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Abstract: The Internet of Things (IoT) introduces many new challenges which cannot be solved
using traditional cloud and host computing models. A new architecture known as fog computing is
emerging to address these technological and security gaps. Traditional security paradigms focused
on providing perimeter-based protections and client/server point to point protocols (e.g., Transport
Layer Security (TLS)) are no longer the best choices for addressing new security challenges in fog
computing end devices, where energy and computational resources are limited. In this paper, we
present a lightweight secure streaming protocol for the fog computing “Fog Node-End Device”
layer. This protocol is lightweight, connectionless, supports broadcast and multicast operations,
and is able to provide data source authentication, data integrity, and confidentiality. The protocol is
based on simple and energy efficient cryptographic methods, such as Hash Message Authentication
Codes (HMAC) and symmetrical ciphers, and uses modified User Datagram Protocol (UDP) packets
to embed authentication data into streaming data. Data redundancy could be added to improve
reliability in lossy networks. The experimental results summarized in this paper confirm that the
proposed method efficiently uses energy and computational resources and at the same time provides
security properties on par with the Datagram TLS (DTLS) standard.

Keywords: information security; computer networks; steganography; the Internet of Things; fog
computing; cryptography

1. Introduction

The emerging Internet of Things (IoT) introduces many new challenges that cannot be adequately
addressed by today’s cloud and host computing models alone [1,2]. The most important challenges
include (i) stringent latency requirements, (ii) network bandwidth constraints, (iii) device resource
constraints, (iv) uninterrupted services with intermittent connectivity to the cloud, and (v) new security
challenges. A study proposed by HP Fortify claims that 70% of the most commonly used IoT devices
contain security vulnerabilities [3]. On the way to addressing these technological and security gaps,
the IoT will require a new architecture known as fog computing [4], that distributes computing, control,
storage, and networking functions closer to end user devices. Fog computing can be presented as a
three-layer hierarchical architecture: Cloud-Fog-End Devices (Figure 1).
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Figure 1. Three-layer fog computing architecture [5]. 

Fields of application for the IoT, as well as for fog computing applications, can be divided into 
the categories of environmental monitoring, smart cities, smart business/inventory and product 
management, smart homes/smart building management, health-care and security, and surveillance [6]. 
The fog computing security challenges and the possible solutions to these were thoroughly researched 
in articles by Stojmenovic, Roman, Tran et al. [6–8]. Some of the security challenges in the ”Fog-End 
Device” layer are authentication, rogue fog nodes, network security, secure data storage and secure 
and private data computation in the fog node, privacy, access control, and intrusion detection [6,9]. 

Existing cyber security solutions for today’s internet, designed primarily for protecting 
enterprise networks, data centers, and consumer electronics, have focused on providing perimeter-
based protections. This existing security paradigm will no longer be adequate for addressing many 
of the new security challenges in fog computing. In examining the suitability of existing security 
solutions for fog computing, we see that these solutions are mainly intended for the “Fog-Cloud” 
layer. It is difficult to adapt them for the “End Device-Fog Node” layer, because the end devices have 
limited computation and energy resources, the environment is heterogeneous and distributed, and 
wireless communications have limited bandwidth. The most common security issues for the “End 
Device-Fog Node” layer are privacy concerns, insufficient authorization, lack of communications 
encryption, and inadequate software protection. 

Many applications of the IoT, as well as of fog computing, will require the streaming of data from 
end devices to fog nodes and to the cloud. Data streams are mainly generated by end devices, including 
sensors, video cameras, smart phones, vehicles, portable devices, controls, and so forth. [10]. Secure 
data streaming requires the fulfilment of three key security goals: confidentiality, integrity, and 
authentication [11]. Implementation of these goals in fog computing is the issue, especially in the “End 
Device-Fog Node” layer, because the end devices have limited computation and energy resources 
and network bandwidth constraints. 
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become a relevant research topic in the last few years [12,13]. Video capable devices and applications 
include surveillance security cameras, smart traffic cameras, transit vehicles, house monitors, and 
more. In general, IoT security threats are inherent in video data streaming applications. However, 
video data streaming security needs are very difficult to fulfill because it is necessary to evaluate the 
specific requirements which include: real-time content requires enhancement of the delivery latency; 
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continuous authentication (CA) of the data stream source and content with limited computation; 
energy resources of the end devices; limited network bandwidth; and the need to resume secure data 
streaming after transmission interruptions [1,13,14]. 
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Fields of application for the IoT, as well as for fog computing applications, can be divided into
the categories of environmental monitoring, smart cities, smart business/inventory and product
management, smart homes/smart building management, health-care and security, and surveillance [6].
The fog computing security challenges and the possible solutions to these were thoroughly researched
in articles by Stojmenovic, Roman, Tran et al. [6–8]. Some of the security challenges in the ”Fog-End
Device” layer are authentication, rogue fog nodes, network security, secure data storage and secure
and private data computation in the fog node, privacy, access control, and intrusion detection [6,9].

