let J∗ be the total cost attained when the optimal policy µ∗ is used, then, for the MDP at hand,
J∗ satisfies the Bellman equation,

J∗(i) = min
u∈U(i)

n

∑
j=1

pij(u) [g(i, u, j) + γJ∗(j)] , for all i ∈ S,

= min
u∈U(i)

[
g(i, u) + γ

n

∑
j=1

pij(u)J∗(j)

]
, for all i ∈ S, (7)

where n is the cardinality of the state space. Equation (7) actually describes a system of n non-linear
equations, the right hand side of which is a contraction with a unique fixed point located at J∗(i).
Due to the contraction property one can derive both J∗ and µ∗ via iterative methods. In this work we
utilize the Optimistic Policy Iteration (OPI) algorithm [30–32] to approximate the optimal policy µ∗

and the optimal horizon cost J∗.
The OPI algorithm depends on the Approximate Policy Evaluation (APE) algorithm thus we

begin with the description of the latter algorithm and then proceed with the description of the OPI
algorithm itself. Given a policy µ we can approximate the horizon cost Jµ by use of the APE algorithm
presented in recursive form in Algorithm 1.

Formally, Algorithm 1 converges to Jµ only after an number of recursive calls, i.e., when rmax → ∞.
In practice, however, a finite value for rmax must be selected and heuristically chosen values for rmax

lead to an accurate calculation of Jµ as indicated by analysis and computational experience [30].
Another popular variation of Algorithm 1 stops the sequence of recursive calls when max

i∈S
|J′µ(i)− Jµ(i)|

becomes smaller than a predefined threshold [31].
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Algorithm 1 Approximate Policy Evaluation

Require: µ ∈ M
1: Initialize Jµ(·) arbitrarily
2: r ← 0
3: Function policy_evaluation(µ, Jµ, r)
4: if r < rmax then

5: J′µ(i)← g(i, µ(i)) + γ ∑n
j=0 pij(µ(i))Jµ(j), for all i ∈ S

6: policy_evaluation(µ, J′µ, r + 1)
7: else

8: {r is equal to rmax}
9: Return Jµ

10: end if

The OPI algorithm is presented in Algorithm 2. The major operation of the OPI algorithm,
besides calling APE, is presented in Line 3 and is typically called the policy improvement step because
its execution results in an a policy that has a smaller horizon cost. The intuition behind the policy
improvement step is that we can improve the current policy by finding a control u, available at
the current state i, that reduces the immediate transition cost g(i, u) as well as the expected future
cost, which, however involves Jq, i.e., it has been estimated with the previous, non-improved policy.
According to the Bellman’s optimality principle [32,33], unless policy µq is the optimal policy, the policy
improvement step will result in a better control for at least one state. Formally, Algorithm 2 will
converge to µ∗ as qmax goes to infinity, even if the Policy Evaluation algorithm is executed for a finite
value of qmax. However, similar to the APE algorithm, analysis and computational experience [30]
suggest that heuristically selected finite values of qmax approximate µ∗ and its corresponding optimal
cost J∗ with adequate accuracy.

Algorithm 2 Optimistic Policy Iteration

1: Initialize J1 arbitrarily and r ← 0.
2: for q = 1 to qmax do

3: µq(i) = arg min
u∈U(i)

[g(i, u) + γ ∑n
j=0 pij(u)Jq(j)], ∀i ∈ S

4: Jµq = policy_evaluation(µq, Jq, r)
5: Jq+1 = Jµq

6: end for
7: Return µq and Jµq

A significant drawback of Algorithm 2 is that its computational complexity is polynomial in
|S| × |U| × qmax, where | · | represents the cardinality of the enclosed set. The number of states |S| for
the problem at hand is X×Y×M, i.e., the number of states increases exponentially with the number
of cells and the size of the backlog. The resulting exponential growth in computational complexity is
typically referred to as the curse of dimensionality and plagues all dynamic programming problems.
Thus, to tackle larger instances of the problem at hand we have to resort to computationally efficient
albeit suboptimal algorithms. To this end we utilize the Rollout Algorithm [30,34], a limited lookahead
algorithm, that is based on the OPI algorithm presented above. In the Rollout algorithm, instead of
initializing J0 arbitrarily we begin with a heuristic policy µh ∈ M and derive its cost Jh. A widely used
heuristic policy is the myopic policy that selects control u at state i so that g(i, u) is minimized and
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completely disregards the expected cost due to future state transitions as expressed by ∑n
j=0 pij(u)Jµ(j),

i.e.,
µh(i) = arg min

u∈U(i)
g(i, u), for all i ∈ S. (8)

Following the estimation of Jh one or more policy improvement steps are applied to produce an
improved policy. The Rollout Algorithm is presented in Algorithm 3.

