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Abstract: Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence
of observation conditions, which limits the availability of RS data. Therefore, it is of great significance
to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse
dictionary learning-based image inpainting method for adaptively recovering the missing information
corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the
cloud-free regions, which was later utilized to infer the missing patches via sparse representation.
To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in
of missing patches on image structures. The optimization model of patch inpainting was formulated
under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal
matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was
designed and applied to images with simulated and true clouds. Comparisons and experiments
show that our method can not only keep structures and textures consistent with the surrounding
ground information, but also yield rare smoothing effect and block effect, which is more suitable for
the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant
textured features.

Keywords: sparse representation; dictionary learning; image inpainting; thick clouds removal; high
resolution remote sensing image

1. Introduction

During the past decades, remote sensing (RS) images have been commonly adopted in
many applications, like scene interpretation, land-use classification, land-cover change monitoring,
and atmospheric environment surveying. Especially with the high demand for finer earth
observation, high-spatial resolution RS imagery plays an increasingly important role in landscape
information interpretation, which provides precise and abundant representation of surface features
(e.g., geometrical structures and textured patterns). However, owing to the influence of observation
conditions, optical imageries from satellite sensors are often corrupted by clouds, which limits the
availability of RS data. Hence, removing clouds to recover real ground information is of great
significance for practical application purposes.
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Many studies have been dedicated to coping with the problem of cloud removal, to reduce or
eliminate the influence caused by clouds. To some extent, it is equivalent to the image inpainting
problem [1] as long as clouds are accurately detected (see [2–5] for more details on cloud detection).
Removing clouds is essentially a process of recovering the missing information, and the existing
methods can fall into three classes [6–8]: one class is multispectral complementation based; the second
is multitemporal complementation based; and spatial-complementation based methods. Shen et al. [9]
and Gladkova et al. [10] followed the way of multispectral complementation to recover the missing
MODIS data by utilizing spectral correlation between the corrupted band and other cloud-free bands.
Li et al. [11] adopted shortwave infrared images to reconstruct the visible image via the fusion scheme
based on variational gradients, which is only suitable for haze and thin clouds removal but cannot
work for thick clouds that always contaminate whole bands in the imageries. Moreover, Shen et al. [12]
presented a compressed sensing (CS) based inpainting approach that adaptively weights the clear
bands in terms of spectral importance to restore Aqua MODIS band 6. Nevertheless, all these methods
are generally confined to the spectral compatibility [6,7] and tend to have trouble removing thick cloud.

By contrast, it seems more attractive to take multitemporal complementation into consideration
to recover the missing information sheltered by clouds. In this way multitemporal RS images acquired
at different times and over the same area are employed. Tseng et al. [13] developed the multi-scale
wavelet based fusion approach to recover the cloud zones in the base image using multitemporal
cloud-free images. In references [7,14] somewhat similar ideas were used to generate cloud-free images.
Regression analysis [15] was also introduced to reconstruct the missing regions aided by just one
reference image from another period. The neighborhood similar pixel interpolator (NSPI) method
originally proposed to repair gaps in Landsat7 ETM+ images was then modified by Zhu et al. [16]
for thick clouds removal. Recently, sparse representation was incorporated into the multitemporal
complementation based approaches, producing quite promising results [8,17–20]. As pointed out in
references [8,14,21], these approaches cannot work well when suffering from severe overlapping of
cloud cover, significant spectral differences caused by atmospheric conditions, and rapid changes of
land use. In addition, most of these methods cannot well preserve the spatial continuity of the ground
features which will be abundantly and finely revealed in high-spatial resolution RS images.