Existing cyber security solutions for today’s internet, designed primarily for protecting enterprise
networks, data centers, and consumer electronics, have focused on providing perimeter-based
protections. This existing security paradigm will no longer be adequate for addressing many of the
new security challenges in fog computing. In examining the suitability of existing security solutions
for fog computing, we see that these solutions are mainly intended for the “Fog-Cloud” layer. It is
difficult to adapt them for the “End Device-Fog Node” layer, because the end devices have limited
computation and energy resources, the environment is heterogeneous and distributed, and wireless
communications have limited bandwidth. The most common security issues for the “End Device-Fog
Node” layer are privacy concerns, insufficient authorization, lack of communications encryption, and
inadequate software protection.

Many applications of the IoT, as well as of fog computing, will require the streaming of data
from end devices to fog nodes and to the cloud. Data streams are mainly generated by end devices,
including sensors, video cameras, smart phones, vehicles, portable devices, controls, and so forth [10].
Secure data streaming requires the fulfilment of three key security goals: confidentiality, integrity,
and authentication [11]. Implementation of these goals in fog computing is the issue, especially in the
“End Device-Fog Node” layer, because the end devices have limited computation and energy resources
and network bandwidth constraints.

Wireless real-time video sensing applications make up a large part of IoT applications, and have
become a relevant research topic in the last few years [12,13]. Video capable devices and applications
include surveillance security cameras, smart traffic cameras, transit vehicles, house monitors, and more.
In general, IoT security threats are inherent in video data streaming applications. However, video
data streaming security needs are very difficult to fulfill because it is necessary to evaluate the
specific requirements which include: real-time content requires enhancement of the delivery latency;
the possibility of content broadcasting; confidentiality; nonrepudiation (including timestamping) and
continuous authentication (CA) of the data stream source and content with limited computation;
energy resources of the end devices; limited network bandwidth; and the need to resume secure data
streaming after transmission interruptions [1,13,14].
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This paper proposes a lightweight approach for continuous authentication of video data sources
and streams with end devices with limited resources in the layer “End Device-Fog Node”.

The rest of the paper is organized as follows: related work is discussed in Section 2. The proposed
covert channel-inspired secure streaming protocol is described in Section 3. In Section 4, the evaluation,
experimental set-up, and experiments are presented. Finally, the paper is concluded in Section 5.

2. Related Work

There are several methods to provide data streams with security, of which cryptography,
steganography, covert channels, and digital watermarking are the most commonly used methods.
These methods can be implemented in different layers of the TCP/IP protocol stack.

Data streaming protocols are implemented using various transport protocols. Fairhurst et al. [15]
described protocols which are the background for determining a common set of transport services—the
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Real-Time Transport Protocol
(RTP), Transport Layer Security (TLS), Datagram TLS (DTLS), and others. In many works [16–21],
bandwidth efficiency, reliability, energy consumption, and the security of these protocols have been
studied. De Caro et al. [22] analyzed the MQTT and CoAP lightweight protocols designed for highly
resource constrained environments. Qualitative and quantitative comparisons of these protocols have
shown that CoAP, which is designed on top of UDP, is more efficient. Because video data streaming
has the various requirements listed above, some packet loss is possible; therefore, video data streaming
can be most effectively implemented using the UDP protocol at the transport layer.