Algorithm 3 Rollout Algorithm

1: Define heuristic policy µh ∈ M; r ← 0
2: Jh = policy_evaluation(µh, Jh, r)
3: J1 = Jh

4: for q = 1 to qmax do

5: { qmax is typically small, e.g., 1 or 2}
6: µq(i) = arg min

u∈U(i)
[g(i, u) + γ ∑n

j=0 pij(u)Jq(j)], ∀i ∈ S
7: Jµq = policy_evaluation(µq, Jq)
8: Jq+1 = Jµq

9: end for
10: Return µq and Jµq

5. Results

In this section we evaluate numerically the energy efficiency of the packet transmission policies
produced by the OPI and Rollout algorithms. To facilitate insight into the energy efficiency of the
aforementioned policies we introduce another heuristic policy, which is often used in contemporary
DTNs, whereby the mobile node will transmit every packet in its backlog whenever a network
connection is available. In case more than one network connections are available in a cell the mobile
node will use the most energy efficient one and, in case no network connection is available in a cell,
it will drop packets in order to be able to accommodate Wmax

m incoming packets. We term this policy
the Empty-Backlog policy.

We begin with the illustrative example presented in Figure 1 that involves a surveillance area of
20× 20 cells, i.e., X = 20 and Y = 20, which includes five LP-WAN base stations and nine LP-PAN
base stations. LP-PAN and LP-WAN base stations have a communication range that extends to an
euclidean distance of one and five cells respectively. The capacity of the mobile node’s backlog is nine
packets and the maximum number of packet arrivals within a stage is uniformly distributed between
zero and three packets, i.e., Wmax

m = 3. We assume that the transmission of a single packet through a
LP-PAN and a LP-WAN connection costs one and two energy units respectively, while packet drops
account for ten energy units. Finally, we set the discount factor to 0.9.

Figure 2 presents, for four different policies, the number of packets um that the mobile node will
have to transmit in each cell whenever there are six packets in its backlog. To facilitate presentation we
do not include in Figure 2 the values of uw and ul since for all four policies the mobile node will use
the most energy efficient network connection available in each cell.

More specifically, in Figure 2a we present the Empty-Backlog Policy according to which the
mobile node will transmit all six packets stored in the backlog whenever the node enters a cell that has
network connectivity, i.e., a value of 1, 2 or 3 in Figure 1. The policy does not involve any packet drops
for cells with no network connectivity, i.e., cells with a value of 0 in Figure 1, because the backlog’s
capacity is nine packets and only six packets are stored in it, thus there is enough space for the worst
case scenario of three new packet arrivals (Wmax

m = 3) at the current stage.
In Figure 2b we present the myopic policy according to which the mobile node will not transmit

in any cell of the surveillance area, since, myopically, this is the most energy efficient thing to do.
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We note again here that only six packets are stored in the backlog and thus there is enough space to
accommodate the worst case scenario of three new packet arrivals (Wmax

m = 3), thus the mobile node is
not forced to transmit or drop packets.

(a) Empty-Backlog policy (m=6) (b) Myopic Policy (m=6)

(c) 1-Step Policy Improvement Rollout
(m=6)

(d) OPI policy ≈ µ∗ (m=6)

Figure 2. Packet transmission policies for the scenario of Figure 1 for the set of states with m = 6,
i.e., with six packets stored in the backlog. The policy produced by the Rollout algorithm with two
policy improvement steps is identical to the policy produced by the optimistic policy iteration (OPI)
algorithm.

