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Abstract: Modern wireless sensor networks have adopted the IEEE 802.15.4 standard. This standard
defines the first two layers, the physical and medium access control layers; determines the radio
wave used for communication; and defines the 128-bit advanced encryption standard (AES-128) for
encrypting and validating the transmitted data. However, the standard does not specify how to
manage, store, or distribute the encryption keys. Many solutions have been proposed to address this
problem, but the majority are impractical in resource-constrained devices such as wireless sensor
nodes or cause degradation of other metrics. Therefore, we propose an efficient and secure key
distribution protocol that is simple, practical, and feasible to implement on resource-constrained
wireless sensor nodes. We conduct simulations and hardware implementations to analyze our work
and compare it to existing solutions based on different metrics such as energy consumption, storage
overhead, key connectivity, replay attack, man-in-the-middle attack, and resiliency to node capture
attack. Our findings show that the proposed protocol is secure and more efficient than other solutions.
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1. Introduction

A wireless sensor network (WSN) is a network composed of resource-constrained devices with the
ability to perform sensing and wireless communications, which are called wireless sensor nodes. Due to
the low cost and flexibility of WSNs, they are employed in a variety of applications such as agriculture,
the environment, health, home and commercial automation, the military and transportation [1–11]
and have recently become a promising technology for Internet of Things (IoT) applications [12–15].
Modern WSNs adopt the IEEE 802.15.4 standard, which specifies the physical layer and the medium
access control (MAC) layer for low-rate wireless personal area networks (LR-WPANs). The standarad
also determines the radio frequency used for communication and provides four security services:
access control, confidentially, integrity and replay protection. The MAC layer handles security for the
IEEE 802.15.4 standard and defines the 128-bit advanced encryption standard (AES-128) for encrypting
and validating transmitted data. Unfortunately, the standard does not specify how to manage, store,
or distribute encryption keys [16]. Many solutions have been proposed to address this problem, but
the majority are impractical in resource-constrained devices such as wireless sensor nodes or cause
degradation of other metrics.

In this work, we propose an efficient and secure key distribution protocol for WSNs. We utilized
the existing cryptographic primitives to design a protocol that is simple, practical and feasible to
implement on resource-constrained devices such as wireless sensor nodes. This work extends our
preliminary work introduced in [17] by improving its efficiency and security. The contributions of our
work can be summarized as follows.
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• We introduce a comprehensive classification for the main key distribution and key establishment
schemes in WSNs. We classify the schemes into traditional key distribution schemes, including
private-key-based schemes and public-key-based schemes, and quantum-based key distribution
schemes, including those based on entanglement swapping and teleportation.

• We propose an efficient and secure key distribution protocol that is simple, practical and feasible
to implement on resource-constrained devices such as wireless sensor nodes. Because data
communication is responsible for most of a node’s energy consumption [18], the proposed
protocol utilizes the existing cryptographic primitives and leverages asymmetric encryption to
achieve key distribution and node authentication in one step and using only one frame to avoid
communication overhead. Moreover, the implementation of the proposed protocol adopts the
following techniques: a fast modular exponentiation algorithm (described in Appendix A.4) and
a short public exponent. These techniques speed up the node’s data computation, resulting in
lower energy consumption.

• We analyze and compare the proposed protocol against different types of schemes using various
metrics, including energy consumption, key connectivity, storage overhead, man-in-the-middle
attack, replay attack and resiliency to node capture attack. Our methodology (described in
Appendix A.1) combines simulations, hardware implementations and practical models to calculate
both the energy consumption of sensor nodes and the energy consumption caused by wireless
channel effects.

• We visualize and analyze the key connectivity and the impact of node capture attack using a graph.
We model a WSN as a graph and then implement the proposed protocol and the corresponding
schemes on the graph to investigate their key connectivity and the impact of node capture attack
on the key connectivity.

• We conduct a formal verification using an automatic cryptographic protocol verifier, ProVerif.
We utilize ProVerif to prove the security and soundness of the proposed protocol in formal
models. We verify the reachability and secrecy, correspondence assertions (authentication) and
observational equivalences.

The remainder of this paper is organized as follows: The next section introduces a classification
for WSN key distribution schemes and work related to the proposed protocol. Section 3 describes
the proposed protocol. Section 4 presents our findings and analyses. Section 5 describes the formal
verification of our proposed protocol, and Section 6 concludes the paper.

2. Related Work

Key distribution schemes in WSNs have been comprehensively studied in the literature.
The authors of [19–22] provided detailed surveys. However, in this study, we present a comprehensive
overview of the existing key distribution and key establishment schemes in WSNs, which we classify
into two domains. The first domain includes traditional key-based distribution schemes, which can be
further classified into private-key-based and public-key-based schemes. Private-key-based schemes
can be subcategorized into grid-based, polynomial-based and probabilistic schemes. Public-key-based
key distribution schemes can be subcategorized based on an integer factorization problem (IFP) or on
a discrete logarithm problem (DLP). The second domain includes quantum-based key distribution
schemes, which can be further classified into entanglement-swapping-based and teleportation-based
schemes. Figure 1 depicts this classification hierarchy, and Table 1 defines our evaluation metrics.