Various schemes of the cryptographic source authentication are based on the hash-chain method.
Yang et al. [23] proposed a source authentication scheme for the multicast based on a message recovery
signature scheme. The proposed scheme ensures authentication, confidentiality, and integrity of
source for the multicast, and provides the packet’s sequence number, which is important for streaming
video. The scheme is tolerant to packet loss, however the amount of additional information for each
transferred packet is large, approximately equal to the amount of useful information. Wang et al. [24]
proposed a two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality
by reducing the authentication dependence overhead while protecting its integrity. The TTSH scheme
achieves considerable gains in both authenticated video quality and energy efficiency. Perrig et al. [25]
introduced a Timed Efficient Stream Loss-Tolerant Authentication (TESLA) broadcast authentication
scheme. The TESLA scheme uses time and key series to authenticate the source of the data stream.
However, the TESLA scheme is difficult to adapt for real-time streaming and does not provide
non-repudiation of source. Each cryptography key should be used for a period; therefore, the system
time of the sender and the receivers must be the same. Because the received packets can only be checked
during the next period, there may be a delay of the data stream. We proposed in our previous work [26]
the use of an energy efficient SSL protocol, which provides the most effective ratio between energy
consumption and security of the data that is transmitted. Usman et al. [11] proposed a clustering-based
technique for authenticating data streams. This energy-efficient data streaming approach authenticates
the data streams and maintains the quality of transmitted data. The authentication scheme is two-step:
(1) node authentication, and (2) secure transmission of the data stream through data authentication.
Data packet authentication is based on crypto-hash tags, which connect each data packet with its
former. Because it uses crypto-hash tags, the amount of transferred data is larger; consequently, there is
an additional energy consumption cost of about 20%.

Wendzel et al. [27] reviewed the existing methods to create covert channels in various network and
application protocols. Covert channels can be implemented in different layers of the TCP/IP protocol
stack and can also be used for authentication of data sources and content [28–30]. To enhance network
covert channels properties, protocol headers, so-called micro-protocols, are added to hidden payload
in covert channels. Such protocol headers enable fundamental features such as reliability, dynamic
routing, proxy capabilities, simultaneous connections, or session management for network covert
channels—features which enrich communications to become more adaptive and stealthier. Wendzel et
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al. [31] provide the overview and categorization of micro-protocols. Xie et al. [29] proposed an identity
authentication method based on the reverse usage of the network covert channel, where the packet
intervals are exploited as the data carrier to transmit the identity tag. The authors implemented this
method on the FTP platform. The data rate is considerably reduced in the covert timing channel. These
experiments demonstrated that, depending on the channel noise, the data rate decreases from 28–47%.
Islam et al. [30] proposed a technique for authenticating the geolocation of IoT devices using a covert
channel. The proposed authentication technique is based on the Physical Unclonable Function (PUF)
and ICMP covert channel.

Frączek et al. [32] introduced steganography methods, known as deep hiding techniques, that can
be applied to any existing network steganography method to make it even more undetectable.
Five different types of deep hiding techniques are discussed in the paper, including Steganogram
Scattering, Steganogram Hopping, Carrier Modifications Camouflage, Inter-Protocol Steganography,
and Multi-Level Steganography (MLS). All of these methods increase the undetectability properties of
the existing methods by using mixes of different steganographic methods and/or carrying network
protocols, scattering data between several sending hosts, and so forth. The concept of multilevel
steganography is further discussed by Frączek et al. in their other work [33]. MLS uses two or more
different steganographic methods simultaneously. The so called upper-level method is used as the
carrier for the lower-level method. The lower-level steganography method is harder to detect even in
cases where existence of the upper level method is discovered. The authors proposed various scenarios
for the application of the MLS, in which the more secure lower-level method is used to transfer
more sensitive data such as encryption keys, integrity, or authentication information for secret data
carried by the upper-level method. The lower-level method could also be used to transfer parameter
changes for the upper-level method to make it harder to detect (e.g., to change the upper-level method
and cause Steganogram Hopping). Kesavan Gopal [34] proposed to embed a watermark—a unique
device identifier or user-defined payload—at the beginning stage of digital video stream production.
This method is independent of the protocol and semi-fragile in nature and is resistant to attacks with
few packet losses in the network.

