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Abstract: As a kind of important flexible joint, two-axis flexure hinges can realize in-plane and
out-of-plane motions and can be used for constructing flexure-based spatial compliant mechanisms.
The paper introduces a common two-axis elliptical-arc-filleted flexure hinge that is generated by two
different elliptical-arc-filleted cutout profiles and that provides some new hinge types. The analytical
compliance equations of both half-segments of the two-axis elliptical-arc flexure hinges are firstly
formulated, and then, based on a generic compliance modeling method of a flexure serial chain, the
closed-form compliance and precision matrices of two-axis elliptical-arc-filleted flexure hinges are
established and validated by the finite element method. Some numerical simulations are conducted
to compare the effect of different design geometric parameters on the performance of the two-axis
flexure hinges.
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1. Introduction

Flexure hinges can utilize their slender portions to produce relative motion between
two adjacent rigid links in flexure-based compliant mechanism. In many high precision
and micro-operation applications such as micro/nano-positioning platforms [1–3], displacement
amplifiers [4–7], sensors [8–10], elliptical-vibration texturing device [11], micro-grippers, bionics, and
micro-electromechanical systems [12–15], flexure hinges also play a very important role as alternative
solutions to traditional rigid joints due to their positive features of not requiring assembly, compactness,
zero friction and high resolution, etc.

The quasi-static responses of flexure hinges with different notch types under axial, bending, shear
loading and torsion have been a research focus in the design of flexure-based compliant mechanisms.
Paros and Weisbord [16] first formulated the exact and simplified compliance equations of the right
circular flexure hinge. Since then, efforts to obtain precise, concise, and analytically compliance
formulations of various types of flexure hinges are encouraging many researchers and scholars
to explore more kinds of flexure hinges with different notch types. Normally, the notch types of
flexure hinges include circular, elliptical, parabolic and hyperbolic [17–20], V-shaped [21], hybrid
non-symmetric [22], and other more complex-shaped or multiple segments connected serially [23,24].
Based on the Castigliano’s second theorem and the small deformation assumptions, as well as by
introducing the infinite element analysis method, the closed-form compliance and precision equations
of various flexure hinges can be analytically conducted and effectively validated. However, for some
special notch types, the compliance equations of flexure hinges are hard to derive analytically, or can
only be obtained with numerical solutions [23] or empirical equations for some specific geometric
parameters with enhanced calculation precision [25,26]. According to the capacity of rotation and
the main functions, flexure hinges can be designed as single-axis, two-axis, and multiple-axis [27].
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These hinge designs can be also further categorized into circular-axis and straight-axis in terms
of the shapes of the central axis, or symmetric and non-symmetric whether the hinge profiles are
transverse symmetry or not [28,29]. Unlike single-axis flexure hinge designs, which have only one
sensitive revolute axis between two adjacent rigid links, two-axis flexure hinges have two orthogonal
sensitive revolute axes at one point—see Figure 1. Figure 1a illustrates a two-axis corner-filleted hinge
configuration that enables the right rigid link to produce in-plane rotation around the primary sensitive
axis and out-of-plane rotation around the secondary sensitive axis with respect to the left rigid link.
The in-plane or out-of-plane capacity of rotation can be evaluated by the thickness and width in the
minimum cross section of two-axis flexure hinge. When disposing of the mid-segment flexure hinge
with constant rectangular cross section from the two-axis corner-filleted flexure hinge, the hinge will
degenerate into a general two-axis flexure hinge, as shown in Figure 1b. Meanwhile, two-axis flexure
hinge can be regarded as a flexible U-joint, and possesses compact in size compared to other flexible
U-joints designed in a serial or combined manner with two or multiple single-axis flexure hinges [30].

Figure 1. Hinge configurations: (a) Two-axis corner-filleted flexure hinge; (b) Two-axis flexure hinge.

Several researchers have analyzed the design equations of two-axis flexure hinges.
Lobontiu et al. [31] derived the closed-form compliances of two-axis flexure hinges with two
non-identical parabolic profiles. The compliance equations of the double-axis elliptical flexure hinge
and the bi-axial right circular flexure hinge were also formulated [32,33], respectively. Hou et al. [34]
derived the precision equations of the two-axis rectangular cross-section corner-filleted flexure hinge.
In order to select preferably the suitable two-axis flexure hinges for designers in the design phase,
it is essential to introduce some other types of two-axis flexure hinges, especially for some most
common two-axis corner-filleted flexure hinges. However, the closed-form compliance equations and
precision equations for two-axis corner-filleted flexure hinges will be hard to obtain analytically
by direct integration because the thickness and width of the hinges at arbitrary corner-filleted
cross section are variable along the straight longitudinal axis x—see Figure 2, where L and Lm are
the total length and the mid-segment length, respectively, w0 and t0 are the minimum width and
the minimum thickness—respectively while—w and t are the maximum width and the maximum
thickness, respectively.

A two-axis corner-filleted flexure hinge whose two adjacent cutout profiles are introduced and
defined by two non-identical elliptical-arc-filleted, respectively, as figured in Figure 3a, where a1 and
a2 indicate the major semi-axis of ellipse, b and r represent the minor semi-axis of ellipse and the
radius of circle, respectively, φm (0 < φm < π/2) is the maximum semi-eccentric angle. Chen et al. [35]
gave the relationships among circular, right-circular, elliptical and elliptical-arc, and the former three
are subsets of the latter one. Hence, the two-axis elliptical-arc-filleted flexure hinge defined by dual
elliptical-arc-filleted cutout profiles as one of the most common two-axis corner-filleted flexure hinges
can be translated into other two-axis corner-filleted flexure hinges in terms of the relationships among
a1, a2, b and r and the value of φm. Figure 3b–f illustrate five two-axis corner-filleted flexure hinges,
whose two different cutout profiles are defined by dual circular-arc-filleted, dual elliptical-filleted, dual
right-circular-filleted, hybrid elliptical-arc-filleted and circular-arc-filleted, hybrid elliptical-filleted and
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right-circular-filleted, respectively. Similarly, when Lm = 0, all these two-axis corner-filleted flexure
hinges above will degenerate into other six general two-axis flexure hinges.