The cloud removal approaches of spatial-complementation category are mainly developed based
on the image inpainting technique, which utilize the known ground information in the cloud-free
regions to infer the cloudy parts. The goal of image inpainting is to seamlessly reconstruct a visually
pleasant and consistent image [21]. It should be mentioned that total variation (TV) [22] and partial
differential equations (PDE) [23] were both introduced to the inpainting problem, which are sorted as
the diffusion-based approaches and achieve excellent results when filling in smaller missing regions
without textures. To repair larger missing regions and preserve texture features, exemplar-based
inpainting algorithms [24,25] deriving from the texture synthesis technique were employed to inpaint
images at the patch level. Xu et al. [26] presented a patch-sparsity based inpainting approach which can
produce sharp structures and consistent textures to surrounding information. Sparse representation
also gives out a competitive solution to this problem in the way of spatial complementation [27–31].
Bandelet transform [21], maximum a posteriori (MAP) [32], patch filling [33], and nonlocal TV [34]
were all adopted to inpaint RS images. Furthermore, Markov random field (MRF) [35] and newly
developed low-rank tensor completion (LRTC) [36,37] can also be applied to cloud removal research.
Resorting to the known information of the image, image inpainting techniques can produce visually
pleasant results that are suitable for cloud-free visualization [6,7]. However, when repairing larger
missing regions with composite structures and textures, most existing methods will discard some
detailed features of the ground information, leading to smoothing effects and block effects.

As stated above, sparse representation has been gradually deployed into the image restoration
field and proven to be appropriate for recovering large-area missing information recently [38].
Inspired by this idea and the latest progress on exemplar-based image inpainting, we present a
dictionary-learning based adaptive inpainting approach via patch propagation. Due to the widespread
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sparsity of RS images, the feature dictionary was learned from exemplars in the cloud-free regions
to infer the cloud-contaminated parts by sparse representation afterwards. In the patch selection
stage, structure-sparsity based patch priority was employed to encourage the repairing of corrupted
patches located at image structures, which can keep the continuity of structures. As for the patch
inpainting stage, a neighborhood-consistency constraint with adaptive parameters was considered to
construct the l0-norm minimization model for retrieving the missing information beneath thick clouds,
which would guarantee the consistency of synthesized textures with the surrounding information.
To solve the optimization model and reconstruct complete information from incomplete measurements,
a modified orthogonal matching pursuit (OMP) algorithm was put forward in this paper. Through
simulated and real experiments on thick clouds removal from high-spatial resolution RS images, the
proposed method exhibits a superior performance over that of some existing mainstream approaches,
which can well preserve the continuity of filled structures and the consistency of synthesized textures,
yielding rare smoothing effect and edge effect.

The rest of this paper is organized as follows. We start by introducing some preliminary
knowledge on exemplar-based inpainting and sparse dictionary learning in Section 2. The optimization
model for adaptive patch inpainting and our modified OMP algorithm are described in Section 3,
where the thick-cloud removal scheme for RS imagery is designed. In Section 4, we demonstrate the
experiments and compare with some existing inpainting approaches. Finally, we conclude this paper
in Section 5.

2. Preliminaries

2.1. Exemplar-Based Image Inpainting

Generally, an image is composed of structures and textured features, where structures constitute
the main sketches in the image (e.g., contours and edges) and textures are image regions with
similar feature statistics or homogenous patterns (including smooth areas) [26]. The main thought of
exemplar-based image inpainting is to inwardly propagate image information from the source regions
(i.e., known parts) into the target regions (i.e., missing parts) at the patch level. For each iteration of
patch propagation, patch selection and patch inpainting are two primal operations. In patch selection,
the patch on the target region boundary with the highest priority is chosen for further inpainting.
Patch priority is designed to urge completion of patches located at structures so that structures can be
first recovered compared with textured patterns. In the patch inpainting procedure, the chosen patch
is synthesized via linear combination of candidate exemplars from the source region [24–26].

However, most existing algorithms of patch inpainting search the candidate exemplars globally
to infer the missing patches in target regions, leading to too high computational cost and poor
representation ability. So, we introduce the K-SVD algorithm [39] to learn feature dictionary aiming to
extend patch diversity, which will be described in following subsection. A good definition of patch
priority should be able to better distinguish the structures and textures. Among those prior works, we
focus on the structure-sparsity based priority [26]. Patch structure sparsity is defined by the sparsity of
a patch’s nonzero similarities to its neighboring patches, which can better measure whether a patch is
on structures or not.

Given an image I with source region Ω and target region Ω, the goal of image inpainting is to
repair the region Ω utilizing known information in region Ω. We use ∂Ω to denote the boundary of
region Ω which is also called fill-front in exemplar-based inpainting approaches. Ψp denotes the patch
centered at pixel p, and N(p) means the neighboring window which is also centered at pixel p and
with larger size than patch Ψp.