3. Lightweight Secure Streaming Protocol

We propose the use of a lightweight secure streaming protocol (LSSP) for the fog computing
“Fog Node-End Device” layer. This protocol is intended for data streaming where a certain degree of
packet loss is possible; for example, video streaming using resource-constrained devices and using
bandwidth-constrained networks.

The main properties of the protocol are:

• Connectionless authenticated data streaming.
• Depending on the mode, the protocol can provide various security properties: authentication of

source, authentication and integrity of data, confidentiality of data, and resilience to some data
loss during transmission.

• Security properties of the data stream can be easily resumed after transmission interruptions
without additional authentication steps from the sending or receiving parties.

• The protocol provides zero data overhead because all additional security information is embedded
into the headers of modified UDP packets while the data fields of the UDP packets are
left untouched.

• The protocol supports data stream broadcasting (multicasting).
• The protocol relies on simple security algorithms such as secure hash functions, HMACs and

symmetric encryption, which could be easily implemented in fog end devices.
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The protocol is based on the following techniques:

1. UDP transport with a modified packet headers [35] is used for the data stream transfer between
the end device and fog node. Information embedded in the UDP header fields is used for data
packet reordering and security checks.

2. The protocol provides continuous data source and data stream authentication [29] based on
an end device authenticator [36], time stamps, secure hash functions, and hash based message
authentication codes (HMACs).

3. Data confidentiality is provided using secure encryption algorithms that utilize secret keys
and timestamping.

4. Redundant data, such as error correction codes [37–39] and checksums [40], could be used to
provide additional resilience to data packet loss during transmission.

To achieve efficient and flexible secure communication in the proposed protocol, we define three
security modes:

• Mode 1—data source authentication only.
• Mode 2—data source authentication and content integrity.
• Mode 3—data source authentication, content integrity, and confidentiality.

3.1. Modified UDP for Secure Video Streaming

The proposed lightweight secure streaming protocol (LSSP) uses modified UDP packets with
authentication information embedded into UDP packet headers. The original structure of the normal
UDP packet is preserved, but some fields are used differently. Authentication information—dynamic
devices and video stream authenticators—are generated from the secure device identifier and time
stamp using hash functions. Authentication information is then divided into several pieces and inserted
into the UDP headers. Because the UDP doesn’t guarantee delivery, original ordering, or deduplication
of packets, we inserted the numbers of the data stream segments and packets into the proposed
protocol. Error correction codes may be used for restoring lost authentication information, however
lost video stream packets aren’t restored.

Sender authentication and data integrity is achieved by adding a message authentication code
digest into the transmitted data. The digest is calculated at the sending side using a secure device
identifier (sid) and secure hash functions (h). Due to limitations of space available in the UDP header,
video stream packets are grouped into data segments si. Each segment is assigned a sequence number
i = 0, 1, . . .. The length of all segments is n packets and depends only on the message authentication
code algorithm and additional redundancy information (the error correction code) added to the data
stream. All data packets pi,j, j = 0, 1, . . . , n− 1 forming the same data segment si are ordered and
assigned the sequence number i. Segment number i and packet number j are sent with each data
packet into the modified UDP header. The segment number and packet numbers are used at the
receiving side to reorder packets when individual packets are received out of their original order.

The structure of the modified UDP packet is presented in Figure 2 and based on the concept of
covert channel micro-protocols. Only the destination port field is left untouched from the original
UDP packet header [35]. The second byte of the source port, packet length, and checksum fields is
used to store five bytes of authentication data. The first byte of the source port is divided into two 4-bit
nibbles. The first nibble is used to store segment number i, and the second nibble stores the sequential
number of the packet in the current segment.

For example, if the HMAC-SHA1 algorithm is used for authentication, then the length of the
corresponding data segment is n = 4 + 1 data packets, as the length of the SHA1 based digest is only
160 bits, which fits into four packets’ headers with an additional packet used for checksum, using the
XOR error correction code.
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The selection of UDP header fields was based on the following assumptions:

The source port is not an important field as the sending device is identified by the destination
port and authenticated using a different method;

The length of the UDP data is essentially a redundant field as the length of the data could be
calculated from the IP header information;

The checksum field is not compulsory in the UDP header, moreover, data integrity is checked in
data link layer. Additionally, data integrity could be checked in the LSSP protocol.