Figure 2. Geometric parameters and profiles of two-axis corner-filleted flexure hinge.
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A generic two-axis elliptical-arc-filleted flexure hinge with a transverse symmetry plane is 
shown in Figure 4a, which can be divided into four segments in terms of the cutout geometric profiles. 
The segments 1 and 4 are the left half-segment and right half-segment two-axis flexure hinges with 
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Figure 3. Two-axis flexure hinges with different cutout profiles: (a) Dual elliptical-arc-filleted
(DEAF); (b) Dual circular-arc-filleted (DCAF, a1 = a2 = b = r); (c) Dual elliptical-filleted (DEF,
φm = π/2); (d) Dual right-circular-filleted (DRCF, a1 = a2 = b = r and φm = π/2); (e) Hybrid
elliptical-arc-filleted and circular-arc-filleted (HEACF, a1 = b = r or a2 = b = r); (f) Hybrid elliptical-filleted
and right-circular-filleted (HERCF, a1 = b = r or a2 = b = r and φm = π/2).

The present work introduces a common two-axis elliptical-arc-filleted flexure hinge, and makes
it piecewise and as a flexure serial chain composed of multiple flexure segments, then utilizes the
compliance matrix modeling method based on the virtual theory and the superposition principle, and
derives analytically the complex compliance and precision equations of two-axis elliptical-arc-filleted
flexure hinge, as well as studies the sensitivity to geometric parameters.

2. Compliance Equations

A generic two-axis elliptical-arc-filleted flexure hinge with a transverse symmetry plane is shown
in Figure 4a, which can be divided into four segments in terms of the cutout geometric profiles. The
segments 1 and 4 are the left half-segment and right half-segment two-axis flexure hinges with
elliptical-arc notches, respectively, the segments 2 and 3 are both identical constant rectangular
cross-section beams. Figure 4b shows the geometric parameters, the vertical and horizontal cutout
profiles through the initial center of rotation Q, where l1 is the length of the segments 1 and 4, and l2 is
the length of the segments 2 and 3.
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Figure 4. Four-segment two-axis elliptical-arc-filleted flexure hinge: (a) Three-dimensional view;
(b) Geometric parameters and two non-identical cutout profiles.

When a variable- thickness and width two-axis flexure hinge with elliptical-arc-filleted notches is
used for flexure-based spatial compliant mechanisms, the in-plane and out-of-plane motions can be
achieved, thus its compliance matrix will be a 6 × 6 square matrix. To obtain the compliance matrix of
two-axis elliptical-arc-filleted flexure hinge, the closed-form compliance equation of each element of
the compliance matrix needs to be derived analytically with the consideration of the shear effects.

2.1. Two-Axis Elliptical-Arc-Filleted Flexure Hinge

Assume that each flexure segment is a flexure member, then the two-axis elliptical-arc-filleted
flexure hinge can be regarded as a flexure serial chain that is formed of four flexure members—see
Figure 4a. For each fixed-free flexure member, the geometric center of the free end with a local frame can
be constructed a compliance matrix with respect to the global frame established in the geometric center
of the fixed end [36,37]. Furthermore, the overall compliance matrix of the multi-segment flexure hinge
can be also derived through a certain operation relation depending on the local compliance matrix
of all flexure members and the coordinate transformation matrix [37]. The geometric relationships
among coordinate frames of two-axis elliptical-arc-filleted flexure hinge are shown in Figure 5, where
the O-xyz and Of-xyfzf are the global frame and the local frame established in the fixed end and the
free end of the hinge, respectively, the Oi-xyizi (i = 1, 2, 3, 4) is the local frame established in the tip of
flexure segment i.

Figure 5. Geometric relationships among coordinate frames.
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Based on the virtual work theory and the superposition relationship of the deformation, the
overall compliance matrix of two-axis elliptical-arc-filleted flexure hinge in the local frame Of-xyfzf can
be expressed [36–38]:

C =
4

∑
i=1

JiCiJT
i (1)

where Ci indicates the compliance matrix of the flexure segment i, Ji indicates the compliance
transformation matrix, which can be given by:

Ji =

(
Ri −RiSi(ri)

03×3 Ri

)
(2)

where Ri is the orientation transformation matrix of the local frame Oi-xyizi with respect to the local
frame Of-xyfzf, and is a unit matrix here, 03×3 is a three order zero square matrix, Si(ri) represents the
skew-asymmetric operator for the position vector ri = [rix, riy, riz]T that is the origin Of of local frame
Of-xyfzf in the local frame Oi-xyizi, which both can be expressed as:

Si(ri) =

 0 −riz riy
riz 0 −rix
−riy rix 0

 (3)

r1 =
(

l1 + 2l2 0 0
)T

; r2 =
(

l1 + l2 0 0
)T

; r3 =
(

l1 0 0
)T

; r4 =
(

0 0 0
)T

(4)

For the constant rectangular cross-section flexure beam, its compliance matrix has been widely
studied and has high calculation precision, thus the compliance matrix of flexure segments 2 and 3 can
be directly given as follows [28,36]:

C2(3) =



C2(3),11 0 0 0 0 0
0 C2(3),22 0 0 0 C2(3),26
0 0 C2(3),33 0 C2(3),35 0
0 0 0 C2(3),44 0 0
0 0 C2(3),53 0 C2(3),55 0
0 C2(3),62 0 0 0 C2(3),66


(5)

where each non-zero compliance element of compliance matrix C2(3) (the subscript “2(3)” indicates C2

(or C3)) can be calculated as:
C2(3),11 = l2

EA2(3)
; C2(3),22 =

l3
2

3EIz2(3)
+ αsl2

GA2(3)
; C2(3),33 =

l3
2

3EIy2(3)
+ αsl2

GA2(3)

C2(3),26 = C2(3),62 =
l2
2

2EIz2(3)
; C2(3),35 = C2(3),53 = − l2

2
2EIy2(3)

C2(3),44 = l2
GJP2(3)

; C2(3),55 =
l2(3)

EIy2(3)
; C2(3),66 = l2

EIz2(3)

(6)

where E and G indicate the modulus of elasticity and the shear modulus of material, respectively,
A2(3) = w0t0 is the cross-section area, and Iy2(3) = w3

0t0/12 and Iz2(3) = w0t3
0/12 are the second moment of

the cross-section area. For short beams or short flexure hinges (with a length-to width ratio of less than
5), the shear effects cannot be neglected [27], and for the rectangular cross section, the shear coefficient
αs is equal to (12 + 11µ)/[10(1 + µ)] according to the Timoshenko beam theory [39], where µ is the
Poisson ratio of material, JP2(3) indicates the torsional moment of inertia of rectangular cross section
beam, which can be expressed as [40]:

JP2(3)
= w0t3

0

{
1/3− 0.21(t0/w0)[1− (t0/w0)

4/12]
}

(7)



Sensors 2017, 17, 2154 6 of 20

It can be observed that the only compliance matrices of flexure segments 1 and 4 are unknown
by substituting Equations (2)–(7) into Equation (1). Therefore, the compliance calculation of two-axis
elliptical-arc-filleted flexure hinge can be transformed into the problem that solves individually the
compliance matrices C1 and C4 of left half-segment and right half-segment two-axis flexure hinges
with elliptical-arc notches.

