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Abstract: It is expected that the number of devices connecting to the Internet-of-Things (IoT) will
increase geometrically in the future, with improvement of their functions. Such devices may create a
huge amount of data to be processed in a limited time. Under the IoT environment, data management
should play the role of an intermediate level between objects and devices that generate data and
applications that access to the data for analysis and the provision of services. IoT interactively
connects all communication devices and allows global access to the data generated by a device.
Fog computing manages data and computation at the edge of the network near an end user and
provides new types of applications and services, with low latency, high frequency bandwidth and
geographical distribution. In this paper, we propose a fog computing architecture for efficiently and
reliably delivering IoT data to the corresponding IoT applications while ensuring time sensitivity.
Based on fog computing, the proposed architecture provides efficient power management in IoT
device communication between sensors and secure management of data to be decrypted based on
user attributes. The functional effectiveness and the safe data management of the method proposed
are compared through experiments.
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1. Introduction

With the development of the Internet of Things (IoT), a device could recognize the environment
and conduct a certain function by itself. Therefore, roles of a computing model that controls IoT devices
are paramount. IoT devices mainly consist of sensors. Previously, cloud computing based on a sensor
network was used to manage sensor data [1,2]. Transferring and processing huge amount of data
through cloud computing caused several issues such as delayed service response time. In addition,
the number of application area of a sensor network is expanding and the demand on real-time
processing and transferring of information to control a device of IoT is also increasing [3].

A new type of computing model, fog computing, is proposed as the amount of data generated
by a sensor is increasing and a routine to process the data is complicate. Fog computing is a model
to manage data, conducting near field communication with a sensor. As a device in fog computing
uses near field communication, its response speed is faster than cloud computing and the number
of sensors allocated to a device is smaller than in cloud computing. Therefore, more and faster tasks
are possible, compared to cloud computing. Considering the fact that it requires data aggregation to
reduce waste of energy caused by duplicate delivery of information between near devices in a sensor
network, clustering-based hierarchical management has many advantages [4–6].

In addition, fog computing services that have been developed so far consist of data creation,
processing and transfer, as shown in Figure 1. In other words, a cloud server or a proxy server extracts
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features according to a type of data once data is created at a sensor. Then, a server creates rules of
pattern analysis and inference to save or process data. Data processed through the process is provided
to a data owner or a user in customized service. In such systems, data for a service user was saved in a
plain text type and transferred to a monitoring server for future access and use of a user. Data sharing
and utilization are inevitable functions. Data generating at a sensor can be fatal information to an
individual user, therefore, a delegation function to allocate the authority of data access to a legitimate
user and revocation function to remove the authority of data access from the user are required.
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This paper proposes an effective solution to resolve an unnecessary power consumption issue in
communication between sensors under a fog computing environment. In addition, a fog computing
architecture for safe management of data generating at each sensor is proposed. The proposed
architecture is based on IoT reference model proposed by CISCO. At the application level, a data
security method through user attribute-based encryption and decryption and delegation and revocation
of authority is proposed. At a lower level, unnecessary communication is controlled by expecting
usage and frequency of communication between sensors.

This paper consists of the following sections. The second section reviews the Internet of Things,
the system environment proposed in Section 2, attribute-based encryption for fog computing and
secure data management and a sensor network that is the base of communication between devices.
Section 3 proposes a hierarchical management method that expects power consumption and frequency
of use of a sensor to improve overall architecture and communication between devices as a description
of the system proposed. In addition, a method to delegate or remove authority in attribute-based
encryption for secure management. Section 4 evaluates performance of a proposed method. Finally,
Section 5 describes the conclusions of this study and possible topics for future study.

2. Related Research

2.1. Internet of Things

Internet of Things (IoT) is the intelligent environment that allows mutual communication between
users and things and things and things by connecting all things through wired or wireless networks,
based on Internet Communication Technology (ICT). In other words, the IoT makes things that
are working under different operation systems, network environment and hardware environment
interoperable through the Internet. Figure 2 shows the concept of IoT.
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example, Table 1 indicates IoT reference model and associated levels proposed by CISCO. The data 
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Information flow in most systems is bi-directional. 
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Edge computing is a concept that contrasts with cloud computing. Cloud computing is a way to 
communicate directly with a central data center, whereas edge computing communicates primarily 
with the so-called “edge data center,” which is located near the device, and leaves secondary work 
to the central cloud. In other words, edge computing is a computing topology concept. 