Free modification of some UDP header fields could lead to some issues in complex networks
using routers, firewalls, etc., but the primary target of the LSSP protocol is communications
between fog-nodes and end devices where only OSI Level 2 network infrastructure devices are
used. Our observations show that modified UDP header fields do not cause any additional issues
in the OS (Windows and Linux) network stack as long as low level network libraries are used (e.g.,
libpcap, winpcap [41], etc.)

3.2. The Generation of Secure Device Identifiers and Registration of End Devices

The first step of the protocol is registration of the new fog end device at the fog node and
generation of the secure device identifier (sid), which is known only to the end device that streams
data, and one (or more) of the fog nodes which receives data and checks its security properties.
The secure device identifier is transferred to the fog nodes using a secure channel and is stored in
the fog node. In order to register a new fog end device at the fog node, an initial secure channel
must first be established. Since initial wireless interfaces are potentially insecure, an alternative
secure communications channel is required. A direct wired connection between two components, e.g.,
using USB or ethernet, could provide sufficient protection. We propose using a wired connection for
registration of the end device and wireless connection for further communications.

Authentication information (encryption keys in LSSP) is generated from the secure device
identifier (sid). Therefore, this identifier must be unclonable, of good quality, generated truly randomly,
contain sufficient entropy, be of sufficient length, and not be stored on the end device. For this
purpose, physical unclonable functions (PUF) [39] are used, but a PUF is usually realized on special
hardware. We have developed a secret encryption key generation algorithm by using the signature
of the embedded system [36]. The proposed method effectively generates high-quality keys without
any additional hardware and infrastructure cost, which is vital for devices with limited resources. We
propose to use this algorithm for generating secure device identifiers.

Further, the algorithm for generating a secure device identifier (sid) by using the signature of the
end devices is described in detail:

1. Create the set of signatures of the components of the end device ES = {esi}, i = 1, . . . , n.
The signature is created by applying the string concatenation of the Vendor ID (cvi), Type ID (cti),
Model ID (cmi), and Serial Number (csni):

esi = cvi‖ cti‖ cmi‖ csni. (1)
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In steps 2–6 a subset of the component signatures is created. These signatures will be used for
computing of the end device signature.

2. Calculate the device’s embedded program header hash ph = h(p‖ psn).
3. Create the n × m matrix MH =

{
mhij

}
from the bytes of the device’s embedded program

header hash mhij = eb(ph, (i− 1)× j + i), where n is the number of the end device’s signatures,
and m = eb(ph, n) mod n.

4. Calculate the sum sj of the column elements in the matrix MH, sj = ∑n
i=1 mhij, j = 1, . . . , m.

5. Create the index array of the component signatures IND =
{

indj
}

, where indj = sj mod n and
delete repetitive indices, indj 6= indi, ∀ i ∈ {1 . . . j− 1} .

6. Create the subset of the component signatures ẼS ⊆ ES, ẽsi = esj, where j = indk, ∀ indk ∈
IND, k = 1, . . . , m, from which the end device signature will be created.

7. Create the signature of the end device ssi = sign(ẼS).
8. Generate the secret device identifier sid = f sid(ss, salt, iteration_count, key_length), where

salt = eb(ph, n) mod n, iteration_count = count(ẼS).

3.3. LSSP Mode 1: Source Authentication

To provide data stream source authentication, all data packet headers carry a partial message
authentication code digest and digest error correction code. Each packet’s UDP header includes a
segment and packet number. The packet number is used to identify the correct order of the digest’s
fragments, which are spread between different packets of the same segment. The sending party does
not have to undertake any modifications or calculations on the transmitted data. The digest value does
not depend on the data; data source authentication is provided by calculating:

1. mac1i = HMAC(sid, ts || i) , where sid is the secure identifier of the source, ts is the current
timestamp, and i is the number of the transmitted segment.

2. The digest is divided into fragments pk = submac(mac1i), where k = 1 . . . m, m = lenght(mac1i)/5.
3. Calculating the mac1i error correction code: ecci = f ecc(p1 . . . pk), where f ecc is the chosen error

correcting function.
4. Inserting pk and ecci into the UDP headers. Finally, all packets comprising the segment should be

sent to the receiving party.