In Figure 2c we present the policy derived by the Rollout algorithm with a single policy
improvement step. As seen in Figure 2c, the mobile node will transmit all packets in its backlog
whenever it enters a cell that lies on the edge of an area with network connectivity. This is due to the
Rollout algorithm identifying that the mobile node will probably make a transition to a region that
offers no network connectivity where costly packet drops are the only way to empty the backlog in
order to collect new packets. On the other hand, while the mobile node is within an area with network
coverage it will transmit packets preferably when the most energy efficient interface is available,
e.g., when in cell (1,1), and will avoid transmitting packets otherwise, e.g., when in cell (3,1).

Finally, in Figure 2d we present the approximately optimal policy produced by the OPI algorithm
when executed with rmax = 50 and qmax = 50. The OPI algorithm’s policy is an improved version of
the policy presented in Figure 2c. Their main difference is a small reduction in the number of packets
to be transmitted when in cells that lead with high probability to a neighboring cell that offers LP-PAN
network connectivity, e.g., cells (1,1), (1,20) and (20,1), and cells that lead with low probability to an
area with no network connectivity, e.g., cell (5,1). A major result of this work is that the policy derived
by the Rollout algorithm with two policy improvement steps is identical to the policy derived with the



Sensors 2018, 18, 2891 11 of 15

OPI algorithm. The importance of this result is that we may attain an approximately optimal policy by
utilizing a computationally efficient suboptimal algorithm.

Finally, although we do not present the relevant figures here due to lack of space, we note that
when the number of packets in the backlog is less than six all four policies will retain their form,
as presented in Figure 2, although the number of transmitted or dropped packets in each cell will
decrease. Obviously, when the backlog is empty no packet will be transmitted at any cell for all policies.
On the other hand, when the mobile node has more than six packets in its backlog then it is obliged
by the queue management policy to transmit or drop packets in each cell so that there is room for
Wmax

m packets in the backlog. Thus, for the case of seven, eight and nine packets in the backlog all four
policies will retain their previous form, as presented in Figure 2, although the number of transmitted
or dropped packets in each cell will increase respectively by one, two and three.

Figure 3 presents results related to the expected energy cost over an horizon for all policies
presented in Figure 2. More specifically, Figure 3a presents JOPI the expected discounted cost over
an horizon for each state of the mobile node when the approximately optimal OPI policy is used.
The figure includes nine surface plots, one for each state of the backlog m, that cover the whole
state space S. The surface plot that lies on top of all others corresponds to the case where m = 9,
i.e., the expected energy cost is maximized when the backlog is full. As the number of packets in the
backlog decreases we get lower values for the expected energy cost in all cells and the minimum is
attained when the backlog is empty. Furthermore, Figure 3a indicates that the expected energy cost is
small for cells that lie in the vicinity or within the service area of a LP-PAN, increases for cells in the
vicinity or within the service area of a LP-WAN and becomes maximum for cells that lie outside the
communication range of any base station.

Figure 3b presents the mean percentage error (MPE) [35] between JEBP, the horizon discounted
cost when the Empty-Backlog Policy is used, and JOPI calculated as

MPE(x, y) =
1
M

M

∑
m=0

JEBP(x, y, m)− JOPI(x, y, m)

JOPI(x, y, m)
· 100 (%). (9)

Equation (9) is well defined because JOPI is a positive real number. Furthermore, the quantity
in the MPE sum represents the percentage increment in cost due to using a suboptimal policy since
JEBP ≥ JOPI for all states. Finally, in Equation (9) we average over all possible backlog values in order
to avoid presenting a different surface plot for each state of the backlog as we did in Figure 3a. Now,
Figure 3b indicates that the Empty-Backlog Policy does not utilize the heterogeneity of the available
networks within the surveillance area. Instead, the mobile node blindly transmits all packets in the
backlog whenever it enters a cell with LP-WAN coverage disregarding the fact that neighboring cells
may offer a more energy efficient network service such as LP-PAN. This results in increments of
expected energy cost up to 30% for cells that lie in the vicinity of LP-PAN base stations.

Similarly, Figure 3c presents the MPE between the JMP, the horizon discounted cost for the Myopic
Policy, and JOPI. The myopic policy performs poorly in general, with increments in energy cost as
high as 80%. This is mainly due to its short term energy conserving policy that focuses entirely on
saving energy at the current stage and completely disregards the potential transitions to cells with only
LP-WAN connectivity or no connectivity at all at subsequent stages. Actually, transmissions occur
only when the policy is forced to do them, i.e., when the backlog has more than six packets, and this
will often result in packet drops at an excessive cost.