Suppose Ψp is a patch on fill-front ∂Ω, its neighboring patches Ψpj are defined as patches which
are located in region Ω and with center pj in the neighboring window N(p), i.e., pj belongs to the set

Ns(p) = {pj : pj ∈ N(p) and Ψpj ⊂ Ω}. (1)
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As to patch Ψp, its structure sparsity is defined by

S(p) =

√√√√√
 ∑

pj∈Ns(p)
w2

p,pj

 · |Ns(p)|
|N(p)| , (2)

where wp,pj denotes the normalized similarity between Ψp and Ψpj , and |·| is the number of elements
in a set. Structure sparsity S(p) reaches the maximal value, while the patch similarities are distributed
in the sparsest form.

2.2. Sparse Dictionary Learning

Sparse representation has become an increasingly attractive research hotspot in recent
years [39–42]. For the over-complete dictionary D ∈ Rn×K, whose columns are prototype signal-atoms
dj ∈ Rn(j = 1, 2, · · · , K), the target signal y ∈ Rn can be represented as a sparse linear combination
of these atoms. To be more specific, y can be approximated as y ≈ Dx which satisfies ‖y− Dx‖p ≤ ε,
where the vector x ∈ RK contains the representation coefficients of signal y. We set p = 2 in the paper.

Suppose n < K and D is full rank, there exist innumerable solutions to this representation problem.
So, a sparsity constraint is imposed on the problem, and then we can obtain the solution by

min
x
‖y− Dx‖2

2 s.t.‖x‖0 ≤ T, (3)

where ‖ · ‖0 denotes the l0-norm and T limits the sparsity of representation coefficients. As we know,
computing the optimal solution to (3) is the nondeterministic polynomial-time hard (NP-hard) problem.
Therefore, some algorithms that approximately solve this problem were put forward. Matching pursuit
(MP) and orthogonal MP algorithms [43] are the simplest ones. Moreover, basis pursuit is also a
representative algorithm for solving the problem by replacing the l0-norm with l1-norm [44]. The
focal underdetermined system solver (FOCUSS) adopts lp-norm with p ≤ 1 as a replacement for the
l0-norm [45].

Considering a set of signals {yi}N
i=1(N � K), there exists a dictionary D providing the sparse

solution xi for each signal yi. The dictionary learning problem is to find the optimal dictionary
by solving

min
D,X
{‖Y− DX‖2

F} s.t.∀i, ‖xi‖0 ≤ T0, (4)

where Y = [y1, y2, · · · , yN ], X = [x1, x2, · · · , xN ] and ‖ · ‖F means the Frobenius norm. The dictionary
learning algorithm based on K-SVD [39] is the generalization of K-means clustering algorithm, which
iteratively alternates between sparse representation of signal examples and the updating of dictionary
atoms one by one.

3. Methodology

3.1. Adaptive Patch Inpainting Model and Algorithm

The exemplar-based inpainting approach generally synthesizes a missing patch by linear
combination of several of the top most similar exemplars from the source regions. Unfortunately, these
similar exemplars cannot perfectly describe the distinctions from the patch to be inpainted, which
will deteriorate the generalization ability of linear combination. Besides, existing patch inpainting
algorithms cannot yield adaptive inpainting results for each missing patch according to the neighboring
characteristics, leading to inconsistency with the surrounding structures and textures in appearance.
The illustration of our adaptive patch inpainting approach based on sparse dictionary learning is
shown in Figure 1a, where feature dictionary D is learned from exemplars in the source region Ω to
estimate the missing patch Ψp via sparse representation, and neighboring patches {Ψpj}pj∈Ns(p)

will
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be used to constrain the appearance of Ψ̂p (i.e., the estimated patch of Ψp) to maintain a consistent
neighborhood. Figure 1b presents the general patch inpainting technique, where several candidate
exemplars are utilized to infer the estimated patch.
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Figure 1. The Illustration of Sparse Dictionary Learning Based Patch Inpainting.

