
sensors

Article

Heart Rate Detection Using Microsoft Kinect:
Validation and Comparison to Wearable Devices

Ennio Gambi * ID , Angela Agostinelli, Alberto Belli, Laura Burattini ID , Enea Cippitelli,
Sandro Fioretti, Paola Pierleoni, Manola Ricciuti, Agnese Sbrollini ID and Susanna Spinsante ID

Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche via Brecce Bianche 12,
Ancona 60131, Italy; a.agostinelli@univpm.it (A.A.); a.belli@univpm.it (A.B.); l.burattini@univpm.it (L.B.);
e.cippitelli@univpm.it (E.C.); s.fioretti@univpm.it (S.F.); p.pierleoni@univpm.it (P.P.);
m.ricciuti@staff.univpm.it (M.R.); a.sbrollini@pm.univpm.it (A.S.); s.spinsante@univpm.it (S.S.)
* Correspondence: e.gambi@univpm.it; Tel.: +39-071-220-4845; Fax: +39-071-220-4224

Received: 23 June 2017; Accepted: 1 August 2017; Published: 2 August 2017

Abstract: Contactless detection is one of the new frontiers of technological innovation in the field of
healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional
methods for Heart Rate (HR) detection that employ expensive and/or uncomfortable devices, such as
the Electrocardiograph (ECG) or pulse oximeter, contactless HR detection offers fast and continuous
monitoring of heart activities and provides support for clinical analysis without the need for the user
to wear a device. This paper presents a validation study for a contactless HR estimation method
exploiting RGB (Red, Green, Blue) data from a Microsoft Kinect v2 device. This method, based on
Eulerian Video Magnification (EVM), Photoplethysmography (PPG) and Videoplethysmography
(VPG), can achieve performance comparable to classical approaches exploiting wearable systems,
under specific test conditions. The output given by a Holter, which represents the gold-standard
device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with
a commercial smartwatch is also included. The validation process is conducted with two modalities
that differ for the availability of a priori knowledge about the subjects’ normal HR. The two test
modalities provide different results. In particular, the HR estimation differs from the ground-truth by
2% when the knowledge about the subject’s lifestyle and his/her HR is considered and by 3.4% if no
information about the person is taken into account.

Keywords: heart rate; contactless sensing; EVM; Kinect; RGB-D sensors; photoplethysmography;
videoplethysmography

1. Introduction

The measurement and monitoring of vital signs, such as Heart Rate (HR) and blood pressure, are
of interest to the healthcare system [1], mainly because they can help with diagnosis and follow-up
of different medical issues, including heart diseases. The HR, which is the number of heart beats in
one minute, is a parameter affected by the level of activity or stress and also by the age of a subject.
According to Table 1, adults at rest feature an HR between 60 and 80 beats per minute (bpm). The HR of
athletes may drop to 40 bpm at rest, because the heart muscle is stronger and has greater output. Teens
usually feature an HR higher than 70 bpm, while HR in infants can reach 180 bpm during crying [2].
Adults involved in physical activity can show an HR within the range of 150–200 bpm.

Standard methods for heartbeat detection rely on the use of the Electrocardiograph (ECG), which
is an expensive and uncomfortable device, the use of which is typically limited to clinical premises [3,4].
Nowadays, the availability of gadgets for lifestyle logging that are easier to use is increasing. They
include custom [5] or commercial devices, since the HR estimation capability is also provided by some
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smartwatches and smartphone applications [6]. Recently developed technologies [7–12] implement
different strategies to have non-contact and non-invasive systems for the analysis of neurological and
sleep disorders, stress assessment, evaluation of human activity and also HR estimation. The HR
contactless detection [13,14] offers technological and scientific progress in the diagnostic and healthcare
fields, but also for everyday use at home.

Table 1. Typical range of normal heartbeat for different age groups [1].