Fog computing was first proposed by CISCO in January 2014. Antunes, senior director of 
corporate strategy innovation at CISCO, has stated that edge computing is a component or subset of 
fog computing. He said: “fog computing seems to be a way to handle where data is generated from 
where it is stored. Edge computing is simply to be processed near the point where the data was 
generated. Fog computing includes not only its edge processing but also the network connections 
necessary to import that data from the edge to the endpoint“. Fog computing refers to the network 
connections between edge devices and the cloud. On the other hand, edge computing refers more 
specifically to computing processes performed near edge devices. Therefore, fog computing includes 
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Gartner, the U.S. market research institution, nominated the Internet of Things at the top of
its list of best popular technologies [7]. The IoT can be classified into three major areas: device
area, network (wired and wireless) area and service interface (platform and application) area. The
device area transfers data collected or drawn from a certain object to other objects, using the built-in
communication functions of an object. The network area is a wired or a wireless path for data
transmitted between users and things or things and things. The service interface area processes data to
create information and control and manage the various devices.

CISCO defines standard terms for each level and describes functions of each level and interaction
between levels, introducing the reference model of IoT [8]. The reference model consists of 7 levels.
Each level does not limit the scope of a corresponding component or restricts a region. For example,
Table 1 indicates IoT reference model and associated levels proposed by CISCO. The data direction is
defined as bi-directional flow. Control information in the control pattern flows from the top (Level 7)
to the bottom (Level 1). Information flow in the monitoring pattern is opposite. Information flow in
most systems is bi-directional.

Table 1. CISCO’s Internet of Things Reference Model.

Layer Name Detailed Role

1 Physical Devices & Controllers The “Things” in IoT
2 Connectivity Communication, Processing Units
3 Fog Computing Data Element Analysis, Transformation
4 Data Accumulation Storage
5 Data Abstraction Aggregation, access
6 Application Reporting, Analytics, Control
7 Collaboration & Processes Involving People, Business Processes

2.2. Fog Computing

Edge computing is a concept that contrasts with cloud computing. Cloud computing is a way to
communicate directly with a central data center, whereas edge computing communicates primarily
with the so-called “edge data center,” which is located near the device, and leaves secondary work to
the central cloud. In other words, edge computing is a computing topology concept.

Fog computing was first proposed by CISCO in January 2014. Antunes, senior director of
corporate strategy innovation at CISCO, has stated that edge computing is a component or subset
of fog computing. He said: “fog computing seems to be a way to handle where data is generated
from where it is stored. Edge computing is simply to be processed near the point where the data was
generated. Fog computing includes not only its edge processing but also the network connections
necessary to import that data from the edge to the endpoint“. Fog computing refers to the network
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connections between edge devices and the cloud. On the other hand, edge computing refers more
specifically to computing processes performed near edge devices. Therefore, fog computing includes
edge computing, as well as networks that are required to send processed data to the final destination.
In other words, it is a standard that defines how edge computing should work. It creates a rapid
control loop, using a fog computing model, because data is processed at the device [9].

The structure of fog computing is shown in Figure 3.
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Fog computing [9–11] is a virtual platform that provides processing, saving and networking
service between a device and a cloud computing data center. However, it is not exclusively located
at the edge of network. Processing, saving and networking resources are building blocks of cloud
and fog.

The cloud layer, which is the core of fog computing, performs data virtualization, analysis,
machine learning, and updates rules and patterns in the fog layer’s proxies. The proxy server serves
as a simpler cloud server. A concentrated data storage provides creditability and easy access to data
by computing resources in a cloud. A data storage that is located at the center of the fog computing
structure can be accessed by both device layer and fog layer [12]. The fog computing structure provides
some advantages as follows:

• Reduced network load: In the fog computing structure, the amount of data flowing into a network
is reduced because computation is conducted at a network edge near IoT devices.

• Mobility support as a default function: The Mobility according to reliability is a fundamental
requirement to many IoT applications. The device resources like smart phones and laptops may
provide physical or virtual mobility to support a mobile IoT application.

• Context awareness: In the fog computing structure, resources provide context awareness relating
to data created by a sensor. The device resources play roles in combining data at a sensor, using
position or application context.

• No single defective point: As calculation is completed in a distributed way in fog computing,
the model does not have a single defective point. Several snapshots of an application can be
allocated at a cloud to improve reliability.