3.1.1. Patch Priority

The filling-in order of missing patches on the fill-front is of great importance to the inpainting
result. To preserve the coherence of structures, patch priority is designed to firstly select patches
on image structures for further inpainting, since textured features are prone to be synthesized by
exemplars or dictionary in the framework of sparse representation. Due to better discrimination of
whether or not a patch is on structures, structure sparsity is hereby employed to determine the patch
priority. In our paper, the similarity between patch Ψp and its neighboring patch Ψpj(pj ∈ Ns(p)) is
calculated by

wp,pj =
1

Z(p)
exp(−

d(πΩ(Ψp), πΩ(Ψpj))

σ2 ), (5)

where d(·, ·) refers to the mean squared distance and Z(p) denotes the normalization constant so that
∑pj∈Ns(p) wp,pj = 1. In (5), the linear operator πΩ : Rm×n → Rm×n keeps the elements in the index set
Ω unchanged and sets those outside Ω zeros, and the set Ω corresponds to the indices of the known
elements in patch Ψp. Similarly, as for the operator πΩ, the index set Ω is determined by the missing
elements in Ψp. Under the guarantee of S(p), the patches on image structures will hold higher priority
for further inpainting compared to the ones in textured parts.

Finally, the patch priority can be calculated by

P(p) = T[ζ,1](S(p)) · C(p). (6)

C(p) = ∑q∈Ψp∩Ω c(q)/
∣∣Ψp

∣∣ denotes the confidence of Ψp, which means the reliability of intensity in
the patch [24]. Herein, c(q) is the confidence of pixel q, which is initialized as 1 in the source region and
0 in the target region. After each iteration of patch propagation, the confidence of the newly inpainted
pixels in the selected patch will be updated as patch confidence C(p). T[ζ,1] is a linear transform of

S(p) from the initial interval
[√

1/|N(p)|,
√
|Ns(p)|/|N(p)|

]
to [ζ, 1], which is necessary to make

S(p) vary at a comparable scale with C(p). As a result, patch priority will encourage the repair of the
patches on image structures and with larger confidence first.

3.1.2. The Optimization Model for Patch Inpainting

In this subsection, the optimization model of adaptive patch inpainting under the
neighborhood-consistency constraint will be put forward, which can yield continuously sharp
structures and clearly fine textures that are consistent with the surrounding information. To extend
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the diversity of the patch Ψp, feature dictionary D is constructed by the K-SVD algorithm to sparsely
represent the missing patch. Feature dictionary is four times redundant in our implementation so that
the missing patches can be better inferred. The size of atoms in the dictionary is generally set to 8× 8
pixels or 16× 16 pixels in the paper, which will be specifically discussed in Section 4.

Given the patch Ψp to be inpainted and dictionary D, Ψp is approximated as a sparse linear
combination of D, i.e.,

Ψ̂p = ∑ xkdk = DX. (7)

Then, the missing part of patch Ψp can be completed by the corresponding part in Ψ̂p, i.e.,
πΩ(Ψp) = πΩ(Ψ̂p). To obtain the sparsest solution X, the problem can come down to l0-norm
minimization problem (i.e., min‖X‖0) by constraining the appearance of the estimated patch Ψ̂p.

Constraints on the known part Ω and missing part Ω will be taken into consideration. Firstly, the
estimated patch Ψ̂p should approximate the missing patch Ψp over the known elements, i.e.,

‖πΩ(Ψ̂p)− πΩ(Ψp)‖
2
F ≤ ε, (8)

where ε denotes the error tolerance of this sparse representation. Furthermore, the newly filled elements
in patch Ψ̂p should coincide with the neighboring image features, so the neighborhood-consistency
constraint is considered to further restrict the appearance of Ψ̂p. Herein, the neighboring patches
Ψpj(pj ∈ Ns(p)) with the corresponding similarities wp,pj are employed again to constrain the sparse
representation over the missing elements, i.e.,

‖πΩ(Ψ̂p)− πΩ( ∑
pj∈Ns(p)

wp,pj Ψpj)‖
2

F

≤ η, (9)

where η ≥ ε is the error tolerance for the missing part. Suppose η = ε/β(0 < β ≤ 1) where β is the
balance factor that balances the strength of constraints between (8) and (9), the two types of constraints
can be reformulated as 