Age Heart Rate (bpm)

Infants 100–180
Children 80–100

Teens 70–120
Adults 60–80

Athletes 40–60

The adoption of a Microwave Impulse Radar (MIR) may represent a possible approach, being
based on the analysis of small and almost undetectable body movements caused by a varying flow in
the blood vessels [15,16]. On the other hand, HR detection through video processing is mainly based on
extremely small variations of skin color, which are not perceptible to the human eye, caused by the flow
of blood in the tissues. Since the oxygenated blood flow changes the amount of hemoglobin molecules
and proteins, these changes also affect the light optical absorption, making it possible to identify the
HR on the basis of the color changes of the skin. By illuminating the skin and measuring the amount
of light transmitted or reflected, it is possible to obtain the Photoplethysmographic (PPG) signal [13]
from the spectra of light reflected from (or transmitted through) body tissues. The Eulerian Video
Magnification (EVM) method [17] has been proposed to emphasize these variations in a sequence of
images captured as RGB (Red, Green, Blue) and transformed to YIQ (Y is the luminance component,
while I and Q are the chrominance components), leading to the definition of the Videoplethysmographic
(VPG) signal [18].

The aim of the work here presented is to propose a validation process of a contactless HR
estimation approach, based on the processing of RGB images captured using Microsoft Kinect
v2 [19–24] and enhanced by the EVM method, to amplify the changes in skin color due to blood
flow. The choice of Kinect is motivated by the fact that it can provide additional information to RGB
data, i.e., depth, infrared and skeleton frames. This capability can enable other applications, such as
the monitoring of the physical activity and HR at the same time. Since the human face represents an
area with uncovered skin, usually more exposed than other body areas, the monitored area is selected
as a rectangle on the human face and neck; a face detection algorithm [25] is then used to select the
correct Region of Interest (ROI). Due to the fact that the subject under test is in front of the acquisition
device, face tracking is simpler and less prone to errors with respect to the tracking of other body
parts, like the hands. Moreover, from the selection of the face area, it is possible to detect the neck
region, where the presence of the carotid artery allows easier HR extraction. Then, a bandpass filtering
process and an analysis based on the frequency spectrum [26] have been implemented to extract the
HR value. The validation procedure has been carried out considering the HR value provided by
a Holter, the gold-standard device for HR estimation. Finally, a commercial smartwatch has been used
for comparison to the Kinect approach as a less expensive wearable solution.

The paper is organized as follows: Section 2 reviews approaches for unobtrusive HR estimation,
whereas the proposed validation method is described in Section 3. Section 4 provides the implementation
details of the method and presents the results in terms of HR estimation with the different approaches.
Finally, Section 5 draws the conclusion.
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2. Related Works

Several methods have been proposed in the literature to extract the HR in an unobtrusive way,
and many of them are based on PPG [27,28] or VPG [29,30] signals. Medical devices based on PPG
technology [31] (such as the pulse oximeter) are widely used in different healthcare applications,
for example telemedicine and remote monitoring [32–34]. PPG has been also proposed for the analysis
of Heart Rate Variability (HRV) [35,36] as an alternative to ECG, even if the method may be less
accurate due to the difficulty in the detection of peaks in the measured signal.

The VPG signal [30] can be obtained through the analysis of the human face and neck; thus,
a face detector may be used to select the ROI related to the human face and enable HR extraction in
an unobtrusive way.

Viola and Jones [25] proposed a face detection algorithm from RGB images that has been used in
many applications, based on an image representation named the integral image, which allows quickly
calculating the face area. In order to select a limited number of critical visual features from a large
series of potential characteristics, a strong classifier is constructed from a weighted combination of
weak classifiers constituted by the integral image representations, each of which consists of a feature, a
threshold and a polarity. A weighted combination of weak classifiers, followed by a threshold, provides
a strong final classifier, based on the AdaBoost learning algorithm [37]. The “cascade” of classifiers
allows one to filter out the background regions of the image and to focus the processing only on the
candidate face regions. Verkruyss et al. [13] were the first ones, in 2008, to extract the PPG signal from
a video (VPG), recording a face in stationary condition with a simple digital camera. The VPG signal
was extracted from the values of individual pixels of the green channel from the entire face region and
then filtered with a fourth order Butterworth filter. The HR was then obtained by applying the Fast
Fourier Transform (FFT). In 2011, Poh et al. [14] introduced an automatic method for HR estimation
exploiting face detection algorithms for the localization of the subject face and based on the study of
the ROI, using a video recorded at 15 frames per second (fps) and with a 640 × 480 resolution. This
method consists of averaging the pixel values of all three RGB channels in an ROI and the application
of Independent Components Analysis (ICA) [38]. ICA is a statistical and computational technique
for the separation of random variables (or signals) into non-Gaussian and mutually independent
subcomponents.