Grid-based schemes address a WSN of size n as an
√

n ·
√

n matrix or grid. In this subcategory,
each node in the WSN is assigned to a unique intersection (i, j) in the grid [23–25]. An early example
was called Peer Intermediaries for Key Establishment in Sensor Networks (PIKE) [26]. PIKE represents
a sensor network of size n by an

√
n ·
√

n matrix and uses some sensor nodes as trusted intermediaries
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for key distribution. Each sensor has an ID in the form of (x, y) based on its position in the matrix.
Moreover, each node is loaded with a pairwise secret key shared only with each node in the two sets:

(i, y) ∀ i ∈ {1, 2, 3, ...,
√

n− 1} (1)

(x, j) ∀ i ∈ {1, 2, 3, ...,
√

n− 1}. (2)

Keys are deployed such that in any pair A and B, at least one node C exists that shares a pairwise
key with both A and B. However, this approach suffers from key dependency because one inoperable or
missing node would impact the network connectivity. Additionally, the search process for intermediary
nodes consumes a large amount of energy because it involves sending many frames to other sensor
nodes searching for a node that shares a pairwise key. Moreover, this approach requires each sensor
node to store 2

(√
n− 1

)
keys.

Figure 1. Classification of key distribution schemes in WSNs.

Table 1. Evaluation Metrics.

Metric Definition

Efficiency

Energy consumption The amount of energy consumed during the key distribution/key
establishment process.

Storage overhead The memory required to store keys or keys materials.

Key connectivity The percentage of available links in a WSN, calculated as the number of
secured links divided by the total links.

Security

Replay attack The ability of an adversary to replay any of the corresponding frames.
Man-in-the-middle attack The ability of an adversary to impersonate any sensor node or sink node.

Resiliency to node
capture attack

The impact percentage of a node capture attack on WSN key
connectivity, calculated as the number of compromised links over the
number of secured links.
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Polynomial-based schemes depend on storing polynomials on wireless sensor nodes that are used
for key generation. In [27], this process was described as a threshold scheme (R, K). The threshold is
a shared security scheme that divides a message into K parts, where R is the minimum number of parts
required to reconstruct the original message. The author of [28], proposed a sharing security scheme
that used a polynomial equation in a finite field to construct a threshold scheme. In this scheme, an
arbitrary polynomial of degree R− 1 was generated in the following form:(

axR−1 + bx(R−1)−1 + ... + m
)

mod p, (3)

where p is a public prime number that is greater than the coefficients, m is the message, and a and b
are randomly chosen coefficients. Many other forms of polynomial-based key distribution schemes
have been proposed [29–34]. In [35], the authors proposed a polynomial-based key management
scheme consisting of three phases. In the first phase, sensor nodes discover the neighboring nodes
and elect a cluster head (CH). In the second phase, when a sensor node wants to acquire a secure
communication channel through the base station (BS), it sends a registration request. The third phase
generates a triple key. Subsequently, when a sensor node wants to communicate with the CH and BS,
the key is calculated based on a given polynomial and coefficients in a finite group. In this approach,
sensor nodes consume large amounts of energy during the discovery and cluster-electing phases.
Additionally, key connectivity is affected by node capture attacks.

Probabilistic-based schemes rely on the probability of two sensor nodes sharing a common key to
establish a communication link. In [36], the authors proposed a probabilistic key-based management
protocol. This scheme consists of three phases: key predistribution, shared-key discovery and path-key
establishment. During the key predistribution phase, a large pool of keys p and their identifiers are
generated. Then, a random set of keys k and their identifiers are drawn out of the key pool p to form
a key ring for each sensor node based on the following formula:

Pkey = 1−
(

((P− k)! )2

((P− 2k)! P! )

)
, (4)

where Pkey is the probability of two nodes sharing a common key. Next, the key rings are loaded
into each of the sensor node memories, and the key identifiers are saved on a trusted controller node
along with the associated sensor identifiers. In the shared-key discovery phase, two sensor nodes can
discover a shared key by broadcasting a list of their key rings. Additionally, the two sensor nodes can
hide the key sharing patterns by broadcasting a list, li = {α||Eki(α)||i = 1, ..., k}, for every key on the
key ring, where α is a challenge. The ability of the receiver to decrypt Eki(α) will reveal the challenge α

and then establish a shared key with the sender. In the path-key establishment phase, a path key is
assigned to each pair of sensor nodes that do not share a key but are connected to other sensor nodes
at the end of the shared-key discovery phase. However, this approach consumes large amounts of
energy because finding a common key between two sensor nodes requires broadcasting many frames.
Additionally, storing the key ring requires large amounts of memory, especially when the probability
of sensor nodes sharing a common key is certain.

Public-key-based schemes are another class of the traditional key distribution schemes in WSNs.
Practical public-key-based schemes depend on two major families of problems: IFPs such as the
Rivest–Shamir–Adleman (RSA) cryptosystem and DLPs such as Diffie-Hellman key exchange (DHKE)
and elliptic curve Diffie-Hellman (ECDH). The authors of [37] discussed using public infrastructure
such as RSA to improve the security of WSNs. The study considered the WSN topology as a
set of wirelessly connected sensor nodes that report collected data to the base station. However,
wireless sensor nodes are resource-constrained devices, and a straightforward implementation of
IFP or DLP without appropriate modifications is energy and memory intensive. In [38], the authors
proposed a public-key-based key distribution scheme using ECDH. The scheme consists of two phases:
a predeployment phase and a postdeployment phase. In the predeployment phase, sensor nodes are
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configured with elliptic curve (EC) parameters and the basepoint G. Then, αn is generated to calculate
Pn = αnG for all n nodes. Next, αn is stored in each corresponding node, and all Pn are stored in the
sink node. In the postdeployment phase, the sink creates a new secret key b and calculates its public
key Q = bG. The public key is then broadcast to all sensor nodes. Each sensor node calculates a new
key kn = αnQ, whereas the sink calculates a new key kn = bPn. The downside of this approach is that
each node must store all the EC parameters such as the field over which the curve is defined, the α and
b values that defined the curve and the generator point G.