‖πΩ(D)X− πΩ(Ψp)‖2
F ≤ ε

‖πΩ(
√

βD)X− πΩ(
√

β ∑
pj∈Ns(p)

wp,pj Ψpj)‖
2

F

≤ ε. (10)

In (10), we use πΩ(D) to denote the πΩ operation on each atom of D, i.e., πΩ(D) =

(πΩ(d1), · · · , πΩ(dk), · · · ), and so is the case with πΩ(
√

βD).
As we know, in each patch inpainting stage, the selected patch is within a different image region,

so the balance factor should be adaptively adjusted according to the neighboring characteristics.
In general, when patch Ψp is located at structures, β should be turned down; if Ψp is in a textured
region, the balance factor will increase. We design an adaptive scheme to adjust the balance factor in
view of patch structure sparsity, i.e.,

β =
1

C · T[ζ,1](S(p))
, (11)

where ζ = 0.2 and C = 6 to satisfy 0 < β ≤ 1 in the paper. The constraints in (10) can be formulated in
a more compact form

‖DnewX−Y‖2
F ≤ ε, (12)

where Dnew = πΩ(D) + πΩ(
√

βD) and Y = πΩ(Ψp) + πΩ(
√

β ∑
pj∈Ns(p)

wp,pj Ψpj). Finally, the sparsest

solution to X will be obtained by solving this constrained optimization model

min‖X‖0, s.t.‖Y− DnewX‖2
F ≤ ε. (13)
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It is equivalent to the model of (3), which can be solved via the modified versions of algorithms
available for (3).

3.1.3. Modified OMP and the Inpainting Algorithm

To solve the optimization model of (13), we present a modified version of OMP algorithm owing
to its practicability and simplicity. Generally, the basic idea is to normalize the newly computed
dictionary Dnew, which can better guide the selection of optimal matching atoms to approximate
the newly produced patch Y; and then, the representation coefficients Xnew for patch Y under the
normalized dictionary Dnorm can be obtained by the OMP algorithm; finally, the solution to X will
be retrieved from Xnew, the index set of selected atoms and the corresponding norms of atoms in
Dnew. As a result, the unknown pixels of patch Ψp can be completed by corresponding pixels in the
reconstructed patch Ψ̂p from (7).

In summary, the overall algorithm for adaptive patch inpainting is listed in Figure 2, where the
procedures of patch selection and inpainting will be mainly involved. In our implementation, the size
of the neighboring window N(p) is generally set as five times the size of patch Ψp, which can achieve
a nice tradeoff between the computational cost and neighborhood consistency; the balance factor β

in (10) may be affected by the ratio between the number of unknown pixels in Ψp and that of known
pixels (denoted by r), so β′ = β/r will be considered as a substitute for β.
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3.2. Thick Clouds Removal Scheme for RS Imagery

When thick clouds appear in an area, the ground information may be completely contaminated,
and bright-white features in clustering pattern will be revealed in optical RS image due to the high
reflectance intensity of thick clouds. Luckily, RS imagery is prone to obtain a wide range of surface
information, so there will always be lots of similar information within an image because of the spatial
autocorrelation. This similar information includes not only the local neighborhood similarity but
also the nonlocal similarity [34], which makes it possible to reconstruct the missing information
utilizing the ground information in cloud-free (i.e., source) region. In light of this, the adaptive patch
inpainting method based on sparse representation is applied to the problem of thick clouds removal,
especially for high-spatial resolution RS image that contains salient geometric structures and abundant
textured features.

Above all, the detection of thick clouds is of great significance to subsequent clouds removal,
which is beyond the scope of the main topic in our paper. In short, we employ the threshold
method and region growth to extract missing region, on account of high reflectance intensity and
clustering characteristics of thick clouds. Once the target region Ω is obtained, the fill-front ∂Ω of the
cloudy region is then extracted by the mathematical morphology method. Specifically, we first adopt
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morphological close operator with square structure element of the size 3× 3 pixels to fill in small holes
in the target region, aiming to avoid the tracing of unwanted edge points and too high computational
cost in patch selection stage; and then, edge points of the preprocessed target region can be tracked
by the operation imclose(Ω, se)− imerode(imclose(Ω, se), se), where the functions imclose and imerode
denote morphological close and erosion operator respectively, and se means the structure element.