2.3. Sensor Network

Due to the development and commercialization of wireless communication technology, sensor
network technology has attracted great attention. A sensor network is the environment to connect
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hundreds of devices. Therefore, wireless sensor network-based products which allow configuring a
sensor network environment, have a large market [13]. Figure 4 shows structure of a sensor network
in the IoT environment.Sensors 2018, 18, x 5 of 16 
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Under the sensor network environment, devices are distributed at various areas and form a
network, making it impossible to collect devices, replace hardware and replace or charge a battery.
Under a sensor network environment, research and development of network and protocol technology
have been conducted to improve energy efficiency, considering the hardware limitations of devices.

A variety of conditions including hardware limitations, network topology, the communication
environment and power consumption must be considered to construct the sensor network environment.
In general, sensor devices in a sensor network adopting a cluster-based protocol transmit measured
data to the m-proxy, which is a small unit proxy server of fog computing. The m-proxy server is
a device that collects data from the network in the cluster structure and transfers it to the proxy
server in fog computing. The proxy server is a system that collects sensing information sensed by a
sensor device, or links event data to the outside of the sensor network and manages the related sensor
network. Due to the development of technology, recent sensor device are becoming low cost, low
power, and miniaturized. However, they have also some technical difficulties such as replacement of
hardware and replacement or charge of battery. Studies on the development of technology to overcome
such shortcomings are currently undergoing.

Considering the fact that it requires data aggregation to reduce waste of energy caused by
duplicate delivery of information between near devices in a sensor network, clustering-based
hierarchical management has many advantages. In other words, fog computing creates a local cluster,
transfers similar information about events happening at a near area to the m-proxy server, realizes
energy effective routing by allowing the m-proxy server to perform data aggregation, and prevents
flooding of ineffective inquiries by transferring requested inquiries through the m-proxy server.

A sensor network in IoT environment adopting clustering algorithm is divided into smaller areas
called a cluster, as shown in Figure 5. A cluster has an m-proxy server. An m-proxy server collects
data from cluster members and forwards the collected data to a proxy server.
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One of the most layered routing protocols used in sensor networks is the Low Energy Adaptive
Clustering Hierarchy (LEACH) protocol. LEACH is a method to periodically replace m-proxy servers
with the highest energy consumption based on probabilities. It prolongs the lifetime of the sensor
network compared to existing routing protocols. However, a certain number of m-proxy servers
are not selected for each round by a probabilistic m-proxy server determination method and the
m-proxy servers can be concentrated in a specific area in the sensing field. To solve this problem,
a LEACH-Centralized (LEACH-C) routing protocol that complements LEACH has been proposed,
but LEACH-C also requires additional energy consumption for all devices to communicate with
the proxy server in every round, so additional overhead occurs. In addition, the data transmission
process between the proxy server and the sensor devices is the same as the clustering-based routing
technique. However, in this technique, in selecting the m-proxy server differently from LEACH,
the m-proxy server is selected according to the position information of the devices and the energy
holding amount. Since this method knows the location information of the devices in advance, it is
possible to appropriately distribute the m-proxy servers, thereby making it possible to construct a
more robust network. However, since each device frequently communicates with the proxy server for
its current remaining energy level transmission, so the communication cost increases.

2.4. Attribute-Based Encryption

Attribute-based encryption is a type of encryption method that allows only users who have
sufficient attributes about encrypted data to decrypt the data. Attribute-based encryption starts from
configuring identity values of identity-based encryption to a set of pre-determined attributes. The
attribute-based method proposed by Sahai, et al. in an early stage, used a threshold technique. A
ciphertext contains Set S consisting of attributes owned by an encryptor. A user who wants to decode
a ciphertext compares Set S’ (a group of his/her own attributes) with Set S. If a certain number (k) of
attributes is matched, the cipher text can be decrypted.

After that, there have been many studies on diversified message encryption techniques, beyond
the limitations of the threshold technique, which is a simple comparison of attribute values. As a result,
two attribute-based encryption methods were proposed: key policy attribute-based encryption and
ciphertext policy attribute-based encryption.