2.2. Left Half-Segment Two-Axis Flexure Hinge with Elliptical-Arc Notches

Several assumptions are given, such as a flexure hinge can be as a six degree-of-freedom,
small-deformation, fixed-free beam, and so on [35,41], and the Castigliano’s second theorem (which
states that if the strain energy Uε stored in a linear elastic body can be expressed as the function of
the generalized forces FP1, FP2, . . . , FPN acting on the elastic body, and then the first-order partial
derivative of the strain energy Uε with respect to the generalized force FPI will produce a corresponding
generalized displacement ∆I (I = 1, 2, . . . , N) along the direction of the generalized force FPI [27]) is
used for deriving the closed-from compliance equations of flexure segments 1 and 4. The geometric
parameters and cutout profiles of the flexure segment 1 are shown in Figure 6, where w(x) and t(x)
indicate the variable width in plane xz and the variable thickness in plane xy of the infinitesimal strip
dx at position x, φ is the eccentric angle that traverses from −φm to 0, and also as the integral variable.

As shown in Figure 6a, the width w(x) in plane xz and the thickness t(x) in plane xy of the
infinitesimal strip dx at position x can be expressed as:

w(x) = 2z(x) = 2a1

(
1 + ξ1 −

√
1− (x−l1)

2

b2

)

t(x) = 2y(x) = 2a2

(
1 + ξ2 −

√
1− (x−l1)

2

b2

) (8)

where ξ1 = w0/2a1, ξ2 = t0/2a2.

Figure 6. Left half-segment two-axis elliptical-arc flexure hinge: (a) Geometric parameters defining
two non-identical symmetric elliptical-arc profiles; (b) Three-dimensional view.
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Assume that ξ1 6= ξ2, and by introducing the eccentric angle φ, we have:

x = b sin φ + l1 (9)

Differentiating Equation (9) yields:

dx = b cos φdφ (10)

Thus Equation (8) can be rearranged as:{
w(φ) = 2a1(1 + ξ1 − cos φ)

t(φ) = 2a2(1 + ξ2 − cos φ)
(11)

where φ ∈ [−φm,0], and w(φ), t(φ) are even functions, the maximum eccentric angle φm = arcsin(l1/b).
Under the small deformation assumptions, the deformation vector X = [ux, uy, uz, αx, αy, αz]T

and the loading vector F = [Fx, Fy, Fz, Mx, My, Mz]T applied at the free end of the flexure segment 1
satisfies the following relationship:

X = C1F (12)

where C1 is the compliance matrix of the flexure segment 1, each of its non-zero element can be
determined by using the universal analytical method proposed by Ivanov and Corves [42] based on
the Castigliano’s second theorem and by introducing the torsional compliance equation proposed by
Chen and Howell [43] as follows:

C1,11 = ux/Fx = N1,1/E (13)

C1,22 = uy/Fy = 12(l2
1 N1,2 − 2l1N1,3 + N1,4)/E + αsN1,1/G (14)

C1,33 = uz/Fz = 12(l2
1 N1,5 − 2l1N1,6 + N1,7)/E + αsN1,1/G (15)

C1,26 = uy/Mz = C1,62 = αz/Fy = 12(l1N1,2 − N1,3)/E (16)

C1,35 = uz/My = C1,53 = αy/Fz = 12(N1,6 − l1N1,5)/E (17)

C1,44 = αx/Mx = 7(w2
0 + 2.609w0t0 + t2

0)(N1,2 + N1,5)/[2G(1.17w2
0 + 2.191w0t0 + 1.17t2

0)] (18)

C1,55 = αy/My = 12N1,5/E (19)

C1,66 = αz/Mz = 12N1,2/E (20)

where the newly-introduced integral factors from N1,1 to N1,7 (the subscript “1” denotes these integral
factors are related to the flexure segment 1) can be expressed as: N1,1 =

∫ l1
0

dx
w(x)t(x) ; N1,2 =

∫ l1
0

dx
w(x)t3(x) ; N1,3 =

∫ l1
0

xdx
w(x)t3(x) ; N1,4 =

∫ l1
0

x2dx
w(x)t3(x)

N1,5 =
∫ l1

0
dx

w3(x)t(x) ; N1,6 =
∫ l1

0
xdx

w3(x)t(x) ; N1,7 =
∫ l1

0
x2dx

w3(x)t(x)

(21)

2.3. Right Half-Segment Two-Axis Flexure Hinge with Elliptical-Arc Notches

The geometric parameters and cutout profiles of the flexure segment 4 are sketched in Figure 7.
Some identical parameters defined in Figure 6 can apply to the Figure 7. As shown in Figure 7a, the
width w(x) in plane xz and the thickness t(x) in plane xy of the infinitesimal strip dx at position x can
be expressed as: 

w(x) = 2z(x) = 2a1

(
1 + ξ1 −

√
1− x2

b2

)
t(x) = 2y(x) = 2a2

(
1 + ξ2 −

√
1− x2

b2

) (22)
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Figure 7. Right half-segment two-axis elliptical-arc flexure hinge: (a) Geometric parameters defining
two non-identical symmetric elliptical-arc profiles; (b) Three-dimensional view.

Similarly, we have:
x = b sin φ (23)

Differentiating Equation (23) yields:

dx = b cos φdφ (24)

Thus Equation (22) can be rearranged as:{
w(φ) = 2a1(1 + ξ1 − cos φ)

t(φ) = 2a2(1 + ξ2 − cos φ)
(25)

where φ ∈ [0, φm].
For the flexure segment 4, the linear deformation ux produced by pure force Fx, and the angular

deformations αx, αy and αz produced by pure moment Mx, My and Mz, respectively, are equal
to the corresponding linear and angular deformations of the flexure segment 1 under the same
conditions, namely:

C4,11 = C1,11; C4,44 = C1,44; C4,55 = C1,55; C4,66 = C1,66 (26)

Thus, we have:
N4,1 = N1,1; N4,2 = N1,2; N4,5 = N1,5 (27)

However, the other compliance elements C4,22, C4,33, C4,26 or C4,62, C4,35 or C4,53 need to be
calculated individually, which can be expressed as:

C4,22 = uy/Fy = 12(l2
1 N1,2 − 2l1N4,3 + N4,4)/E + αsN1,1/G (28)

C4,33 = uz/Fz = 12(l2
1 N1,5 − 2l1N4,6 + N4,7)/E + αsN1,1/G (29)

C4,26 = uy/Mz = C4,62 = αz/Fy = 12(l1N1,2 − N4,3)/E (30)



Sensors 2017, 17, 2154 9 of 20

C4,35 = uz/My = C4,53 = αy/Fz = 12(N4,6 − l1N1,5)/E (31)

where the newly-introduced integral factors from N4,3 to N4,7 (the subscript “4” denotes these integral
factors are related to the flexure segment 4) can be expressed as:

N4,3 =
∫ l1

0

xdx
w(x)t3(x)

; N4,4 =
∫ l1

0

x2dx
w(x)t3(x)

; N4,6 =
∫ l1

0

xdx
w3(x)t(x)

; N4,7 =
∫ l1

0

x2dx
w3(x)t(x)

(32)

2.4. Precision of Rotation

Unlike rigid revolute joints that have a fixed center of rotation, the geometric center of rotation
of flexure hinges will change due to the elastic deformations. This will decrease or affect the
motion accuracy of flexure-based compliant mechanisms. For symmetric two-axis flexure hinges,
its linear compliance elements at the midpoint Q in the transverse symmetry plane are the key
parameters for determining the offset of the rotational center and evaluating the precision of rotation
of flexure hinges [19–21,31]. Therefore, the compliance matrix of the left half-segment two-axis
elliptical-arc-filleted flexure hinge composed of flexure segments 1 and 2 needs to be solved. The
coordinate frames established in the tips of flexure segments and their geometric relationships are in
Figure 8.

Figure 8. Geometric relationships among coordinate frames.

Similar to Equation (1), the compliance matrix of the left half-segment two-axis
elliptical-arc-filleted flexure hinge at the flexure midpoint Q can be expressed as:

CQ = JQC1JT
Q + C2 (33)

where JQ indicates the compliance transformation matrix, which can be given by:

JQ =

(
RQ −RQS(rQ)

03×3 RQ

)
(34)

where RQ is a unit matrix here, the position vector rQ can be expressed as:

rQ =
(

l2 0 0
)T

(35)

Substituting Equations (34) and (35) into Equation (33), and then rearranging the Equation (33),
the precision matrix of two-axis elliptical-arc-filleted flexure hinge can be given by:

CP =

 CQ,11 0 0 0 0 0
0 CQ,22 0 0 0 CQ,26
0 0 CQ,33 0 CQ,35 0

 (36)
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where each element in the precision matrix is called a precision factor, and all precision factors of the
precision matrix CP can be expressed explicitly as:

CQ,11 = C1,11 + C2,11

CQ,22 = C1,22 + C2,22 + 2l2C1,26 + l2
2C1,66

CQ,33 = C1,33 + C2,33 − 2l2 C1,35 + l2
2C1,55

CQ,26 = C1,26 + C2,26 + l2C1,66

CQ,35 = C1,35 + C2,35 − l2C1,55

(37)

When the length l2 of flexure segment 2 is equal to zero, these precision factors in Equation (37)
will be equal to the corresponding compliance elements of the left half-segment two-axis flexure hinge
with elliptical-arc notches. However, when joining the serially-connected flexure segment 2, we will
have to consider the effect of the compliance elements C1,55 and C1,66 on other precision factors of the
precision matrix except the precision factor CQ,11.

3. Integrals in the Compliance Equations

Now we start to calculate these important and complex integrals given in Equations (21) and (32)
in this section.

3.1. Integrals Simplification

Substituting Equations (9)–(11) into Equation (21), yields:

N1,1 =
b

4a1a2

∫ φm

0

cos φdφ

(1 + ξ1 − cos φ)(1 + ξ2 − cos φ)
=

b
4a1a2

I1(ξ1, ξ2) (38)

N1,2 =
b

16a1a3
2

∫ φm

0

cos φdφ

(1 + ξ1 − cos φ)(1 + ξ2 − cos φ)3 =
b

16a1a3
2

I2(ξ1, ξ2) (39)

N1,3 =
b

16a1a3
2

∫ 0

−φm

(b sin φ + l1) cos φdφ

(1 + ξ1 − cos φ)(1 + ξ2 − cos φ)3 =
b

16a1a3
2
(l1 I2(ξ1, ξ2)− bI3(ξ1, ξ2)) (40)

N1,4 = b
16a1a3

2

∫ 0
−φm

(b sin φ+l1)
2 cos φdφ

(1+ξ1−cos φ)(1+ξ2−cos φ)3 = b
16a1a3

2

( (
b2 + l2

1
)

I2(ξ1, ξ2)−
2bl1 I3(ξ1, ξ2)− b2 I4(ξ1, ξ2)

)
(41)

N1,5 =
b

16a3
1a2

∫ φm

0

cos φdφ

(1 + ξ2 − cos φ)(1 + ξ1 − cos φ)3 =
b

16a3
1a2

I2(ξ2, ξ1) (42)

N1,6 =
b

16a3
1a2

∫ 0

−φm

(b sin φ + l1) cos φdφ

(1 + ξ2 − cos φ)(1 + ξ1 − cos φ)3 =
b

16a3
1a2

(l1 I2(ξ2, ξ1)− bI3(ξ2, ξ1)) (43)

N1,7 = b
16a3

1a2

∫ 0
−φm

(b sin φ+l1)
2 cos φdφ

(1+ξ2−cos φ)(1+ξ1−cos φ)3 = b
16a3

1a2

( (
b2 + l2

1
)

I2(ξ2, ξ1)−
2bl1 I3(ξ2, ξ1)− b2 I4(ξ2, ξ1)

)
(44)

where I1(ξ1, ξ2), Im(ξ1, ξ2) and Im(ξ2, ξ1) (m = 2, 3, 4) are new definite integrals about the eccentric
angle φ, of which the non-dimensional parameters ξ1 and ξ2 of the corresponding Im(ξ1, ξ2) just need
to switch each other when calculating these integrals from I2(ξ2, ξ1) to I4(ξ2, ξ1), thus we only need to
derive these definite integrals from I1(ξ1, ξ2) to I4(ξ1, ξ2) individually.