To authenticate the source of the data stream, the receiving party must collect all digest fragments
pk of the same segment and combine them into mac1i. If some packets were lost during transmission,
lost fragments are restored using the error correction code. Additionally, the receiving party has to
calculate its own version of the corresponding function to get mac1r. If both values match, then the
data source is authenticated.

3.4. LSSP Mode 2: Source and Content Authentication

To provide source and content authentication, the following procedure should be followed at the
sending side:

1. For each new segment si of the data packets, the new authentication key ki should be calculated
using the following equation: ki = H(sid || ts || i), where sid is the secure identifier of the source,
ts is the current timestamp, and i is the number of the transmitted segment.

2. All n data fragments comprising a full segment of packets should be collected and HMAC digest
calculated on the data of all these packets using key ki, mac2 = HMAC(ki, data), where data is
the concatenation of the data of all packets comprising the current data segment.

3. The digest is divided into fragments pk = submac(mac1i), where k = 1 . . . m, m = lenght(mac1i)/5.
4. Calculating the mac1i. error correction code: ecci = f ecc(p1 . . . pk), where f ecc is the chosen error

correcting function.
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5. Inserting pk and ecci into the UDP headers. Finally, all packets comprising the segment should be
sent to the receiving party.

The receiving party collects into memory all the packets comprising the whole segment of data
and restores the sender’s digest value mac2s from the corresponding packets’ headers. If some
fragments were lost, then missing fragments are restored using the error correction code. The receiver
calculates the value of key ki, and calculates its own version of the digest mac2r using the received
data. If mac2s = mac2r then all data packets comprising the whole data segment are unmodified, data
integrity is intact, and the sender is authenticated.

3.5. LSSP Mode 3: Source Authentication, Content Authentication, and Confidentiality

To further enhance the security properties of the proposed protocol, it is possible to use
symmetrical encryption to ensure confidentiality of the data. In this variation, source authentication
and content integrity are ensured by using exactly the same procedure as in the Mode 2 modification
of the algorithm. The only difference is that, after calculation of the digest, all data is encrypted using
a symmetrical cipher (e.g., AES) in CBC mode.

At the sending party, each data packet is encrypted independently using a secret encryption key
eki and initialization vector ivj, j = 0, 1, . . . , n− 1. The encryption key is the same for all packets of
the i-th segment and is calculated using the following equation:

eki = H(sid || ts || i), where sid is the secure identifier of the source, ts is the current timestamp,
and H is the same secure hash function as used for the HMAC calculations. If the result is too long
to be used as the key for the selected encryption algorithm, then it is truncated. On the other hand,
a secure hash function should be chosen to provide a sufficient length of the hash result for use as an
encryption key. For example, if AES256 is used for encryption, then at least SHA256 should be used
for the HMAC calculations.

The initialization vector used for the CBC encryption mode is different for each data packet and
calculated using the following equation:

ivj = H(sid || i || j). (2)

This kind of security parameter derivation ensures that the receiving party can decrypt data even
in cases where some packets of the data segment are missing, and reconstruction of the whole segment
is impossible.

If additional resilience to data loss is required, protocol modification could be obtained by adding
additional redundant data packets with error correction information. In this case, the error correction
code should be calculated for the data packets.

4. Evaluation and Experiments

4.1. Qualitative Comparison

One of the advantages of the proposed protocol over DTLS is the simplicity of new device
registration. If the DTLS protocol is used, then server and client authentication is performed
during the handshake procedure using x.509 certificates. X.509 certificates should be generated,
signed, and distributed to all devices in the network. This requirement imposes the need for proper
management, storage, revocation, and so forth of all the issued certificates.

The LSSP protocol does not use any special stages to establish the new connection between server
and client. In its simplest variation (Mode 1), no additional information is added to the data fields of
the network packets, ensuring zero traffic overhead is used for the source authentication data. On the
other hand, DTLS uses the handshake procedure which takes long time (especially in lossy network
conditions) and requires a mutual exchange of messages in the correct order. If the handshake is
frequent it can create a considerable amount of network traffic. Moreover, the data fields of each DTLS
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packet are carrying additional security and protocol information, which further increases the overall
traffic overhead.