Quantum-based schemes rely on the laws of physics and require special hardware. Nevertheless,
many authors have proposed solutions. For example, entanglement swapping was adopted in [39].
This scheme utilizes a third party, called a base station, to perform entanglement swapping among
sensor nodes. Each sensor node shares n qubits with the base station, and the base station shares
m qubits with each sensor node. When two sensor nodes x and y are separately entangled with
the base station, the base station performs entanglement swapping, allowing sensor node x and
sensor node y to become entangled. As another example, the authors of [40] proposed a scheme that
includes Einstein-Podolsky-Rosen (EPR)-pair distribution and quantum authentication. This scheme
allows a sensor node to teleport quantum information to any other sensor node in the network.
The entanglement-swapping-based and teleportation-based schemes rely on quantum cryptography,
which has been proven in prior literature to be secure unless the laws of physics have been defeated.
However, these schemes require entangled qubits to function, and applying entangled qubits in
resource-constrained devices such as WSNs is not yet practical with existing technology.

3. Proposed Protocol

The proposed protocol includes four phases: a pre–deployment phase, a key distribution phase,
a post-key distribution phase, and a key refreshment phase. Table 2 presents the notations used to describe
the proposed protocol.

Table 2. Notation for the Proposed Protocol.

Notation Description

y←− x y is generated by x.

x
de f
= y x is defined as y.

x := y y is assigned to x.
H( ) One-way hash function.
|| Concatenation.
send===⇒ [x] Sending message x.
recv⇐=== [x] Receiving message x.
Ek(y) y is encrypted with k.
E⊥k (y) y is encrypted with k using algorithm ⊥.
f ( ) Function to compare or verify.
P( ) Probability function.
F : A 7→ B Function maps A to B.
P Plaintext.
C Cipher text.
Id Node identification.
T Timestamp.
D Data.
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3.1. Pre-Deployment Phase

Pre-deployment Phase Steps

{KP, KR} ←− RSAgen

KP
de f
= AKsink and KR

de f
= AKnodes

Sink node := AKsink and Sensor nodes := AKnodes

Klocali
R←− keygen{0, 1}128, ∀Klocali ∈ {0, 1}128 ⇒ P

(
Klocali

)
= 1
|{0,1}128|

Sensor nodei := Klocali and Sink node := Klocali

The pre-deployment phase of the protocol consists of five offline steps. The first step is the
generation of an asymmetric key pair {KP, KR} ←− RSAgen, where RSAgen is the RSA key generation
algorithm. In the second step, KP is defined as a sink node key, AKsink, and KR is defined as the key for
the sensor nodes, AKnodes. In the third step, AKsink is loaded into the sink node, and AKnodes is loaded
into the sensor nodes. The fourth step involves the generation of a random local key for each sensor

node as follows:Klocali
R←− keygen{0, 1}128, where keygen{0, 1}128 is a random key generation algorithm

with a key space of {0, 1}128; the key space is a uniform distribution such that ∀Klocali ∈ {0, 1}128,
and the probability of each key is P

(
Klocali

)
= 1
|{0,1}128| . In the fifth step, Klocali is loaded into the

corresponding sensor nodei and into the sink nodes.

3.2. Key Distribution Phase

Key Distribution Phase Steps

Sink node:
Kcompl ←− Rangen{0, 1}128, Tag←− H

(
Kcompl

)
, and Timestamp T

C ←− EAKsink

(
Kcompl || Tag←− H(Kcompl) || T

)
send===⇒

[
C ←− EAKsink (Kcompl || Tag←− H(Kcompl) || T)

]
Sensor nodes:
recv⇐===

[
C ←− EAKsink

(
Kcompl || Tag←− H(Kcompl) || T

) ]
P←− DAKnodes

(
C ←− EAKsink

(
Kcompl || Tag←− H(Kcompl) || T

) )
fveri f y(T) =

{
accept, i f T ≤ time threhsold

reject, i f T > time threhsold

Tag′←− H
(

Kcompl

)
fcompare(Tag, Tag′) =

{
accept, i f match

reject, i f dismatch
Kuniquei = Kcompl ⊕ Klocali

After deploying the sensor nodes, the sink node generates a random complementary key
Kcompl ←− Rangen{0, 1}128, computes its hash value Tag←− H(Kcompl), and calculates a timestamp T.
The sink node then encrypts these values using its asymmetric key AKsink. After this task is

complete, the sink node sends the cipher to neighboring sensor nodes as follows: send===⇒
[
C ←−

EAKsink (Kcompl || Tag ←− H(Kcompl) || T)
]
. These neighbors forward the cipher to their neighbors

in a multihop fashion until all of the sensor nodes have received the cipher recv⇐===
[
C ←−
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EAKsink

(
Kcompl || Tag←− H(Kcompl) || T

) ]
. Because each sensor node is loaded with the asymmetric

key AKnodes in the pre-deployment phase, a sensor nodei can decrypt the cipher as follows: P ←−
DAKnodes

(
C ←− EAKsink

(
Kcompl || Tag←− H(Kcompl) || T

) )
and verifies the timestamp fveri f y(T) based

on a predefined threshold. If the timestamp exceeds the threshold, the sensor nodei rejects the cipher.
Otherwise, the sensor nodei hashes the complementary key Tag′←− H

(
Kcompl

)
and compares it with

the received hash fcompare(Tag, Tag′) to ensure it has not received a modified complementary key Kcompl .
If a mismatch is found, the sensor nodei rejects the cipher; otherwise, the sensor nodei produces its
unique key by XORing the complementary key and its local key as follows: Kuniquei = Kcompl ⊕ Klocali .