The ciphertext-policy attribute-based encryption proposed by Bethencourt et. al solves the issue
of key-policy attribute-based encryption in which an encryptor does not have an authority to access a
ciphertext as a user [14]. A ciphertext created by ciphertext-policy attribute-based encryption contains
access tree structure and encrypted data which are required to decrypt a ciphertext. A private key to be
used consists of keys issued by a key issuer against attributes of a user. If an attribute value owned by
a user is matched with an access tree structure included in a ciphertext, the ciphertext can be decoded.
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The process of ciphertext-policy attribute-based encryption is illustrated in Figure 6. Each user
has an attribute such as ‘Premium’, ‘Basic’ or ‘Drama’. In a message, an access tree of ‘Premium’ ∨
(‘Basic’ ∧ ‘Sports’) is encrypted. User 2 also can decrypt the message because the access tree is satisfied.
However, User M cannot decrypt the message because the access tree is not satisfied.
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The existing Ciphertext-Policy Attributed-Based Encryption (CP-ABE) method does not practically
deal with revocation and delegation. It conducts flexible attribute delegation and revocation as an
extended type of attribute-based encryption. Ciphertext-Policy Attributed-Based Threshold Decryption
(CP-ABTD) has three characteristics: first, a delegator who owns a private key about an attribute group
can assign his/her authority to a delegatee. Second, a delegator can decide delegation of his/her
authority to a delegatee. Third, the proposed method allows revocation of attributes [15].

Most of the methods proposed in attribute-based encryption use a list of people who revoke
attributes and NOT operations in Key-Policy Attribute-Based Encryption (KP-ABE). An example of an
attribute revocation method is to set the expiry date on attributes.

Bethencourt briefly mentioned how to revoke an attribute value, proposing CP-ABE [4]. The
method to revoke attributes is to attach an expiry date to the private key and an attribute value of
a ciphertext. The expiry date of an attribute value included in the private key is compared with the
time value of a ciphertext. If the expiry date is passed, a user is not allowed to use an attribute value
any more. However, this method does not propose how to renew expired attribute values. Therefore,
the expiry date is passed, an attribute must be re-issued. In addition, this method does not consider
how to revoke an attribute value before the expiry date.

To propose how to revoke an attribute value in KP-ABE, Ostrovsky allocates the revocation list to a
ciphertext [16]. In addition, he creates a d-order equation, assuming that all ciphertext has ‘d’ (number)
attribute values. A user who is not included in the revocation list uses his/her ID as an attribute value
and calculates the private value through interpolation with a result from ‘d+1’ polynomial equations.
If a user is included in the revocation list, he/she could have only ‘d’ results and could not have a
private value. As this method fixes the number of attribute value to ‘d’, effectiveness and efficiency are
low. In addition, the revocation list should continue to be maintained, rather renewing attribute values
owned by a revoker.

Attrapadung proposed Direct Revocation and Indirect Revocation methods for CP-ABE and
KP-ABE. Direct revocation directly revokes a key using the service revocation list [17]. However, this
method should keep maintaining the list. Indirect revocation has an authentication server. A user
who is not on the revocation list revokes an attribute value by communication with the authentication
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server [18,19]. This method is not required to maintain the revocation list but may create bottlenecks
because of the necessary continual communication with the authentication server.

3. Proposed System

3.1. Platform Design

As shown in Figure 7, the platform divided into the role-based hierarchy of the proposed object
Internet consists of the cloud, the proxy server, and the device. A proxy server has a server to analyze
data and a storage to save data. A proxy server conducts re-encryption. A proxy server monitors
device information and controls devices according to the information analyzed.
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Connection types of devices differ according to the specifications of the connected device. Unlike
a high performance device, as a low performance device is configured with simple sensors and an
actuator only, it is difficult to communicate with a proxy server. To deal with this issue, select a high
performance device as a small segment of a proxy server and make it play an intermediate role for a
proxy server. The system proposed consists of three layers, as illustrated in Figure 8. Each layer has a
cloud, a fog, and a device layer.
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The top layer is the cloud computing layer that receives information from a proxy server. It also
plays the role of a storage device to save all data inside the cloud. The saved data can be used for other
purposes, such as data mining and management. The fog layer is a highly virtualized platform that
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provides a number of services such as calculation, saving and networking services at the network edge
near an IoT device. It makes cloud service available near IoT devices or mobile users.