Resuming the LSSP protocol session after a long delay does not require any special steps. The data
source is automatically authenticated after the first reception of the whole segment of data. DTLS
requires a handshake procedure and renegotiation of the connection parameters after all long delays.

DTLS is a point to point protocol, which implies that each client has to make an individual
connection to the receiving server. This eliminates DTLS from situations where multicast data
translation is required. On the other hand, the proposed LSSP protocol could be successfully used
in environments where several data-receiving servers are present. Moreover, the LSSP protocol does
not require an explicit connection to the server—the transmitting device could sit on the network and
translate data even if no servers are listening to it at any specific time.

The DTLS protocol does not provide any means to fight possible problems under non-ideal
network conditions. Only the handshake stage of DTLS ensures correct data delivery if packet loss
occurs in the lower levels of the network stack. The proposed LSSP protocol anticipates usage of ECC
for authentication data and for the payload (arbitrary), thus providing higher resistance to data loss
due to transmission errors in the underlying network stack.

On the negative side, when compared to the plain UDP or DTLS, the LSSP protocol requires
more memory at the sending device, as the data of the whole segment must be collected and stored
in memory before the calculations of the authentication data and ECC can begin. This memory
overhead increases when message authentication codes with longer digests are used. For example,
if HMAC-SHA1 is used, then memory requirements for data buffer increases five-fold compared to the
plain UDP. LSSP protocol also introduces some additional latency to the network data stream, as it
has to wait until the data comprising the whole segment is available. Latency increases if “slow” data
stream is used. This issue could be mitigated by using smaller packets.

4.2. Performance Comparison

To evaluate the performance characteristics of the proposed method, a streaming client and
receiving server were created. As the prototype for the fog “End Device”, the Raspberry Pi embedded
computer (Model B, revision 2, BCM2835 CPU, 512 MB RAM) running “Raspbian GNU/Linux
9 (stretch)” was used. All performance measurements were performed at the sending device.
The receiving party was a standard PC running Windows 10. The LSSP protocol was implemented
in java using open source security libraries from Bouncy Castle [42]. To get low level access to UDP
packet headers, the jnetpcap java library [43], providing an interface to the low level libpcap [41] and
winpcap system libraries, was used. The java native implementation of the DTLS protocol provided by
Bouncy Castle [44] was used in tests involving DTLS.

Three modifications of the LSSP protocol were implemented. Mode 1 implementation used five
packet length segments and the HMAC-SHA1 authentication function for data source authentication.
The headers of the first four packets of the segment carried a 160-bit digest value and the last packet
carried a checksum of the first four parts of the digest. A simple XOR function was used to calculate
the checksum value. Implementation of Mode 2 used the same message authentication function as
Mode 1. The only difference was that HMAC-SHA1 was additionally calculated on the data fields
in the first four packets of the five-packet segment. The last packet’s data field was filled with ECC
values for the first four data packets. The XOR function was used to calculate both checksums. Finally,
Mode 3 implementation additionally encrypted all data packets using a standard AES block cipher in
CBC mode with a 128-bit key. In the following graphs these three modifications of the LSSP method
are labeled as M1, M2, and M3.

To compare the performance characteristics of the proposed method we used a standard
UDP protocol, which does not provide any security or source authentication, and two different
variations of the DTLS protocol. The first variation of DTLS used the TLS_RSA_WITH_NULL_SHA
ciphersuite, which does not provide any encryption, but authenticates the source and the data.
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As the security qualities of this variation are comparable to Mode 2 of the LSSP method, this
DTLS variation is labeled as DTLS2 in the following charts. The second variation of DTLS used the
TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite and is labeled DTLS3 in following charts, because
its security properties are comparable to Mode 3 of the LSSP method.

4.3. Experimental Results

Figure 3 compares the performance of the six aforementioned protocols with respect to
transmission time while transferring 10 MB of data using different packet lengths. The plain UDP
is the best performer, but Mode 1 implementation of LSSP method is a very close competitor and
additionally provides data source authentication. The difference in performance of plain UDP and M1
is caused by computational overhead introduced by additional calculations performed on the sending
device. The total amount of plain data sent through the network interface is exactly the same in both
cases, but time taken to send all the packets is slightly bigger in the case of M1. For example, it takes
10.5 s to send 10 MB in 512 B data packets using UDP and 11 s using M1.Sensors 2018, 18, x FOR PEER REVIEW  10 of 14 
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Another interesting pair is M2 and DTLS2, which provide almost identical levels of performance
and comparable properties of source and data authentication.