3.3. Post-Key Distribution Phase

Post-key Distribution Phase Steps

Sensor nodes:
Sensor data D, Nodei identity Idi, and Timestamp T
C ←− E⊥Kuniquei

(D || Idi || T)
send===⇒

[
Idi
′ || C ←− E⊥Kuniquei

(D || Idi || T)
]

Sink node:
recv⇐===

[
Idi
′ || C ←− E⊥Kuniquei

(D || Idi || T)
]

F : Idi
′ 7→ Kuniquei

P←− D⊥Kuniquei

(
C ←− E⊥Kuniquei

(D || Idi || T)
)

fcompare(Id, Id′) =

{
accept, i f match

reject, i f dismatch

fveri f y(T) =

{
accept, i f T ≤ time threhsold

reject, i f T > time threhsold

After establishing the key distribution phase, the sensor nodes have already produced their unique
keys. Therefore, when sensor nodei wants to transmit data D to the sink node, it uses its unique key
Kuniquei to encrypt the data D, its identity Idi, and a timestamp T; then, it concatenates the cipher with
another copy of its identity Idi

′ and sends both to the sink node. This process is described as follows:
send===⇒

[
Idi
′ ||C ←− E⊥Kuniquei

(D || Idi || T)
]
, where⊥ is a probabilistic encryption algorithm. Because this

study is concerned with key distribution, the sensor nodei can use any secure probabilistic encryption
algorithm. When the sink node receives the following cipher recv⇐===

[
Idi
′ || C ←− E⊥Kuniquei

(D || Idi || T)
]
,

it uses the concatenated node Idi
′ to find the corresponding Kuniquei as follows: F : Idi

′ 7→ Kuniquei .
Then, the sink node decrypts the cipher and compares the identities fcompare(Id, Id′), to ensure that
the appropriate Kuniquei is used and that the cipher is received from an authorized node. If a match is
found, the sink node verifies the timestamp T, fveri f y(T), based on a predefined threshold. When T is
less than or equal to the threshold, the sink node accepts the sensor data D; otherwise, it rejects the
sensor data D.
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3.4. Key Refreshment Phase

Key Refreshment Phase Steps

Sink node:
Kcomplnew ←− Rangen{0, 1}128, Tag←− H

(
Kcomplnew

)
, and Timestamp T

C ←− EAKsink

(
Kcomplnew || Tag←− H(Kcomplnew ) || T

)
send===⇒

[
C ←− EAKsink (Kcomplnew || Tag←− H(Kcomplnew ) || T)

]
Sensor nodes:
recv⇐===

[
C ←− EAKsink

(
Kcomplnew || Tag←− H(Kcomplnew ) || T

) ]
P←− DAKnodes

(
C ←− EAKsink

(
Kcomplnew || Tag←− H(Kcomplnew ) || T

) )
fveri f y(T) =

{
accept, i f T ≤ time threhsold

reject, i f T > time threhsold

Tag′←− H
(

Kcomplnew

)
fcompare(Tag, Tag′) =

{
accept, i f match

reject, i f dismatch
Kuniqueinew

= KKcomplnew
⊕ Klocali

In the key refreshment phase, the sink node generates a new random complementary key
Kcomplnew ←− Rangen{0, 1}128, computes its hash value Tag ←− H(Kcomplnew ), and calculates
a timestamp T. The sink node then encrypts these values using its asymmetric key

AKsink and sends the cipher to the neighboring sensor nodes as follows: send===⇒
[
C ←−

EAKsink (Kcomplnew || Tag ←− H(Kcomplnew ) || T)
]
. These neighbors forward the cipher to their

neighbors in a multihop fashion until all of the sensor nodes have received the cipher
recv⇐===

[
C ←− EAKsink

(
Kcomplnew || Tag←− H(Kcomplnew ) || T

) ]
. Because the sensor nodes are

loaded with the asymmetric key AKnodes in the pre-deployment phase, a sensor nodei can decrypt the
cipher as follows: P←− DAKnodes

(
C ←− EAKsink

(
Kcomplnew || Tag←− H(Kcomplnew ) || T

) )
and verifies

the timestamp fveri f y(T), based on a predefined threshold. If T exceeds the threshold, the sensor nodei

rejects the cipher; otherwise, the node hashes the new complementary key Tag′←− H
(

Kcomplnew

)
and

compares it with the received hash fcompare(Tag, Tag′) to ensure it has not received a modified new
complementary key Kcomplnew . If a mismatch is found, the sensor nodei rejects the cipher; otherwise,
it produces its new unique key by XORing the new complementary key and its local key as follows:
Kuniqueinew

= Kcomplnew ⊕ Klocali .

4. Findings and Analyses

In this section, we analyze the efficiency and security of the proposed protocol in comparison to
the schemes proposed in [26,35–37]. These analyses are based on the metrics presented in Table 1.

4.1. Efficiency Analysis

4.1.1. Energy Consumption

Table 3 compares the energy consumption required by the proposed protocol and the
corresponding schemes to perform a key distribution/establishment process between two nodes.
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(Because some schemes perform key distribution and others conduct key establishment, we refer to
both terms as the “key distribution/establishment process.”). The experimental design and parameters
are described in Appendix A.1.