The device layer includes an m-proxy server with a limited amount of resources, which is installed
at a store, a cafe or a public facility such as an intersection within one or two hops from a sensor
or an IoT device to collect information. As calculation is conducted at a network edge near an IoT
device, it reduces the amount of data transferred to a cloud and delivers services to many devices
with powerful wireless connections. For example, traffic control can be automated by collecting data
from cameras and sensors installed at a side of road in real-time. Sensors detect approaching objects
including pedestrians and vehicles and measure the distance from/to or the speed of the objects.
They send a signal to a smart traffic light to provide appropriate instructions to vehicles, based on the
collected information. Although the areas covered by the edge layer are different, they could provide
low network latency, sensor position recognition, wide geographical distribution and mobile service.

3.2. Communication Control by Power Consumption

Low performance IoT devices have low calculation and networking capability. Therefore, selected
representative sensors are used as a small unit of proxy server to save power. In other words, m-proxy
servers from selected sensors become a small unit of proxy server. Through this setting, a proxy server
can manage devices.

In sensor networks, the layer-based routing protocol is LEACH-C, which improves LEACH. This
method selects m-proxy servers according to energy consumption. However, all the sensor devices
have to communicate with the proxy server in every round, and there is overhead for additional energy
consumption and location processing.

Therefore, this paper proposes a more effective information collection method. We estimate power
consumption by m-proxy servers and normal devices in an early round and expect the remaining
power level for the next round to remove unnecessary communications from LEACH-C.

An equation may provide an example. Figure 9 indicates the structure of a model to estimate
device’s power consumption. In the first round, a sensor device transfers its current position and
the remaining power level to the proxy server. The proxy server configures the best cluster with
information received, creates a Time Division Multiple Access (TDMA) schedule and broadcasts it to
all devices. Then, the device transmits its own sensing data to the proxy server through the cluster
structure. This is the end of one round. From the next round, the proxy server configures clusters
through power consumption estimation algorithm, without making unnecessary communications to
collect device information:

ETx(l, d) = ETx-elec (l) + ETx-amp (l, d), (1)

where: ETx-elec (l): Power consumption to transmit a message with Size 1, ETx-amp (l): Increased power
consumption to send a message with Size 1 for ‘D’ distance.

Equation (1) is the power consumption estimation algorithm for a device. It calculates the power
consumption to send a 1 bit message over a distance ‘d’. At the setting stage of two early rounds,
the proxy server is set to receive the expected power consumption from all devices. From the next
round, the proxy server is set to not receive current power consumption from all devices. The power
consumption could be estimated. Therefore, only at the setting stage of the two most early rounds, is the
energy level of all devices received. In the next round, the current energy level is not transmitted from
all devices. However, the remaining energy level could be estimated from the early rounds. Therefore,
power consumption of a device after a round can be calculated. With this power consumption, we can
estimate the average power consumption of a small unit of proxy server and a normal sensor. In the
next round, the current energy level can be estimated by subtracting estimated power consumption
from the energy level of the previous round.

Continual use of estimated power consumptions may cause an error. To prevent errors from being
accumulated, regular synchronization is necessary.
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For the cycle of five rounds, as shown on the top of Figure 10, an energy level is transmitted from
all devices, and the average power consumption of a small unit of proxy server and a normal sensor
device are calculated at the first and the second round. The calculated power consumption is used to
estimate an energy level without making communication during the third and the fourth rounds. Then,
in the fifth and the sixth round, an energy level is transmitted for synchronization, and the power
consumption is calculated. With the result, estimation is conducted in rounds 7 and 8. This could save
energy accounting for power consumption for six rounds in the complete cycle of 10 rounds.
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On the other hand, for the cycle of 10 rounds, as shown in the bottom of Figure 10, an energy level
is transmitted from all devices, and the average power consumption of a small unit of proxy server
and a normal sensor device are calculated at the first and the second round. The calculated power
consumption is used to estimate an energy level, without making communication at rounds 3, 4, 5, 6, 7,
8 and 9. Then, an energy level is transmitted for synchronization at rounds 10 and 11 and the power
consumption is calculated. With the result, estimation is conducted in rounds 12, 13, 14, 15, 16, 17, 18
and 19. In other words, this could save energy accounting for power consumption for eight rounds in
the complete cycle of 10 rounds.

However, it cannot be said that the cycle of 10 rounds is more effective than the cycle of five rounds
in terms of energy consumption because the cycle of 10 rounds could have bigger error tolerance than
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the cycle of five rounds. As the overall network life-time is more important than communication of an
individual device in a sensor network, it is important to find the optimized estimation cycle according
to the errors. According to the experiments, the cycle of eight rounds shows the best performance.