M3 is slower than DTLS3 because additional data packet containing ECC information for data is
send in each data segment.

To evaluate the performance of the methods in non-ideal networks we used the NetEM (Network
Emulation) tool, which allowed us to emulate various faulty conditions of network functionality. We
used NetEM [45] on the data sending device (Raspberry Pi) to emulate random packet loss in the
network infrastructure. On the receiving side all data packets were collected, and missing data packets
were restored (if possible). The results of this experiment are presented in Figure 4.

During this experiment, only DTLS2, DTLS3, M2, and M3 were used. Ten MB of data was
transferred from the streaming device using 256 B packets. Results show that both the M2 and
M3 modifications of the LSSP method provide significantly less overall data loss in poor network
conditions by using redundant data packets for missing data restoration at the receiving side.
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To assess the energy efficiency of the proposed method, we measured total energy consumption
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To measure the energy consumption in the WiFi adapter we used the arrangement presented in
Figure 6.

Energy consumption was measured at the sending device (Digitus Wireless 150N USB adapter)
using current shunt and bench multimeter. A personal computer was used to collect measured data
and calculate total energy consumption during data transmission. Quiescent energy used to power the
USB WiFi adapter was excluded from this evaluation.

DTLS and corresponding LSSP protocols were using the same security algorithms implemented
using the same native Java cryptographic libraries. This ensures that power usage for encryption of the
data is the same between different algorithms providing the same security level. The main objective of
this experiment was to evaluate energy consumption differences while transmitting data.
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To evaluate the data overhead imposed by all protocols under evaluation, we transferred 10 K
of data from the streaming device and used Wireshark to capture all packets at the receiving device,
and then calculated the total sizes of the packets “on-wire”. The results are summarized in Figure 7.
Only packets originating at the streaming device (client in the terms of DTLS) are considered in this
chart. The handshake phase of the DTLS protocol imposes some traffic passed from the server to
the client.Sensors 2018, 18, x FOR PEER REVIEW  12 of 14 
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This chart clearly shows that the M1 modification of LSSP does not add any additional data
compared to the most bandwidth effective plain UDP protocol. The M2 and M3 versions use an
additional data packet to send ECC information for the data, so the total bandwidth used in these cases
is exactly 5/4 of that used for UDP or M1. Both versions of DTLS use the handshake stage (labeled as
DTLS-HS) and additional DTLS protocol related data in each data packet (labeled as DTLS).

5. Conclusions

In this paper, a new lightweight secure streaming protocol (LSSP) for the fog computing “Fog
Node-End Device” layer was introduced. This protocol is intended to be used by resource-constrained
devices for data streaming, where a certain degree of packet loss is possible (e.g., video streaming).
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The proposed protocol uses a covert channel-inspired communication over UDP with data
source authentication information embedded into the UDP packet headers. The three basic modes
of the protocols we investigated provided data source authentication only, content and data source
authentication, and content confidentiality with data source authentication. In non-ideal network
conditions, when extensive data loss is probable, additional redundant data packets could be added to
increase data transfer reliability. The protocol is suitable for use in situations where broadcasting and
multicasting is required, does not require special stages for network session establishment between the
client and server, and is resilient (to some extent) to data packet losses in the network infrastructure.

The experimental results show that the Mode 1 modification of the proposed protocol has almost
the same performance, data overhead, and energy consumption characteristics as the plain UDP
protocol, while at the same time providing data source authentication.

The Mode 2 and Mode 3 modifications, when used with additional redundant ECC packets,
provide increased data transfer reliability compared to the DTLS protocol, with similar security
properties. On the other hand, if the usage scenario requires frequent establishment of new connections,
then the bandwidth overhead used in the DTLS protocol as well as the complex handshake procedure
causes DTLS to be less bandwidth efficient, even in cases when additional ECC packets are used for
the LSSP protocol.
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