Rahman et al. [39] compared three different signal processing methods for HR estimation: FFT,
ICA and Principal Component Analysis (PCA) [40]. PCA is a statistical technique to extract a set of
uncorrelated variables, called principal components, from a larger number of observations of possibly
correlated variables. Thus, it can be used to reduce the dimensions or to enhance variations from a set
of data. The algorithms were applied on RGB signals acquired from a webcam, considering 20 s of data
at 30 fps. The system works in real time and includes signal acquisition, face tracking, ROI selection,
signal detrending, filtering and normalization. Other applications, exploiting cameras integrated in
portable devices such as smartphones, have been also proposed. Kwon et al. [6] developed a mobile
application named FaceBEAT, for the remote HR measurement from videos of the human face.

Many systems have been proposed to assess the performance of HR estimation algorithms based
on video data. Monkaresi et al. [7] proposed a method for HR extraction based on ICA using video
data. The population considered for the test is constituted of 10 subjects, eight males and two females,
instrumented with Electrocardiogram (ECG), respiration and Galvanic Skin Response (GSR) sensors
to validate the method. The approach proposed by Poh et al. [14] was evaluated under two new
conditions: naturalistic human computer interaction and exercising scenarios, with better results
thanks to the adoption of a machine learning approach. In the former one, the authors had to cope
with the variability of face illumination in the displayed content, which can cause domination of red
or blue components leading to almost undetectable variation in the green channel. A method based
on data from the Kinect device [41] was introduced in conjunction with a processing algorithm to
calculate Respiratory Rate (RR) and HR and a comparison to reference methods: spirometry and
ECG, respectively. Results from the tests performed on 10 healthy subjects show that the Kinect is
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a valid contactless device for the monitoring of HR and RR at home, without the presence of experts
or clinicians. Iozzia et al. [42] proposed a fully-automated method based on the chrominance model
working on RGB images of the human face. Three different ROIs (forehead, nose, cheeks) were selected
to detect and evaluate the accuracy of beat detection and InterBeatIntervals (IBI) measurements.
The experimental recordings were conducted on subjects under two different conditions: resting and
standing. The validation with a three-electrode ECG let them conclude that it is not possible to consider
a specific ROI that gives better results, but the optimal selection appears to be inter-subject and posture
dependent. Procházka et al. [11] recorded image and infrared data of facial features for HR, and depth
data of the thorax region for RR, using Kinect. In particular, three different ROIs in the mouth area have
been considered. The results in terms of HR estimation have been compared with a wearable sensor
(Garmin) demonstrating that the Kinect device can be used to detect sleep abnormalities. Data from
video sequences can be also processed using Short-Time Fourier Transform (STFT) [43] to reveal the
subject’s HR. Thanks to STFT, it is possible to provide temporal and frequency information that is
more accurately localized, especially for the rapidly changing HR pattern during the exercise routine.

The EVM method [17] has been introduced to amplify the small variations in skin color, which are
not normally visible to the human eye, through spatial and temporal filtering techniques. EVM differs
from ICA because it employs localized spatial pooling and temporal filtering to extract the signal
of the cardiac pulse [44]. EVM extracts the VPG signal from the YIQ color space rather than RGB.
Smilkstein et al. [45] proposed the use of EVM to estimate HR from a Kinect mounted on the car’s
dashboard, in order to monitor the driver. The work we present is similar to [45], since it is based
on the same data acquisition technology (Kinect) and processing technique (EVM). However, they
selected a narrow interval for admissible HR values, from 50–100 bpm. In our work, on the contrary,
the interval of acceptable values is larger, thanks to the introduction of the a priori knowledge about
the normal HR of the subjects. A recent study [46] demonstrated that it is possible to extract the HR
using an adaptive approach that simultaneously finds the best ROI for HR estimation. This method,
called self-adaptive matrix completion, with a principled data-driven approach to automatically detect
the face parts, is useful for HR measurement. It is based on the estimation of the time-varying mask of
useful observations, selecting at each frame the relevant face regions from the chrominance features
themselves to compensate for illumination variations.