Afterwards, the feature dictionary is learned from randomly selected exemplars in the cloud-free
region Ω. It should be noted that in our paper, feature dictionary D will be augmented by the newly
filled patch after each iteration of patch inpainting, which may expand the diversity of dictionary to
better inpaint the remaining patches. In the following procedure, an iterative operation of adaptive
patch inpainting will be performed. That is to say, repeat the patch selection and patch inpainting
until the missing region contaminated by thick clouds is completely repaired. After each iteration, the
target region Ω along with its fill-front ∂Ω, the confidence map c(q) and the missing pixels in patch Ψp

should be updated accordingly. The whole workflow of thick clouds removal based on adaptive patch
inpainting algorithm is presented in Figure 3.
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Figure 3. The Flowchart of Our Thick Clouds Removal Scheme.

4. Experiments and Discussion

This section is devoted to the experimental analysis and discussion of our adaptive patch
inpainting scheme for removing clouds from high resolution RS images. Some existing methods
(e.g., texture synthesis technique, morphological component analysis (MCA) [27,46], MRF [35]) and
most related works [24,26] will be employed to restore the missing information corrupted by manually
appended masks and real clouds. Additionally, the recently developed LRTC [36,37] will also be
applied to the comparison experiments. MATLAB implementation of the MCA algorithm that is
available as a part of the MCALab package can be downloaded at http://www.greyc.ensicaen.fr/
~jfadili/demos/WaveRestore/downloads/mcalab/Home.html, and the code for the MRF method is
available at http://www.gris.informatik.tu-darmstadt.de/research/visinf/software/index.en.htm.

http://www.greyc.ensicaen.fr/~jfadili/demos/WaveRestore/downloads/mcalab/Home.html
http://www.greyc.ensicaen.fr/~jfadili/demos/WaveRestore/downloads/mcalab/Home.html
http://www.gris.informatik.tu-darmstadt.de/research/visinf/software/index.en.htm
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Comparison results are shown in the form of statistical index tables and visual effects. To evaluate
the quality of the restoration results, peak signal to noise ratio (PSNR) and structural similarity (SSIM)
are adopted for objective evaluation and subjective visual evaluation, respectively. Given an image
I ∈ [0, 255]m×n, the PSNR index of the restored image Î is defined as follows:

PSNR(I, Î) = 10 log10
2552

MSE
, MSE = ‖I − Î‖2

F/(m× n) . (14)

The SSIM index is the metric that better corresponds to the subjective quality of visual perception,
which can be formulated as

SSIM(I, Î) =
(2µIµ Î + C1)(2σI Î + C2)

(µ2
I + µ2

Î
+ C1)(σ

2
I + σ2

Î
+ C2)

(15)

(see [47] for more details). The dynamic range of SSIM is [0, 1], which means a better recovery
performance with the SSIM closer to the value 1.

We’ll start with the inpainting experiment on the Barbara image—commonly used in the field
of image processing—to validate the high performance of our adaptive patch inpainting algorithm.
As shown in Figure 4, the original image of size 512× 512 pixels contains abundant textures, which is
then corrupted by white scratches and blocks in Figure 4b. Figure 4c–g are the inpainting results of the
proposed method, MRF, texture synthesis, exemplar-based [24] and MCA, respectively. Dictionaries
used in the MCA are curvelets for the cartoon layer and 2-dimensional cosine packets for the texture
layer. In all experiments, parameters of each method have been tuned to yield the best results. It is clear
that the proposed approach greatly outperforms other methods, which keeps better consistency with
the surrounding textures and avoids smooth effect and artifacts in appearance. The repaired results
of texture synthesis and exemplar-based method [24] are not visually pleasant, while in Figure 4d,
smooth effect and block effect appear in the inpainted regions. By contrast, the MCA method can
produce a visually reasonable result, yet somewhat smooth effects in the textured region and slight
vestiges of the structures still remain. The values of PSNR and SSIM indices given in Table 1 also
demonstrate that our inpainting method performs better not only according to an objective index, but
also to subjective visual effect. Note that in our paper, the statistical indices are only computed for the
recovered regions.
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Table 1. Comparisons of Statistical Indices on Barbara Image.