The first part of the table includes eight rows to quantify the energy consumed by the nodes’
transceivers. The first row, “Th.N.F.Tx,” represents the theoretical number of frames sent by a node’s
transmitter when performing a key distribution/establishment process without modeling wireless
channel effects. The second row, “Av.N.F.Tx,” shows the average number of frames sent after modeling
the wireless channel effects. The third row, “N.F.Rx,” shows the number of frames that a node’s
receiver receives during the key distribution/establishment process. If a scheme involves exchanged
frames for node discovery or clustering before the key distribution/establishment process, the fourth
row, “N.F.ND.C,” represents the number of those frames. The fifth row, “T.Tx,” shows the time the
node’s transmitter requires to send the frames. The sixth row, “T.Rx,” shows the time the node’s
receiver requires to receive the frames. The seventh row, “E.TPO,” shows the energy consumed by the
transmitter power output (TPO). The eighth row, “E.TRX,” shows the total energy consumed by the
nodes’ transceivers.

The second part of the table quantifies the energy consumption of the nodes’ microcontrollers and
includes eight rows. The first row, “S.C.K,” represents the search complexity for finding a common
key, where n is the number of nodes, P is the key pool size, and PC is the probability that two nodes
share a key. The next six rows show the time a node’s microcontroller requires to perform the various
operations required to complete the key distribution/establishment process. The “T.MA.K” row shows
the time a node’s microcontroller requires to find a common key; “T.MA.X” is the time a node’s
microcontroller requires to perform an XOR operation; “T.MA.H” is the time a node’s microcontroller
requires to perform a hashing operation; “T.MA.E” is the time a node’s microcontroller requires
for encryption; and “T.MA.D” is the time a node’s microcontroller requires for decryption. When
a scheme involves polynomial evaluation, “T.MA.P.E” is the time a node’s microcontroller requires
for polynomial evaluation. The eighth row, “E.MA,” shows the total energy consumed by the nodes’
microcontrollers.

The last part of the table, “T.C.E,” shows the total energy consumption of the proposed protocol
and the corresponding schemes.

As shown in Table 3, the nodes’ transceivers consume the lowest amount of energy in the
proposed protocol, followed by scheme [37], at 2.75 mJ and 4.15 mJ, respectively; whereas, the nodes’
transceivers consume the largest amount of energy in scheme [35], followed by scheme [36] and
scheme [26], at 295.77 mJ, 150.37 mJ, and 46.02 mJ, respectively.

In contrast, the nodes’ microcontrollers consume the lowest amount of energy in scheme [26],
followed by scheme [36] and scheme [35], at 0.15 mJ, 1.29 mJ, and 27.50 mJ, respectively, and the
largest amount of energy consumed is in the proposed protocol, followed by scheme [37], at 38.35 mJ
and 38.23 mJ, respectively.

However, the total energy consumption in the proposed protocol is 41.10 mJ, which is the lowest
relative to the total energy consumed by each of the corresponding schemes. This result is intuitive because
the proposed protocol is designed to perform key distribution based on efficient data computation rather
than data communication.
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Table 3. Energy consumption of each key distribution scheme.

Descriptions
Parameters

Schemes
Our Protocol Scheme [26] Scheme [35] Scheme [36] Scheme [37]

The parameters
that contribute to
the energy
consumption of
nodes’ transceivers.

Th.N.F.Tx 1 27 6 95 2
Av.N.F.Tx 3 39 13 120 4

N.F.Rx 1 27 6 95 2
N.F.ND.C NA 2 201 NA NA

T.Tx 12.29 ms 159.74 ms 876.54 ms 491.52 ms 16.38 ms
T.Rx 4.10 ms 110.59 ms 847.87 ms 389.12 ms 8.19 ms

E.TPO 0.01 mJ 0.16 mJ 0.88 mJ 0.49 mJ 0.02 mJ
E.TRX 2.75 mJ 46.02 mJ 295.77 mJ 150.37 mJ 4.15 mJ

The parameters
that contribute to
the energy
consumption of
nodes’ microco-
ntroller.

C.S.K O (1) O
(
2 ·
√

n− 1
)

O (1) O
(√
−P · log(1− Pc)

)1 O (n)
T.MA.K NA 10.08 ms NA 89.31 ms 170.02 ms
T.MA.X 0.35 ms NA NA NA NA
T.MA.H 177.82 ms NA NA NA NA
T.MA.E 982 ms t 2 NA NA 982 ms
T.MA.D 1502.90 ms t 2 NA NA 1502.90 ms

T.MA.P.E NA NA 1909.83 ms NA NA
E.MA 38.35 mJ 0.15 mJ 27.50 mJ 1.29 mJ 38.23 mJ

Total energy consumption T.E.C 41.10 mJ 46.17 + 2t2 mJ 323.28 mJ 151.65 mJ 42.39 mJ
1 The key pool size P is equal to the number of sensor nodes multiplied by 10, and Pc is equal to 0.99%. 2 Here, t denotes an unknown time; the time cannot be determined because
the scheme involves encryption and decryption during the key distribution process, and the source does not specify the type of encryption and decryption algorithm used.
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4.1.2. Key Storage Overhead

Table 4 illustrates the key storage overhead of the proposed protocol and the corresponding
schemes. In the pre-deployment phase of the proposed protocol, each sensor node stores two keys,
AKnodes and Klocal . Then, in the key distribution phase, each sensor node prepares its unique key,
Kunique. Therefore, the proposed protocol has the lowest key storage overhead for each sensor node
compared to the corresponding schemes. The logarithmic graph presented in Figure 2 shows the
magnitude of the key storage overhead as the number of sensor nodes increases. The graph clearly
shows that the proposed protocol is advantageous because it requires the fewest keys compared to
other schemes.