Substituting Equations (23)–(25) into Equation (32), we have:

N4,3 =
b2

16a1a3
2

∫ φm

0

sin φ cos φdφ

(1 + ξ1 − cos φ)(1 + ξ2 − cos φ)3 =
b2

16a1a3
2

I3(ξ1, ξ2) (45)

N4,4 =
b3

16a1a3
2

∫ φm

0

sin2 φ cos φdφ

(1 + ξ1 − cos φ)(1 + ξ2 − cos φ)3 =
b3

16a1a3
2
(I2(ξ1, ξ2)− I4(ξ1, ξ2)) (46)
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N4,6 =
b2

16a3
1a2

∫ φm

0

sin φ cos φdφ

(1 + ξ2 − cos φ)(1 + ξ1 − cos φ)3 =
b2

16a3
1a2

I3(ξ2, ξ1) (47)

N4,7 =
b3

16a3
1a2

∫ φm

0

sin2 φ cos φdφ

(1 + ξ2 − cos φ)(1 + ξ1 − cos φ)3 =
b3

16a3
1a2

(I2(ξ2, ξ1)− I4(ξ2, ξ1)) (48)

3.2. Integrals Calculation

These important definite integrals from I1(ξ1, ξ2) to I4(ξ1, ξ2) defined in Equations (38)–(41) can
be rearranged as:

I1(ξ1, ξ2) =
∫ φm

0

cos φdφ

(1 + ξ1 − cos φ)(1 + ξ2 − cos φ)
= A1g1(ξ1) + B1g1(ξ2) (49)

I2(ξ1, ξ2) =
∫ φm

0
cos φdφ

(1+ξ1−cos φ)(1+ξ2−cos φ)3 = A2g1(ξ1) + B2g2(ξ2) + C2g3(ξ2) + D2g4(ξ2) (50)

I3(ξ1, ξ2) =
∫ φm

0
sin φ cos φdφ

(1+ξ1−cos φ)(1+ξ2−cos φ)3 = −(A2g5(ξ1) + B2g6(ξ2) + C2g7(ξ2) + D2g8(ξ2)) (51)

I4(ξ1, ξ2) =
∫ φm

0
cos3 φdφ

(1+ξ1−cos φ)(1+ξ2−cos φ)3 = A3g1(ξ1) + B3g2(ξ2) + C3g3(ξ2) + D3g4(ξ2) (52)

where the coefficients from Ak to Dk (k = 1, 2, 3) are related to ξ1 and ξ2, g1(ξ1), g5(ξ1) and gn(ξ2)
(n = 1, 2, . . . , 8) are the definite integrals about the eccentric angle φ, the parameters ξ1 or ξ2 need to
switch each other when calculating g1(ξ2), g5(ξ2) or gn(ξ1) used for calculating these integrals from
I2(ξ2, ξ1) to I4(ξ2, ξ1). These coefficients from Ak to Dk and integrals g1(ξ1), g5(ξ1) and gn(ξ2) can be
calculated as:

A1 = − 1 + ξ1

ξ1 − ξ2
; B1 =

1 + ξ2

ξ1 − ξ2
(53)

A2 = − 1 + ξ1

(ξ1 − ξ2)
3 ; B2 =

(
1 + ξ2

ξ1 − ξ2

)3
; C2 =

(1 + ξ1)(ξ1 − 3ξ2 − 2)

(ξ1 − ξ2)
3 ; D2 =

1 + ξ1

(ξ1 − ξ2)
3 , (54)


A3 = −

(
1+ξ1
ξ1−ξ2

)3
; B3 = (1+ξ1)

2(1+ξ2)
3

(ξ1−ξ2)
3 ; C3 = − (1+ξ1)(1+ξ2)

2(3ξ1−ξ2+2)
(ξ1−ξ2)

3

D3 =
(1+ξ2)(3(1+ξ1)(ξ1−ξ2)+(1+ξ2)

2)
(ξ1−ξ2)

3

(55)

g1(ξ1) =
∫ φm

0

dφ

(1 + ξ1 − cos φ)
=

2arctan
(√

(ξ1 + 2)/ξ1 tan(φm/2)
)

√
ξ1(ξ1 + 2)

(56)

g2(ξ2) =
∫ φm

0
1

(1+ξ2−cos φ)3 dφ =
(2ξ2

2+4ξ2+3)arctan
(√

(ξ2+2)/ξ2 tan(φm/2)
)

(ξ2(ξ2+2))(5/2) +

tan(φm/2)(1 + cos φm)× 4ξ2
2+8ξ2+3−3(1+ξ2) cos φm

2ξ2
2(ξ2+2)2(1+ξ2−cos φm)2

(57)

g3(ξ2) =
∫ φm

0
cos φ

(1+ξ2−cos φ)3 dφ =
3(ξ2+1)arctan

(√
(ξ2+2)/ξ2 tan(φm/2)

)
(ξ2(ξ2+2))(5/2) +

(cos φm+1)2 tan(φm/2)
4ξ2(ξ2+2)2(1+ξ2−cos φm)2 ×

(
2ξ3

2 + 5ξ2
2 + 5ξ2 + (2ξ3

2 + 7ξ2
2 + 9ξ2 + 6) tan2(φm/2)

) (58)

g4(ξ2) =
∫ φm

0
cos2 φ

(1+ξ2−cos φ)3 dφ =
(ξ2

2+2ξ2+3)arctan
(√

(ξ2+2)/ξ2 tan(φm/2)
)

(ξ2(ξ2+2))(5/2)

+ tan(φm/2)(1+cos φm)2(ξ2+1)
4ξ2

2(ξ2+2)2(1+ξ2−cos φm)2 ×
(
ξ2

2 + 5ξ2 − (ξ2
2 − ξ2 − 6) tan2(φm/2)

) (59)

g5(ξ1) =
∫ φm

0

1
1 + ξ1 − cos φ

dcosφ = ln(ξ1/(1 + ξ1 − cos φm)) (60)

g6(ξ2) =
∫ φm

0

1

(1 + ξ2 − cos φ)3 dcosφ =
1
2

(
1

(1 + ξ2 − cos φm)2 −
1
ξ2

2

)
(61)
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g7(ξ2) =
∫ φm

0

cos φ

(1 + ξ2 − cos φ)3 dcosφ = −1
2

(
1 + ξ2 − 2 cos φm

(1 + ξ2 − cos φm)2 +
1− ξ2

ξ2
2

)
(62)

g8(ξ2) =
∫ φm

0
cos2 φ

(1+ξ2−cos φ)3 dcosφ

= (1+ξ2)
2

2(1+ξ2−cos φm)2 −
2(1+ξ2)

1+ξ2−cos φm
+

3ξ2
2+2ξ2−1

2ξ2
2

+ ln
(

ξ2
1+ξ2−cos φm

) (63)