Barbara
Image

Texture
Synthesis

Result of
[24]

Result of
MRF

Result of
MCA

Result of
Ours

PSNR(DB) 16.836 19.942 19.887 23.348 24.408
SSIM 0.805 0.898 0.897 0.954 0.966

In the following experiments, we perform our method on RS images. In Figure 5a, the red-band
aerial image of buildings is contaminated by some masks, two of which are rectangle masks with the
size of 43× 28 pixels and that of 43× 56 pixels respectively. The original information sheltered by the
two white rectangles is magnified and presented in two red panes located at the top-left and top-right
part of Figure 5a, respectively. For comparison, some related inpainting methods (including the
patch-sparsity based approach [26]) are utilized to remove the masks and recover the missing ground
information. In addition, the proposed method is performed repeatedly when the size of dictionary
atom is set to different scales (see Figure 5b,c). The inpainted results for two missing rectangle blocks
using each method are enlarged and shown in the corresponding subfigures. From Figure 5, we can
see that MRF-based method yields the worst result along with severely over-smooth effect and block
effect, and the MCA method cannot well recover the edges or contours of the buildings. It is worth
noting that the texture synthesis technique can achieve relatively better result when textured patterns
are regular and repeated in the image. When the size of the dictionary atom is 16× 16 pixels, the
proposed method can produce better recovery results with sharp structures and consistent textures,
compared to the case when the size of atom is set as 8× 8 pixels. Generally, when the size of the
neighboring window N(p) (five times the size of dictionary atom in our paper) is at a comparable
scale with the area of the missing region, our adaptive patch inpainting algorithm can achieve the
optimal performance. However, even if the size of exemplars is also set to 16× 16 pixels, the recovery
performance of [26] is still inferior to ours. The main reasons are that several top best matching patches
cannot perfectly extend the diversity of the inpainted patches, and that the balance factor cannot be
adaptively adjusted according to the neighboring characteristics.
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To better demonstrate the excellent performance of our method, we do a further comparison
experiment on SPOT5 panchromatic imagery with a resolution of 2.5 m. Simulated clouds are added to
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the original image, and the comparison of cloud removal results are shown in Figure 6. Table 2 presents
the comparisons of statistical indices for the red-band aerial image and SPOT5 panchromatic imagery.
Again, the results show that our method can achieve continuously sharp structures and consistently
fine textures without introducing artifacts, along with higher values of PSNR and SSIM. In Figure 6c,
we can observe that the contours of buildings and the ridges of farmlands are well preserved under the
guarantee of structure-sparsity based patch selection and sparse-representation based patch inpainting;
meanwhile, due to sparse dictionary learning and adaptive neighborhood-consistency constraint, the
textured features can also be perfectly synthesized.
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Table 2. Comparisons of Statistical Indices on Aerial and SPOT5 Imagery.