Table 4. Key Storage overhead for each scheme.

Scheme Key Storage Overhead

The proposed protocol 3
Scheme [26] 2 ·

√
n− 1

Scheme [35] 6
Scheme [36]

√
−P · log(1− Pc) 1

Scheme [37] n

n represents the number of nodes. 1 The key pool size p is equal to the number of sensor nodes multiplied by
10, and Pc is equal to 0.99%.

Figure 2. The magnitude of key storage overhead.

4.1.3. Key Connectivity

To evaluate the key connectivity in each scheme, we model the entire WSN with a graph in which
the vertices represent wireless sensor nodes and the edges represent links. Therefore, Figure 3a shows
a random deployment of 200 nodes over an area of 1000 ft · 1000 ft. In Figure 3b, the black links
indicate the wireless signal range of the nodes’ transceivers without applying either the proposed
protocol or the corresponding schemes. The wireless signal range is based on the nodes’ transceiver
modules (described in Appendix A.1).

Figure 4 shows the implementation of the proposed protocol and the corresponding schemes on
the WSN shown in Figure 3b. However, when two sensor nodes share a common key or key material
within the same wireless range, the black links are converted to green links. In contrast, the red links
indicate nodes that do not share a common key or any key materials. This modeling shows the key
connectivity of each scheme, which can be defined as follows:
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The key connectivity (%) =
Secured links

Total number o f links
× 100, (5)

where the term “Secured links” includes any link between two nodes that share a common key or
key materials, and “Total number o f links” counts all links in the WSN. Figure 4a,c,e show that the
key connectivity is certain because nodes in these schemes are designed to have either a shared
common key or key materials that lead to 100% key connectivity. In contrast, the key connectivities in
Figure 4b,d reach only 87% and 99%, respectively.

Figure 3. Modeling a WSN: (a) random deployment of sensor nodes; (b) wireless signal range of
nodes’ transceivers.

Figure 4. Cont.
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Figure 4. Key connectivity after implementing key distribution/establishment process for each scheme.
(a) the proposed protocol; (b) Scheme [26]; (c) Scheme [35]; (d) Scheme [36] ; (e) scheme [37].

4.2. Security Analysis

4.2.1. Replay Attack

In a replay attack, an adversary captures a copy of exchanged frames to resend them later to
the receiver for a deceptive purpose. The goal is for the receiver to believe that the resent messages
are new messages; however, the receiver receives old information. This type of attack cannot be
performed against the proposed protocol because a timestamp T is employed as a countermeasure
in all three on-line phases: key distribution, post-key distribution and key refreshment. In the key
distribution and key refreshment phases, the timestamp T is appended to each complementary key
sent to the sensor nodes:

send===⇒
[
C ←− EAKsink (Kcompl || Tag←− H(Kcompl) || T)

]
send===⇒

[
C ←− EAKsink (Kcomplnew || Tag←− H(Kcomplnew ) || T)

]
.

In the post-key-distribution phase , each sensor node appends a timestamp T to each frame sent
to the sink node.

send===⇒
[

Idi
′ || C ←− E⊥Kuniquei

(D || Idi || T)
]
.

This timestamp allows the sink node to validate whether the received data are replayed data.
However, none of the corresponding schemes implement a countermeasure against replay attacks.

4.2.2. Man-in-the-Middle Attack

During a man-in-the-middle attack, an adversary secretly intercepts frames from the sender
and likely modifies them. Then, the adversary resends the frames to the receiver. This process
occurs without the knowledge of the sender and receiver; therefore, both parties assume that they
are communicating directly with one another. However, the proposed protocol is secure against
man-in-the-middle attacks because in the pre-deployment phase, an asymmetric key pair is generated,
renamed AKsink and AKnodes, and loaded into the sink node, and the sensor nodes, respectively.
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{KP, KR} ←− RSAgen

KP
de f
= AKsink and KR

de f
= AKnodes.

Thus, during the key distribution and key refreshment phases, when the sink node encrypts the
complementary key with AKsink:

C ←− EAKsink (Kcompl || Tag←− H(Kcompl) || T).

Only the sensor nodes are able to decrypt the cipher because they already possess one key of the
asymmetric key pair.

Additionally, in the post-key distribution phase, each sensor node encrypts data with its unique
key that is only in the possession of the sensor node and the sink node.

C ←− E⊥Kuniquei
(D || Idi || T) .

Therefore, an adversary cannot impersonate either the sink node or any sensor node in the
proposed protocol. Scheme [37] is vulnerable to man-in-the-middle attacks; however, the other
compared schemes are not subjected to this type of attack.

4.2.3. Node Capture Attack

To investigate the resilience of the proposed protocol and the corresponding schemes against
node capture attacks, node capture attacks must be launched on the key connectivity of each scheme.
Therefore, as shown in Figure 5, we mount node capture attacks on the key connectivity of each scheme
presented in Figure 4. Thus, Figure 5 shows each scheme’s resilience against node capture attacks.
The impact of a node capture attack can be defined as follows:

The impact o f a node capture attack on a WSN (%) =
Compromised links

Total number o f secured links
× 100, (6)

where “Compromised links” indicates the number of links that are compromised after a random number
of sensor nodes have been captured, and “Total number o f secured links” counts any link between two
nodes that share a common key or key materials. However, each scheme has a different design; thus,
for fairness, we assume the following:

1. An adversary is able to physically capture 5% of the sensor nodes randomly (i.e., 10 sensor nodes
in the example network).