3.3. Special Case

When ξ1 = ξ2 = ξ, namely t0/w0 = t/w, these definite integrals from I1(ξ1, ξ2) to I4(ξ1, ξ2) defined
in Equations (49)–(52) can be recalculated as:

I1(ξ) = I1(ξ1, ξ2) =
∫ φm

0
cos φdφ

(1+ξ−cos φ)2 =
2arctan

(√
(ξ+2)/ξ tan(φm/2)

)
(ξ(ξ+2))(3/2) + (1+ξ) sin φm

ξ(ξ+2)(1+ξ−cos φm)
(64)

I2(ξ) = I2(ξ1, ξ2) =
∫ φm

0
cos φdφ

(1+ξ−cos φ)4 =
(4ξ2+8ξ+5)arctan

(√
(ξ+2)/ξ tan(φm/2)

)
(ξ(ξ+2))(7/2) +

(1+cos φm)3

8(1+ξ−cos φm)3 ×

 (2ξ3+8ξ2+16ξ+11) tan(φm/2)
ξ(ξ+2)3 + 4(3ξ3+9ξ2+16ξ+10) tan3(φm/2)

3ξ2(ξ+2)2 +

(2ξ3+4ξ2+8ξ+5) tan5(φm/2)
ξ3(ξ+2)

 (65)

I3(ξ) = I3(ξ1, ξ2) =
∫ φm

0

sin φ cos φdφ

(1 + ξ − cos φ)4 =
(2 + 3ξ)

6(1 + ξ)2ξ3
− (3 + 3ξ − cos φm) cos2 φm

6(1 + ξ)2(1 + ξ − cos φm)3 (66)

I4(ξ) = I4(ξ1, ξ2) =
∫ φm

0
cos3 φdφ

(1+ξ−cos φ)4 =
(3ξ2+6ξ+5)arctan

(√
(ξ+2)/ξ tan(φm/2)

)
(ξ(ξ+2))(7/2) +

(1+ξ)×

 3ξ2(2ξ2 + 7ξ + 11) tan(φm/2) + 4ξ(ξ + 2)(ξ2 + 2ξ + 10) tan3(φm/2)
+3(ξ + 2)2(2ξ2 + ξ + 5) tan5(φm/2)


3ξ3(ξ+2)3(ξ+(ξ+2) tan2(φm/2))3

(67)

Until now, all the integral factors can be calculated by substituting Equations (49)–(63) selectively
into Equations (38)–(48), or using directly Equations (64)–(67) when ξ1 = ξ2 = ξ, and then all the
compliance elements of the flexure segments 1 and 4 can be also calculated by substituting these
integral factors selectively into Equations (13)–(20) and Equations (28)–(31). Finally, the closed-form
compliance matrix and precision factors of two-axis elliptical-arc-filleted flexure hinge can be obtained
analytically by using Equations (1) and (37). Meanwhile, the two-axis elliptical-arc-filleted flexure hinge
can also be further degenerated into other single-axis flexure hinges including the elliptical-arc-filleted
(a1→ 0), the elliptical-arc (a1→ 0 and l2 = 0), the circular-arc-filleted (a1→ 0 and a2 = b = r), the circular
(a1→ 0, a2 = b = r and l2 = 0), the elliptical-fillet (a1→ 0 and φm = π/2), the elliptical (a1→ 0, φm = π/2
and l2 = 0), the right-circular-fillet (a1 → 0, φm = π/2 and a2 = b = r), and the right-circular (a1 → 0, φm

= π/2, l2 = 0 and a2 = b = r) flexure hinges [15–17,29,35]. Moreover, the closed-form compliance and
precision matrices of two-axis flexure hinges with different cutout profiles defined in Figure 3b–f and
the single-axis flexure hinges above can get directly in terms of the particular values of the geometric
parameters of the two-axis elliptical-arc-filleted flexure hinge. In addition, the analytical compliance
equations of two-axis elliptical-arc-filleted flexure hinge can be used for motion accuracy or maximum
stress prediction, characteristic analysis, optimal design of the hinges itself, as well as can be employed
in kinematic or static analysis, dimension optimization, workspace determination of flexure-based
spatial compliant mechanisms.

4. Validation and Numerical Simulation

Finite element analysis (FEA) is used to validate all analytical compliance equations in compliance
and precision matrices derived in the previous section by utilizing the ANSYS Workbench software,
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and the effect of geometric parameters on compliance elements and hinge performance are discussed
in this section.

4.1. Analytical Model

The FEA model of a flexure hinge includes the rigid links of both ends of the hinge besides the
flexure hinge [18–21], namely the theoretical fixed end of the hinge will change and induce deformation
in FEA model under the action of external load, and the FEA results of the hinge are that the rotations
or deformations caused by the left-end section of the hinge were subtracted from the corresponding
rotations or deformations caused by the right-end section of the hinge [25], thus there are different
from the analytical model on the constraint conditions—see Figure 5 and the compliance calculations.
Meanwhile, the point load is applied on a node or a test point [24,25], which is different from the actual
applications of the hinge on the loading conditions. To overcome the above problems, an analytical
model of two-axis elliptical-arc-filleted flexure hinge in accordance with the FEA model is proposed,
and its geometric relationships among coordinate frames are shown in Figure 9, where the O-xyz and
Of-xyfzf are the global frame and the local frame established in the fixed end and the free end of the
analytical model, respectively, the Ol-xylzl, Oh-xyhzh and Ou-xyuzu are the local frames established in
the tips of lower rigid link, flexure hinge and upper rigid link, respectively, and l0 is the length of the
rigid link.

Figure 9. Geometric relationships among coordinate frames of two-axis elliptical-arc-filleted flexure
hinge with two rigid links.

Similar to Equation (1), the analytical compliance matrix of the two-axis elliptical-arc-filleted
flexure hinge with two rigid links can be expressed as:

CAn = JLCLJT
L + JHCJT

H + CU (68)

where CAn, CL, C and CU indicate the compliance matrices of the analytical model, lower rigid link,
two-axis elliptical-arc-filleted flexure hinge and upper rigid link, respectively, and each non-zero
compliance element of CL and CU can be obtained by using l0, w and t instead of l2, w0 and t0 defined
in Equation (6), respectively, JL and JH can be given by:

JL =

(
RL −RLSL(rL)

03×3 RL

)
; JH =

(
RH −RHSH(rH)

03×3 RH

)
(69)
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where both RL and RH are unit matrices here, and the position vectors rL and rH can be expressed as:

rL =
(

l0 + L 0 0
)T

; rH =
(

l0 0 0
)T

(70)

The length of the rigid link is short and its compliance is far less than the compliance of the hinge,
as well as the deformation occurs mainly on the flexure hinge, thus the proposed analytical model can
be used for verifying indirectly the correctness of the compliance and precision equations of two-axis
elliptical-arc-filleted flexure hinge.