Figure 3d presents the MPE between the JRP1, the horizon discounted cost for the policy derived
by the Rollout Algorithm with one policy improvement step, and JOPI. As described previously in this
section the Rollout Algorithm with one policy improvement step is only slightly different from the
OPI policy. This is reflected in the low values for MPERP1, OPI, presented in Figure 3d, compared to
the previous two policies. For MPERP1, OPI, increments in energy cost are mainly due to transmitting
a larger number of packets, compared to the approximately optimal policy, in cells such as (1,1),
(1,20), (20,1) and (20,20). This increment in the number of transmitted packets does not actually
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increase energy consumption, since in all these cells an LP-PAN is available and packet transmission
are conducted with the minimum energy expense. However, we observe an increment in energy
cost because the Rollout Algorithm with one policy improvement step disregards the effect of the
discounting factor γ on energy cost. The OPI policy will favor delayed packet transmissions, whenever
this does not lead with high probability to energy inefficient packet transmissions or packet drops in
future stages, because future energy costs are discounted.

(a) JOPI (b) MPE between JEBP and JOPI

(c) MPE between JMP and JOPI (d) MPE between JRP1 and JOPI

Figure 3. Mean Percentage Error (MPE) in energy consumption for each suboptimal policy compared
to the horizon discounted cost for the Optimistic Policy Iteration (OPI) policy JOPI.

To assess the energy efficiency of all the aforementioned policies in a variety of base station
topologies we conducted two thousand numerical experiments for a surveillance area of 20× 20 cells
that includes five LP-WAN base stations and five LP-PAN base stations. In each numerical experiment
the base stations were placed randomly within the surveillance area. Other than the number and the
placement of the base stations the configuration is identical to that of the illustrative example presented
above. Figure 4 presents MPE in energy consumption for the four policies, calculated as follows,

MPEP =
1
|S| · L

(
∑

l∈L,s∈S

Jl
P(s)− Jl

OPI(s)
Jl
OPI(s)

)
· 100 (%), (10)

where L is the number of numerical experiments, |S| is the cardinality of the state space and JP is
one of JBEP, JMP, JRP1 and JRP2. In Equation (10) the mean value for the percentage error is calculated
over all states of the system and, subsequently, over all experiments. Figure 4 depicts that the
Myopic and Empty-Backlog policies result in a significant increment in energy consumption compared
to the OPI policy. On the other hand, the Rollout algorithm with one policy improvement step
significantly reduces the energy cost compared the myopic policy, its base heuristic policy, and achieves
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an approximately optimal energy cost with just two policy improvement steps. The results of Figure 4
exhibit the significance of the network availability map and localization information in devising energy
efficient packet transmission policies for mobile nodes in DTNs. In comparison, policies that rely only
on local network availability information, although easier to implement, lead to a significant increase
in energy cost and packet drops.

Figure 4. Mean percentage error increment in energy consumption for the Empty Backlog, Myopic and
Rollout, with one and two policy improvement steps, policies, compared to the OPI policy.

6. Conclusions and Future Plans

In a large number of IoT applications end nodes suffer intermittent connectivity due to mobility
and sparse network coverage. Heterogeneous networks and DTNs have emerged as potential
solutions to this problem. In this work we formulated the problem of finding energy efficient packet
transmission policies, under the constraint of finite data storage, as a dynamic programming problem
and utilized the framework of Markov Decision Processes to derive approximately optimal and
suboptimal data transmission policies. Finally, we evaluated numerically the derived policies and
showed that significant gains can be achieved by utilizing the derived approximately optimal and
suboptimal policies.

Future research activities include a revision of the proposed scheme to transform it to become
more dynamic and adaptive, able to consider also the temporal variation of the network availability
map. Additionally, future plans include the design of a variation of the proposed scheme to work with
cognitive radio inspired IoT nodes (extending our previous works described in [36,37] that have the
ability to sense the spectrum and extract the network availability map without having to know the
map beforehand. Finally, we are also working towards exploiting deep reinforcement learning to solve
the problem at hand aiming to learn what is the optimal transmission policy for each scenario.
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