3. RGB Processing for HR Extraction

The proposed method for the estimation of HR takes as input RGB frames of a human face.
The area related to the human face is detected and processed by the EVM algorithm [17], which
enhances the small changes in luminance due to blood flow. Then, limited areas of the face and neck
are selected through an ROI extraction step. Finally, the main frequency component of the VPG signal
within the ROI is computed by FFT, and the HR value is the output of the system. The main scheme of
the method is shown in Figure 1, where the different steps can be identified.

The method requires that the human subject is in front of the acquisition device, and the face has to
be included in the input frames. The first processing step is about the identification of the area related
to the face and the neck, since it is necessary to reduce the data that have to be processed by the EVM
method. This first task is implemented by applying the well-known Viola–Jones algorithm [25]
to locate the face area. The face and neck are then considered as objects to be tracked and their
positions are extracted in the subsequent frames by the Kanade–Lucas–Tomasi (KLT) feature-tracking
algorithm [47,48] based on features extracted through a minimum eigenvalues algorithm [49].

The following EVM processing encompasses three steps, i.e., spatial and temporal processing,
together with a signal magnification. Spatial processing consists of the decomposition of the frames
with a Gaussian pyramid, considering a number of predefined levels L. The Gaussian pyramid is
created from each image featuring the human face, including the neck, by blurring and downsampling
it into various levels. In fact, the spatial pyramid is a set of layers in which the image is downsampled
so that the higher layer has a smaller size, as can be noticed from Figure 2.
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Figure 1. The main scheme of the proposed system for the computation of HR from the RGB video.

Figure 2. Spatial decomposition through the Gaussian pyramid of five levels with specific details on
the pixel resolution. Since the dimensions of the square detected face area are not integer exponents of
two, the size is rounded to the nearest integer.

Following spatial decomposition, a temporal processing is implemented on each spatial band to
extract the frequency bands of interest. In fact, the implementation of the EVM method for different
applications may require considering different frequency bands. For noise reduction, narrow temporal
bandpass filters are preferred whilst motion amplification needs a broader filter [17]. Ideal or Infinite
Impulse Response (IIR) bandpass filters can be applied both for motion and color amplification,
extracting the interval between the cutoff frequencies fL and fH .

The last step is necessary to amplify the signal through the magnification factor (α), which has to
be carefully chosen to avoid the presence of artifacts in the video. This is a multiplying factor used
to enhance the visual identification of the changes in color due to blood flow. Since the processing is
implemented in the YIQ color space, this phenomenon can be attenuated by reducing the α factor that
multiplies the chrominance components I and Q.
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Once signal magnification of the face area through the EVM method is completed, the magnified
set of frames is processed to select some regions of the face, from which the VPG signal is extracted.
The ROIs are related to the areas of Forehead (F), Cheeks (C) and Neck (N), as can be seen in Figure 3,
and they have been chosen considering that in these areas, the skin is usually exposed. The pixels
inside the ROIs are converted from RGB color space into the YIQ color space. The VPG signal is
constituted by the average values of the Y-component over all of the pixels of the selected ROIs, taken
individually or jointly, for all of the frames (i.e., 1200 frames for a sequence of 40 s captured at 30 fps)
processed by the EVM algorithm. Using the mean luminance values of the ROI in each frame is
justified by the meaning of the luminance as the intensity level of the three chrominance components.
This average calculation has advantages in increasing the signal-to-noise ratio to a useful level.

Figure 3. Selected regions of interest: (a) Forehead (F); (b1,b2) Cheeks (C); (c) Neck (N). Some details
are blurred to preserve the subject’s privacy. The ROIs are selected considering the percentage of the
detected face area shown in the figure.

After the extraction of the VPG signal in the time domain, as shown in Figure 4a, and
its transformation in the frequency domain, through the application of FFT, take place, the idea
is to extract the frequency component of the VPG signal that is dominant in a specific band, which is
related to the blood circulation and thus to the HR. A Butterworth bandpass filter is applied to select
the band of interest, and a spectral analysis is performed to extract the main frequency component, as
can be noticed from Figure 4b. Finally, since the HR is expressed in beats per minute (bpm), the final
operation is the straightforward conversion of the dominant frequency component into the bpm scale.