3.3. Communication Control by Frequency of Use

When data is transferred from a sensor to the proxy server, data information is processed in the
fog area. The processed data is transmitted to the cloud server and printed to a device or a user by
an order created by the cloud server or the proxy server. Data processed in fog computing is directly
transmitted to cloud communication. However, such communication with the cloud server wastes
cloud server capacity and power consumption due to unnecessary data communication.

To solve the issue, this paper proposes a structure, on the basis of frequency of use in data
information processing process, as indicated in Figure 11. First, data is received. Next, we measure
frequency of data use. If the measured frequency of use meets the standard, we skip communication
with the cloud server, create control information and the proxy server and transmit it to sensors or
devices. If the measured frequency of use does not meet the standard, we communicate with the cloud
server and receive information from the cloud server, creating control information accordingly and
sending sensor control information to the proxy server. If the standard is drawn from calculations,
information satisfying the standard is directly transmitted to the proxy server, without communication
with the cloud server. Therefore, the number of communications with the cloud server and power
consumption can be reduced. In addition, as communications with the cloud server happen only when
data does not satisfy the standard and has a problem, unnecessary communication does not occur. As
a result, the amount of data (load) received by the cloud server is reduced.
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3.4. Communication Control by Access Authority

A system adopting user attribute-based encryption sends data to a server via an access structure
after encryption. A user who wants to share and use encrypted data of a service user requests
decryption authority from a proxy server. A service user decides whether a person who requests
decryption authority is a legitimate user and creates an attribute delegated key and sends it to a
proxy server. In this system, a proxy server should have an attribute delegation list and an attribute
revocation list. A proxy server checks the attribute delegation list and re-encrypts data using an
attribute delegated key before providing it to a user.

As shown in Figure 12, system components include a trusted authority, sensors, a proxy server,
a cloud server and secondary user. Sensors generate data. A sensor can be a delegator that can delegate
an authority. A secondary user is a user who can utilize information collected from a sensor. However,
they need an authority of decryption before using data. They can be a delegatee. A proxy sever
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collects and processes data transmitted from a sensor. Therefore, it should have sufficient memory and
processing capability. In addition, it can re-encrypt data or process it with collected data, depending
on circumstance. A cloud server processes information collected from a sensor. Furthermore, it collects
and analyzes data received from a proxy server. It makes a decision using the results of analysis. It
should learn information about decision making in advance to understand the personal data and
effectively process it. It manages attribute delegation and revocation and monitors data.
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There are roughly six service scenarios using attribute-based encryption technology that allow
delegation and revocation of an attribute.

• A Trusted Authority (TA) defines system parameters using Setup (k) algorithm and creates the
public key (pk) and the master key(mk). In addition, it creates two private key shares skwIu,1 and
skwIu,2 relating to Attribute w and Public Key Iu and sends skwIu,1 to a proxy server and skwIu,2 to a
sensor or a data owner, using KeyGen (mk, w, Iu) algorithm.

• A user transmits Ciphertext cτ that encrypts Data m using Encrypt (m, τ, pk) algorithm. In this
context, data refers to sensing data.

• A secondary user requests a decryption token (attribute set and ciphertext) to a proxy server to
access Data m of the data owner.

• The data owner defines w′ based on his/her own attribute set w to delegate decryption authority
for Ciphertext cτ to a secondary user. The data owner creates the private key share for a secondary
user skwIu,2 and the proxy server key to delegate an attribute skw→w′ using his/her own private
key share skwIu,2 and the public key for a secondary user Ij, and send them a secondary user (w’,
skw’Iu,2) and the proxy server (skw→w′ ).



Sensors 2018, 18, 3633 13 of 16

• A proxy server creates its own private key share skwIu,1, proxy key skw→w′ and the private key
share for a secondary user skw’Iu,1 using the attribute set w′ defined by a patient. It re-encrypts
the ciphertext cτ with the public key for a secondary user Ij, skw’Iu,1 and sends the re-encrypted
ciphertext cτ′ to a secondary user.

• A secondary user obtains the data m by decoding the ciphertext cτ′ using the key received from
the proxy server and the data owner skw’Iu,2.

4. Experiment and Analysis

4.1. Performance of Proposed Fog Computing

The fog network was tested by the iFogSim Toolkit. iFogSim provides functions to simulate all
network nodes and print the simulation results. For comparison of all fog computing data, the cloud
computing and the computing system adopting fog layer were compared. The number of sensors was
total 50, 100, 150 or 200. A proxy server was configured, combining four segments. The CPU of each
sensor was 1.0 GHz. The size of data to be transferred was set to 20 KB. The average transmission time
between network devices was 5 ms.