2. Because capturing the sink node will compromise any given WSN, in Assumption 1, node capture
does not include the sink node.

3. Capturing a sensor node reveals all the data that node contains. For example, if the captured
sensor node contains data that reveal information about other nodes’ common keys or keys
materials, those keys are also compromised.

In Figure 5a, the key connectivity of the proposed protocol does not change after 10 sensor
nodes are captured, which indicates that the proposed protocol is secure against node capture attacks.
However, the key connectivities of the networks in Figure 5b,c are decreased by 51% and 75%,
respectively (assuming the network in Figure 5c has 4 clusters and that some of the compromised
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nodes are located in 3 different clusters). The key connectivity in Figure 5d is only slightly affected,
decreasing by only 6%. In contrast, the network in Figure 5e is heavily impacted, and the key
connectivity is decreased by 100%.

Figure 5. Schemes’ resilience against node capture attacks. (a) The proposed protocol; (b) Scheme [26];
(c) Scheme [35]; (d) Scheme [36] ; (e) Scheme [37].

5. Formal Verification

To formally prove the security and soundness of the proposed protocol, we utilize ProVerif,
an automatic cryptographic protocol verifier. ProVerif is a powerful tool for automatically analyzing
the security of cryptographic protocols and verifying them in a formal model.

In this section, we present the verification results pertaining to reachability and secrecy,
correspondence assertions (authentication), and observational equivalences.
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5.1. Reachability and Secrecy

ProVerif provides proof of reachability and secrecy properties by investigating the reachability
of a term x by an adversary A. Based on the results, the secrecy of x can be assessed with respect
to the modeled protocol. In the proposed protocol, we test whether sensor data “sensorData” are
available to A. Figure 6 shows the complete verification result. The result concludes, “RESULT not
attacker(sensorData[ ]) is true”, meaning that “sensorData” is unreachable, and an attack cannot be
conducted against the protocol successfully.

Figure 6. Verification result of reachability and secrecy.
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5.2. Correspondence Assertions

In ProVerif, authentication can be modeled using a sequence of events defined as correspondence
assertions. We apply a sequence of events to verify the authentication of the sink node and the
complementary key to the sensor nodes and the authentication of the sensor nodes and encrypted data
to the sink node. Figure 7 shows the complete verification result. The verification confirmes that the
proposed protocol achieves successful authentication.

Figure 7. Verification result of authentication.
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5.3. Observational Equivalence

In applied π-calculus terminology, two processes p1 and p2 have observational equivalence
(p1 ≈ p2) when they are indistinguishable through observation. ProVerif can prove observational
equivalence such as strong secrecy, in which an adversaryA cannot distinguish when a cipher changes.
We leverage this feature to prove that the proposed protocol is semantically secure and that the A
cannot learn anything from the cipher. Figure 8 shows the complete verification result. The analysis
showes that the sensor data “sensorData” in the proposed protocol are observationally equivalent
and that the A cannot distinguish when they change because the data are encrypted by a probabilistic
algorithm, as described in the post-key distribution phase.

Figure 8. Verification result of observational equivalence.
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6. Conclusions

In this work, we propose a practical key distribution protocol that can be implemented above
the IEEE 802.15.4 standard to secure the wireless communication of resource-constrained sensor
nodes. We utilized existing cryptographic primitives to design a protocol that maintains a tradeoff
between efficiency and security. We conducted simulation, hardware implementations, and modeling to
compare the proposed protocol to the existing solutions. Moreover, we conducted formal verifications
to prove the soundness and the security of our proposed protocol. The proposed protocol provides
low energy and memory consumption, certain key connectivity, and security against: replay attack,
man-in-the-middle attack, and node capture attack. The overall results show that the proposed protocol
is more efficient and secure than the corresponding schemes.

Future work includes examining more advanced methods to enhance the energy consumption of
the proposed protocol. For example, using more efficient algorithms to perform data computation.
Furthermore, investigating additional types of attacks against the proposed protocol to increase
its security.
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Appendix A. Methodology

Appendix A.1. Experiment Design and Parameters

The experimental design includes two parts: simulation and hardware implementation. In the
first part, we utilize the OPNET Modeler to design a model for a wireless sensor node and then used
this model to conduct simulations for a network of 200 wireless sensor nodes, as shown in Figure A1.
Our sensor node model calculates the energy consumption of a node’s transceiver, including both the
TPO and the energy consumption caused by wireless channel effects, based on the models described
in Appendix A.2 and Appendix A.3, respectively.

In the second part, because the energy consumption by a node’s microcontroller cannot be
simulated, we implement the proposed protocol and the compared schemes on a real microcontroller
and measure the time these schemes require to perform key distribution/establishment processes.
Then, we calculate the energy consumption of the node’s microcontroller based on the model described
in Appendix A.2.

Moreover, in this experiment, the transceiver parameters of our sensor node model are based on
XBee transceiver S1 [41], and the microcontroller used in the implementation is an Atmega328p [42]
(clocked at 16 MHz). The following table shows these parameters.
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Figure A1. Our wireless sensor node model.

Table A1. Experiment Parameters.