(a)

Figure 4. Cont.
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(b)

Figure 4. VPG signal (Y-component) obtained by averaging the signals of all of the ROIs (F, C, N or,
rather, ROI T (Total)) over one test execution. The signal is represented in the time domain (a) and in
the frequency domain (b), after the bandpass filtering process.

4. Validation

The proposed method based on EVM is validated through the comparison of the HR estimated
value with the result provided by a Holter device. Then, the estimated HR value provided by
the RGB-based system is compared also to a commercial smartwatch. The experiments have been
conducted in a laboratory environment at Università Politecnica delle Marche, with the setup shown
in Figure 5.

(a) (b)

Figure 5. Laboratory setup at Università Politecnica delle Marche, where the tests have been conducted.
Two different environmental conditions are shown: high (a) and low (b) light.
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4.1. Data Acquisition and Processing

The data acquisition setup is constituted by different sensors, and the Microsoft Kinect v2 is the one
that provides the RGB frames needed by the EVM method. The raw RGB frames captured by the sensor
are stored as bitmap images, with a resolution of 1920 × 1080 and a frame rate of 30 fps, through the
capture software named Complete Viewer v2.0 (http://www.tlc.dii.univpm.it/blog/databases4kinect),
and after the application of the face detection process, they are used as input to the EVM.

The gold-standard instrument is represented by the Global Instrumentation’s M12A
(http://www.globalinstrumentation.com) Holter, which extracts the ECG using the electrodes placed
on the human body [50]. Among the 12 leads available from the Holter, only the aVR one is considered
for HR extraction. The sampling frequency of the device is 1 kHz, and a frequency band between
0.05 Hz and 100 Hz is selected with a sixth order Butterworth filter. The algorithm proposed by Pan
and Tompkins [51] is used to extract the R-R peaks and estimate the HR mean value. The dedicated
laboratory of the university where tests have been conducted is far from significant electromagnetic
sources, so we can consider the certified Holter as a reliable device. A single test has a duration of 40 s,
and we can assume that in this time interval, the HR estimation provided by the Holter is accurate.
In fact, at rest and on a 40-s interval, the HRV is limited.

The second device used to compare the HR extracted values is the commercial Moto 360
smartwatch by Motorola. The smartwatch does not provide raw data about heart activity, but it
exploits the PPG technique to compute the HR value. We used an app for Android smartwatches,
called LG Pulse, that allows one to synchronize the acquisition time with the other devices. Indeed,
from the moment at which the app is started, we synchronize the others’ acquisitions, by introducing
a synchronization burst to enable the time alignment of the VPG and ECG signals.

A number of 20 young subjects participated to the validation tests (age: 22.50 ± 1.57; height:
173 cm ± 10; weight: 62.80 kg ± 9.52; BMI: 20.96 ± 1.88), and each subject repeated the test five times,
generating a total number of 100 sequences. For practical reasons, subjects were facing the Kinect while
sitting on a chair at a distance of about one meter considering that the horizontal field of view of the
device is 70◦ and the vertical field of view is 60◦. The acquisition time has been set to 40 s. Experiments
have been carried out with different light conditions, and the light intensity has been measured by an
Android application (Light meter) running on a Sony Z2 smartphone. The smartphone was placed
next to the human face before starting the data acquisition to estimate the environmental light. The
aim of the test was to verify the variability of the HR extraction under different lighting conditions, so
relative lighting measurement was considered adequate. Tests were performed indoors with artificial
light, but the natural light coming from the windows changed the intensity of the ambient light at
different times of the day, as Figure 5a,b show. Therefore, the subjects have been exposed to variable
light conditions.

Regarding our proposed system, some parameters have to be set. The face detection algorithm
working on image frames can be tuned to avoid the identification of small objects associated with faces.
To this aim, the minimum size of the face has been set as a square with a dimension of 280 × 280 pixels,
ensuring the inclusion of the subject’s face and neck. The ROIs of the forehead, cheeks and neck,
shown in Figure 3, have been also set respectively to 90 × 30, 40 × 30 and 28 × 26 pixels. ROI sizes
were empirically selected considering all of the test sequences, thus involving a large number of
subjects, and setting the percentages of box identification shown in Figure 3 with respect to the area of
the face detector.