Compared to the event that uses cloud computing only, it is shown that the system using the
fog layer has reduced waiting time and network usage, which is caused by communication control
between a fog computer and sensors. Figure 13 demonstrates comparison of energy consumption at an
end point, an edge device and a data center between cases when only cloud is used or fog calculation
is used. Figure 13 also indicates power consumption of fog computing architecture that uses a cloud.
For the fog layer, power was mainly consumed at sensors that perform most processing works while a
data center or a cloud consumed most energy in the cloud computing.
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4.2. Sensor Network Performance by Communication Control

To measure the performance of the sensor network, it was tested, separate from the overall system.
NS-3 network simulator was used to test the sensor network. For comparison, the LEACH-C module,
a sensor network hierarchical management method, was used. The number of sensors was increased
to 50, 100, 150 and 200. Transmission speed was set to 1 Mbps on the sensor field (100 m × 100 m area).
Sensors were fixed for an effective test. Figure 14 provides the life time by the number of devices. Life
time was increased by 9.43%, 12.27%, 21.17% and 24.41%, respectively. This result indicates that the
proposed algorithm shows better performance when there are more devices.
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4.3. Security Analysis

This paper verifies whether the proposed method is safe, assuming two possible events that could
happen during attribute revocation process. The validation items are analyzed for the events when a
revoker presents a random value or a value to renew an attribute value is exposed.

First, there could be two different cases when a revoker presents a random value. A revoker
can present a random value or a modified value during the process of attribute value renewal for
continuous renewal. In this case, an attacker could not know the random value. Therefore, it is
impossible for an attacker to disguise as a non-revoker by modifying the random value. In other words,
it is impossible to find a correct value during the renewal process with a value modified by an attacker.
This is also true in the case when an attacker randomly changes a certain value by multiplication
or division.

Second, it is assumed that a value to renew an attribute value is exposed when a message for
attribute value renewal is being received or during the renewal process of an attribute value that is not
revoked. When a renewal value is exposed, an attacker may attempt to renew an attribute value that
was previously revoked by him or her. However, it is obvious that the value calculated in this process
differs from the value obtained from a correct renewal process. In addition, an attacker does not know
a default value. Therefore, it is impossible for an attacker to renew a renewal value even if the value is
exposed during the process.

5. Conclusions

Cloud computing provides data content and control information to devices based on centralized
data access and delivery structure. With cloud computing, a huge amount of data is transmitted and
processed. There are also problems such as delays in service response time. In addition, as the Internet
of Things develops, the application fields of sensor networks are further expanded, and demands for
real time processing, transmission, and security of information controlling object Internet devices are
increasing. Fog computing has emerged as a way to effectively address this problem. Fog computing
is also referred to as edge computing, and includes a function of processing information collected
from a device before sending it to the cloud to reduce the amount of transmission or performing itself
without receiving device control information from the cloud. Thus, the data transmission delay in the
device is reduced and the device can be controlled in real time.

With the recent increases in the number of devices, the power consumption in the communication
between the sensors in the fog computing environment is increased. Various studies have been
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conducted to improve the performance in various scenarios and service delays in fog computing,
but research on effective power reduction is insufficient.

This paper presents a power consumption problem in the fog computing environment and
suggests an effective method for power reduction. We also propose a method for securely managing
the data generated by each sensor.

In order to solve the power consumption problem, a proxy server is placed between the cloud
server and the sensor, and the proxy server processes the data according to the frequency of use of the
data, thereby reducing the load of the entire communication. In addition, effective power reduction is
achieved between the proxy server and the sensor by hierarchically managing it according to power
consumption. Experimental results show that the total network latency and network usage are reduced.
The system encrypts data based on the user’s attributes so that only authorized users can use the
information. In addition, it performs efficient data management by adding attributes and revocation.
As a result of verifying the problems that may occur in the process of withdrawing the attribute value
of the user through the security evaluation, it can be seen that it is safe because the property value
cannot be falsified or the attribute cannot be updated at random.

Future research needs to be applied to a sensor network that can move freely in the proposed
method through simulation. And intelligent data transmission methods based on information- centric
networks using context-aware technology.
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