4.2. Finite Element Analysis and Validation

The finite element mesh models of two-axis corner-filleted flexure hinges with two rigid
links were generated by using twenty-node, three-dimensional hexahedral elements (Solid 186)
with three translational degrees of freedom per-node, one of the hinge mesh models is shown in
Figure 10a, of which its total nodes and total elements are 195,716 and 45,696, respectively. Meanwhile,
the mesh-independent validation is carried out to eliminate the effect of mesh densities on the
computational accuracy and reduce the calculation time. The one and the opposite end of each
hinge model are fixed and loaded, respectively. In order to obtain or calculate better the compliance
elements in FEA results, three different paths in finite element model are defined, as depicted in
Figure 10b, where the A1-A2 is path 1, the B1-B2 is path 2, the C1-C2 is path 3, and A1-A2, B1-B2 and
C1-C2 are parallel to x-, z- and y-axis, respectively, A2, B1 and C1 three points coincide, A1 and A2

are located on the geometric center of the fixed end and the loading surface, respectively, B2 and C2

are located on both sidelines of the loading surface, respectively, of which the output displacement
of point A2 along the corresponding axis produced by unit force f x, fy or fz is used for obtaining the
element CAn,11, CAn,22, or CAn,33; the output displacements of point B2 along x-axis and point A2 along
z-axis under unit moment My are used for calculating the element CAn,55 and obtaining the element
CAn,35, respectively; similarly, the output displacements of point C2 along x-axis and point A2 along
y-axis under unit moment Mz are used for calculating the element CAn,66 and obtaining the element
CAn,26, respectively; the output displacement of point B2 along y-axis or point C2 along z-axis under
unit moment Mx is used for calculating the element CAn,44. Six different two-axis corner-filleted flexure
designs with two rigid links defined in Figure 3 are selected as the compliance comparisons between
the analytical results and the finite element results. The geometric parameters of each model are
listed in Table 1. For all design types, the linear elastic material properties are: the elastic modulus
E = 2.0 × 1011 N/m2, Poisson’s ratio v = 0.3, the shear modulus G = 7.6923 × 1010 N/m2, and the
density ρ = 8000 kg/m3. Notice, however, that only two-axis flexure hinges in small deformation are
considered due to the stress concentration that occurs on the minimum cross section of the hinges,
thus the static analysis with linear geometry setting is performed in the finite element model, which is
different from the large deformation with non-linear geometry setting of the constant cross-section
beams that are introduced by the material nonlinearity or the geometry nonlinearity [44,45], this is
because the stress distributes uniformly on the constant cross-section beam. In addition, the nonlinear
and the linear geometry settings in the finite element model of the hinges can get the same results in
small deformation. Meanwhile, the analytical model is restricted to linear elastic materials and only
applied to small deformation occasions.

Table 2 gives the analytical results and the finite element results, as well as the corresponding
relative errors. It can be observed from Table 2 that the maximum relative error for
two-axis elliptical-arc-filleted, circular-arc-filleted, elliptical-filleted, right-circular-filleted, hybrid
elliptical-arc-filleted and circular-arc-filleted, and hybrid elliptical-filleted and right-circular-filleted
flexure hinge between the analytical results and the finite element results is less than 10.5%, 6.5%,
9.0%, 7.5%, 6.5% and 8.0%, respectively, which shows that the analytical model predictions are in
good conformity with the simulation results, and the analytical model can be also shown indirectly
the exactness of the compliance and precision equations of two-axis corner-filleted flexure hinges



Sensors 2017, 17, 2154 15 of 20

deduced previously. Therefore, the analytical compliance and precision equations can be further used
for predicting the effect of geometric parameters on compliance elements and performance of two-axis
corner-filleted flexure hinges.

Figure 10. Two-axis elliptical-arc-filleted flexure hinge with two rigid links: (a) Finite element mesh
model; (b) Path definitions.

Table 1. Geometric parameters of two-axis corner-filleted flexure hinges with two rigid links.

t0 (mm) w0 (mm) a1 (mm) a2 (mm) b (mm) l2 (mm) φm l0 (mm) Type

1 0.5 0.8 2.0 1.5 1.0 0.4 60◦ 0.5 DEAF
2 0.5 0.8 1.0 1.0 1.0 0.4 60◦ 0.5 DCAF
3 0.7 1.0 2.0 2.5 1.5 0.5 90◦ 0.6 DEF
4 0.7 1.0 1.5 1.5 1.5 0.5 90◦ 0.6 DRCF
5 0.9 1.2 2.0 3.0 2.0 0.6 60◦ 0.7 HEACF
6 0.9 1.2 2.0 3.0 2.0 0.6 90◦ 0.7 HERCF

Table 2. Comparison of compliance elements between the analytical results and the FEA results
(denoted by An and FEA, respectively).

CAn,11 (m/N) CAn,22 (m/N) CAn,33 (m/N) CAn,26/CAn,62
(1/N)

CAn,35/CAn,53
(1/N)

CAn,44
(rad/Nm)

CAn,55
(rad/Nm)

CAn,66
(rad/Nm)

1
An 2.135 × 10−8 2.780 × 10−6 1.149 × 10−6 1.449 × 10−3 −5.767 × 10−4 0.877 0.327 0.820

FEA 2.289 × 10−8 2.968 × 10−6 1.268 × 10−6 1.541 × 10−3 −6.371 × 10−4 0.879 0.364 0.873
Err 6.73% 6.33% 9.38% 5.97% 9.48% 0.23% 10.16% 6.07%

2
An 2.453 × 10−8 3.133 × 10−6 1.354 × 10−6 1.603 × 10−3 −6.627 × 10−3 0.981 0.375 0.908

FEA 2.564 × 10−8 3.274 × 10−6 1.437 × 10−6 1.674 × 10−3 −7.057 × 10−3 0.976 0.401 0.948
Err 4.33% 4.31% 5.78% 4.24% 6.09% 0.51% 6.48% 4.22%