Images Statistical
Indices

Texture
Synthesis [24] MRF MCA [26] 8 × 8 pixels

Patch
16 × 16

pixels Patch

Aerial
PSNR(dB) 13.663 - 10.488 13.599 13.082 13.833 15.281

SSIM 0.632 - 0.325 0.682 0.546 0.657 0.752

SPOT5
PSNR(dB) - 17.576 17.792 18.092 - - 18.883

SSIM - 0.814 0.801 0.818 - - 0.868

Furthermore, the adaptive patch inpainting method is performed on high-spatial resolution
RS images contaminated by thick clouds, compared to the methods of [26], MRF [35], LRTC [37]
with two solvers (i.e., SiLRTC and FaLRTC), and MCA [46]. Multispectral images are selected for
the cloud removal experiments, and our method is independently run for each band of RS images.
For convenience, the cloudy regions have been preprocessed by morphological operators for better
extraction of missing regions and their fill-fronts. The factors of land use type and image data source
are considered to validate the performance of our method. Figure 7a shows the SPOT5 image of urban
area in Guangzhou, China, and Figure 7b–d are the results of clouds removal using the proposed
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method, MCA and [26], respectively. From Figure 7, it can be clearly seen that our method can
almost perfectly recover the contours of rivers and roads, and produce consistent textures with the
surrounding information. However, the approach of [26] cannot well preserve the continuity of rivers
when the proportion of missing parts is large. The MCA method works worst and introduces an
over-smooth effect in the textured parts. We further perform the comparison experiments of cloud
removal on GaoFen-2 image of farmlands in Yucheng, Shandong province, China. Herein, GaoFen-2
refers to China’s civilian optical RS satellite with space resolutions of 1 m for panchromatic band and
4 m for multispectral bands. As shown in Figure 8, our method can yield continuous structures and
consistent textures with rare smoothing effect and edge effect. By contrast, the FaLRTC algorithm can
well reconstruct low-rank textures, yet it cannot work for structures.
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Figure 7. Comparison of Clouds Removal from SPOT5 Multispectral Imagery. (a) SPOT5 Image
(displayed as false color composites) with Preprocessed Clouds; (b) Cloud Removal by Our Inpainting
Method; (c) Cloud Removal by MCA [46]; (d) Cloud Removal by [26].

Besides optical RS images, quantitative RS products (e.g., sea surface temperature (SST) and
the normalized difference vegetation index (NDVI)) also contain missing information obscured by
clouds. Moreover, since the scan line corrector (SLC) of Landsat-7 ETM+ sensor failed in 2003,
wedge-shaped stripes appear in the acquired images. All these kinds of missing information greatly
limit the availability of RS data. Owing to the high performance of recovering structures and textured
information, our adaptive patch inpainting method can provide a promising solution to the problem
of missing information reconstruction for RS data.
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Figure 8. Comparison of Clouds Removal from GaoFen-2 RS Imagery. (a) GaoFen-2 RS Image (true
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MCA [46]; (d) Cloud Removal by FaLRTC [37]; (e) Cloud Removal by SiLRTC [37]; (f) Cloud Removal
by MRF [35].

However, there are some limitations that need to be overcome. As we know, image features
usually tend to repeat themselves both within the same scale and across different scales. Meanwhile,
different features prefer different scales for the optimal representation of local information. Therefore,
it is necessary to represent image features at simultaneously multiple scales. In addition, the size of
patch to be inpainted should also be adaptively adjusted according to the neighboring characteristics.
For example, when the patch to be inpainted is on structures, patch size should be small to finely
describe detailed features and avoid smooth effect; if the patch is within textured region, the size
should be large to keep integrality of spatial semantic features. As shown in Figure 8b, a little green
artifact appears in the recovered farmlands, which is not semantically coherent to the surrounding
textures. That is because the patch size for the inpainting stage is fixed as 8 × 8 pixels, which is
suitable for the town area and most of the farmlands. The size is too small to keep the completeness
of contextual information in textured regions. As a result, some missing patches in the farmlands
may be synthesized by the information from small green parcels located between the farmlands and
town areas. If patch size increases, smooth effect will appear in the town area. To sum up, multiscale
adaptive patch inpainting schemes need to be considered.

5. Conclusions

In this paper, to address the problem of RS information recovery from larger missing regions
contaminated by thick clouds, we propose an adaptive patch inpainting approach based on sparse
dictionary learning, which can yield continuously sharp structures and consistently fine textures
without introducing smoothing effect and edge effect. Our method is especially more effective for
cloud removal from high-spatial resolution RS imagery that contains salient structures and abundant
textured features.
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Feature dictionary learning from exemplars in cloud-free regions can extend the diversity of image
patches to be inpainted in the framework of sparse representation. Adaptive neighborhood-consistency
constraint is introduced to formulate the novel optimization model, and modified OMP algorithm
is designed to solve the problem afterwards. Experiments and comparisons are performed on RS
images with simulated and real clouds, which show that our cloud removal scheme can outperform
other related methods over visual effects and statistical indices. Since the research on the scale effect
is of great importance to RS data, we will further investigate the algorithm of multi-scale dictionary
learning from RS spatiotemporal data in the future in order to develop a multiscale adaptive patch
inpainting method for missing RS information reconstruction.
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