Description Parameters Values

Channel

Data Rate 250 kbps
Frame Size 1024 bits
Transmission power 0 dBm
Modulation bpsk
Receiver Sensitivity −92 dBm

Transceiver Tx Current draw 45 mA @ 3.3 VDC
Rx Current draw 50 mA @ 3.3 VDC

Microcontroller Microcontroller 3.2 mA @ 4.5 V

Power Requirements
Tx power consumption 148.5 mW
Rx power consumption 165 mW
Microcontroller power consumption 14.4 mW

Appendix A.2. Energy Consumption of Wireless Sensor Node

The energy consumption of a wireless sensor node is the total amount of energy consumed by the
node’s transceiver, microcontroller, and sensors, as indicated in Equation (A1). Because our research
considers key distribution security and efficiency regardless of the network’s application, we ignore the
energy consumed by the sensors because that consumption is based on sensor applications regardless of
the underlying key distribution/establishment algorithm. Thus, in this paper, the energy consumption
of a wireless sensor node is calculated by Equation (A2):

Esensor node = Etransceiver + Emicrocontroller + Esensor (A1)

Esensor node = Etransceiver + Emicrocontroller . (A2)

The energy consumption is generally calculated by Equation (A3):

Energy(J) = Power(W) · Time(S), (A3)
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where Power(W) is calculated by Equation (A4):

Power(W) = Voltage(V) · Current(A). (A4)

Based on Equation (A3), we calculate the energy consumption of nodes’ transceivers and
microcontrollers. The following subsections describe these calculations.

Appendix A.2.1. Energy Consumption of the Transceiver

The energy consumption of a node’s transceiver Etransceiver, given in Equation (A2), is the energy
consumed by the node’s transmitter ETx and its receiver ERx. However, the energy consumption of the
node’s transmitter ETx is the total energy consumed by the TPO ETxTPO and the transmitter electronics
ETxelec , which can be found by the following equation:

ETx = ETxTPO + ETxelec , (A5)

where the energy consumed by ETxTPO is found by Equation (A6):

ETxTPO = Txpoweroutput · Txtime, (A6)

where Txpoweroutput is the TPO, and it depends on the transceiver module (described in Appendix A.1).
Txtime is the time that a node’s transmitter takes to send one frame and is found by Equation (A7):

Txtime =
(

FrSize
TxDR

)
, (A7)

where FrSize is the frame size, and TxDR is the data rate of the transmitter. The transmitter data rate
depends on the transceiver module (described in Appendix A.1).

The energy consumed by the transmitter electronics ETxelec can be calculated as follows:

ETxelec = Txtime ·
(

(Txeleccurrent · Txelecvoltage
) + (MATxcurrent ·MATxvoltage )

)
, (A8)

where Txtime is found as shown in Equation (A7). Txeleccurrent and Txelecvoltage
are the respective current

and voltage required by the transmitter’s electronics, and MATxcurrent and MATxvoltage are the respective
current and voltage required by a node’s microcontroller to run the transmitter.

The energy consumption of the node’s receiver ERx can be calculated as follows:

ERx = Rxtime ·
(

(Rxcurrent · Rxvoltage) + (MARxcurrent ·MARxvoltage )
)

, (A9)

where Rxtime is the time that a node’s receiver requires to receive one frame, which can be found by
Equation (A10). Rxcurrent and Rxvoltage are the respective current and voltage required by a node’s
receiver, and MARxcurrent and MARxvoltage are the respective current and voltage required by a node’s
microcontroller to run the receiver.

Rxtime =
(

FrSize
RxDR

)
, (A10)

where FrSize is the frame size, and RxDR is the data rate of the receiver. The receiver’s data rate depends
on the transceiver module (described in Appendix A.1).

Appendix A.2.2. Energy Consumption of the Microcontroller

The energy consumption of a node’s microcontroller, Emicrocontroller, presented in Equation (A2),
represents the energy consumed by a node’s microcontroller, EMA, and can be found using the
following equation:

EMA = MATimeoperate ·MAcurrent ·MAvoltage, (A11)
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MATimeoperate is the time required by the microcontroller to execute the core algorithm of a key
distribution/establishment process. MAcurrent and MAvoltage are the respective current and voltage
required by the microcontroller.

Appendix A.3. Modeling Wireless Channel Effects

When our sensor node model receives a frame, it calculates the received power PRx of the frame
as follows:

PRx = PTx · GTx · GRx · PLoss, (A12)

where PTx is the transmitter power, GTx is the transmitter antenna gain, GRx is the receiver antenna
gain, and PLoss is the path loss in free space, which can be found by the following equation:

PLoss =
(

λ

4πD

)2
, (A13)

where λ is the wavelength, and D is the distance.
If the received power is less than the receiver sensitivity, our model discards the frame because

the receiver is unable to decode it. However, if the received power is greater than or equal to the
receiver’s sensitivity, our model calculates the noise in each frame caused by interference from other
frames and then calculates the signal-to-noise ratio (SNR) based on Equation (A14):

SNR = 10 log10

(
PRx

NIntern

)
. (A14)

Then, our model calculates the bit error rate (BER) in the received frame, which is calculated
based on the chosen modulation curve and the SNR. Finally, it calculates the percentage of errors in
the received frame by the following equation:

FErrors =
(

BER
Fsize

)
, (A15)

where Fsize is the frame size. If the percentage of errors in the received frame FErrors exceeds a specified
threshold, the model discards the frame.

Appendix A.4. Fast Modular Exponentiation Algorithm

The proposed protocol relies on modular exponentiation in the key distribution phase.
The running time for an ordinary modular exponentiation algorithm is exponential with the
magnitude of the exponent e (linear complexity); thus the algorithm is not a practical. To make the
proposed protocol practical in resource-constrained nodes, we utilized the square-and-multiply
algorithm, Algorithm A1, which has a polynomial running time in the length of e (logarithmic
complexity).
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