3
An 1.647 × 10−8 2.296 × 10−6 1.231 × 10−6 8.228 × 10−4 −4.294 × 10−4 0.370 0.165 0.317

FEA 1.746 × 10−8 2.459 × 10−6 1.341 × 10−6 8.789 × 10−4 −4.663 × 10−4 0.374 0.181 0.341
Err 5.67% 6.63% 8.20% 6.38% 7.91% 1.07% 8.84% 7.04%

4
An 1.825 × 10−8 2.580 × 10−6 1.354 × 10−6 9.133 × 10−4 −4.667 × 10−4 0.408 0.180 0.351

FEA 1.901 × 10−8 2.720 × 10−6 1.451 × 10−6 9.596 × 10−4 −4.993 × 10−4 0.411 0.194 0.371
Err 4.00% 5.15% 6.69% 4.82% 6.53% 0.73% 7.22% 5.39%

5
An 1.421 × 10−8 1.606 × 10−6 1.012 × 10−6 4.844 × 10−4 −2.962 × 10−4 0.198 0.098 0.160

FEA 1.496 × 10−8 1.707 × 10−6 1.081 × 10−6 5.147 × 10−4 −3.158 × 10−4 0.201 0.104 0.170
Err 5.01% 5.92% 6.38% 5.89% 6.21% 1.49% 5.77% 5.88%

6
An 1.400 × 10−8 1.870 × 10−6 1.169 × 10−6 5.262 × 10−4 −3.209 × 10−4 0.198 0.097 0.160

FEA 1.466 × 10−8 1.997 × 10−6 1.258 × 10−6 5.607 × 10−4 −3.441 × 10−4 0.201 0.105 0.171
Err 4.50% 6.36% 7.07% 6.15% 6.74% 1.49% 7.62% 6.43%

4.3. Compliance Ratio

To obtain the effect by joining the serially-connected flexure segments 2 and 3 on the compliance
elements of two-axis flexure hinge with elliptical-arc notches, the analytical compliance equations
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is utilized, and the two-axis elliptical-arc-filleted flexure hinge is selected as an analysis example to
compare with two-axis elliptical-arc flexure hinge by means of the following compliance ratio:

rij =
Cij,DEAF

Cij,DEA
(71)

where the subscript ‘’DEA” denotes the two-axis elliptical-arc flexure hinge defined by dual
elliptical-arc cutout profiles.

Figure 11 shows the variation of eight compliance ratios in terms of l2, the other geometric
parameters listed in Table 1 except l0 = 0 and the material properties are all constant. According to
the linear superposition principle, the compliance ratios r11, r44, r55, and r66 depend linearly on the
length l2 and increase slowly. However, for the ratios r22, r33, r26 and r35, they depend non-linearly on
the length l2, and the increased amplitude of r22 or r33 are more than r26 or r35. Meanwhile, it can be
observed that the two-axis corner-filleted flexure hinges have higher capacity of rotation than two-axis
flexure hinges when l2 is relatively large.

Figure 11. Compliance ratio of DEAF and DEA as a function of l2.

4.4. Compliance Precision Ratio

When designing a two-axis flexure hinge, we usually hope that the hinge can possess large
compliance at the free end and relatively small off-axis compliance at the center of rotation to achieve
high motion accuracy. Thus, the compliance and precision ratio can be an important performance
index to evaluate the ability of preserving the center of rotation under the same displacement at the
free end of the hinges [46]. For the transverse symmetric flexure hinges, according to the superposition
principle, the axial compliance and precision ratio will be always equal to 2, which is not affected
by the geometric parameters of the hinges. Hence, four compliance precision ratios can be defined
as follows:

r2 =
C22

CQ,22
; r3 =

C33

CQ,33
; r4 =

C26

CQ,26
; r5 =

C35

CQ,35
(72)

The larger compliance and precision ratios show that the flexure hinges have better ability
and smaller relative motion error. Similarly, the two-axis elliptical-arc-filleted flexure hinge and its
analytical compliance and precision equations are utilized to further investigate the effect of geometric
parameters on the compliance precision ratio, all parameters listed in Table 1 except the corresponding
variations and l0 = 0 keep constant. Figure 12 illustrates these trends that four compliance precision
ratios of DEAF vary with the parameters w0 and t0, and Figure 13 illustrates the results of the
compliance precision ratios as a function of l2.
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Figure 12. Compliance precision ratio of DEAF as a function of t0 and w0: (a) translational; (b) cross.

Figure 13. Compliance precision ratio of DEAF as a function of l2.

From Figure 12a,b, the following conclusions regarding the two axis elliptical-arc-filleted flexure
hinge but are also valid for other two-axis corner-filleted flexure hinges can be drawn:

• All the compliance precision ratios from r2 to r5 decrease when the parameters w0 and t0 increase,
and vice versa; The ratios r3 and r4 are more sensitive to t0 than w0, and w0 has only slightly
influence on them; The ratio r2 is less affected by the parameter t0 than w0; The effect of the
parameters w0 and t0 on the ratio r5 are approximately the same.

• From the trends of the ratios r2 and r3, the ability of preserving the rotational center under pure
force along z-axis is larger than the one along y-axis when t0 < w0, namely r3 > r2, and vice
versa; but for the plots of the ratios r4 and r5, the ability of preserving the rotational center under
pure moment about z-axis is larger than the one about y-axis when ξ1 > ξ2, namely r4 > r5, and
vice versa.

The compliance precision ratios from r2 to r5 depend non-linearly on the parameter l2, as shown
in Figure 13. The ability of preserving the rotational center under pure moment My or Mz decreases
whereas the ability under pure force fz increases with increasing l2; but the ratio r2 increases firstly and
then decreases slowly and can be achieved larger compliance precision ratio with respect to the other
three; the ratio r3 is also larger than r4 and r5 as l2 increases, which show that the ability of preserving
the rotational center under force is larger than the one under moment when the free end of two-axis
elliptical-arc-filleted flexure hinge has same displacement and l2 is gradually larger.
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5. Conclusions

This paper introduces a class of two-axis flexure hinges with different cutout proflies as
an alternative of flexure hooke hinges used for compact, small flexure-based spatial compliant
mechanisms. The compliance and precision matrices of a common two-axis elliptical-arc-filleted
flexure hinge are formulated by using the Castigliano’s second theorem and the generic compliance
modeling method, which can be used for other two-axis flexure hinges. FEA simulation is carried
out to validate indirectly the analytical compliance and precision equations of six different types of
two-axis corner-filleted flexure hinges, and the analytical results with respect to the simulation results
are in good agreement. Besides, several non-dimensional functions are defined and formulated to
analyze and study the performance of two-axis flexure hinges sensitivity to the geometric parameters.
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