The EVM parameters, required by the open source code provided by MIT, http://people.csail.mit.
edu/mrub/evm/, are chosen as follows. The Gaussian pyramid adopted for spatial decomposition
is characterized by six levels and a binomial filter for blurring. Temporal processing is implemented
with an ideal bandpass filter that can select three different intervals depending on the implemented
approach. In fact, the system based on the Kinect has been considered with two different approaches,
which can be defined as supervised or unsupervised, depending on the use of the a priori knowledge
about the subject lifestyle. This knowledge, included in the supervised approach, allows one to select

http://www.tlc.dii.univpm.it/blog/databases4kinect
http://www.globalinstrumentation.com
http://people.csail.mit.edu/mrub/evm/
http://people.csail.mit.edu/mrub/evm/
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an interval of admissible HR values for people that are physically active, which is different from the
one used for inactive adults. In particular, in the supervised approach, the interval of admissible values
has been set to (30–174) bpm for athletes and to (66–174) bpm for non-athletes, corresponding to the
definition of two band-pass filters with lower cutoff frequencies of 0.5 Hz and 1.1 Hz, respectively. The
definition of a larger interval of frequencies than the range of bpm values shown in Table 1 is motivated
by the fact that the cutoff frequencies of the filter should be chosen to allow the detection of the main
frequency component with a guard interval. The higher HR interval, used for non-athletes, can be
used also for subjects with diseases, or features generating high heartbeats (such as low blood pressure
or tachycardia). On the other hand, the term unsupervised is associated with the second approach
that does not rely on the knowledge about the subjects’ lifestyle. In this case, a unique interval of
(50–174) bpm has been considered for admissible values for HR, corresponding to a bandpass filter set
to (0.83–2.9) Hz, for athletes and non-athletes. The participants are classified as athletes or non-athletes
according to their own statement on the informed consent form delivered prior to testing and also
by checking their HR at rest with Holter measurement. To synchronize the heart rate estimation with
the Kinect, Holter and smartwatch, a synchronization burst is introduced at the beginning and at
the end of the acquisition time, which produces in the Y-component of the VPG signals a disturbing
noise. Even in the presence of this noise, in the supervised approach, the filtering, at the different
chosen cut-off frequencies, gives rise to a sufficient signal to noise ratio in order to achieve an adequate
accuracy in the HR extraction. On the contrary, in the unsupervised approach, where a trade-off
bandwidth filtering is considered, it is suggested to remove the first and the last samples to have a
suitable signal to noise ratio in the overall range of the admitted values of HR. This requires that 10 s
of data to be discarded from the entire set of frames, 7 s at the beginning and 3 s at the end; it has been
verified during the laboratory tests that the Holter measurements of the HR are not affected by this
reduction of the observation time.

A third order Butterworth filter, with the same cutoff frequencies of the ideal filter, is applied to
extract the band of interest from the VPG signal, extracted from the contributions of the selected ROIs.
The magnification factor α is set to 100 to have a good compromise between signal amplification and
the presence of artifacts.

4.2. Experimental Results

The systems for HR estimation considered in this work, i.e., Holter, Kinect v2 and a smartwatch,
were compared considering the Holter as a reference. The error term is defined as the absolute
difference in the estimation of HR, and it is expressed as percentage, as reported in Table 2. Regarding
the approach based on EVM working on RGB data from Kinect, Table 2 shows results obtained from
different ROIs, and T (Total) is the average of all of them. The errors included in Table 2 are the mean
errors over all 100 tests, considering that the average measured HR is 77 bpm. All signals are processed
in the MATLAB environment.

Table 2. Comparison among different methods (based on Kinect and wearable devices) for HR
estimation, in terms of average error (%). The average HR over the 100 signals measured with the
Holter is 77 bpm. N + F is the mean value of the sum of the N and F ROIs; T is the mean of the sum of
all the ROI, identified as Total ROI; SW stands for Smartwatch.

Approach
ROIs from Kinect RGB Data Wearable

F C N N + F T SW

Supervised 4.13% 3.10% 2.70% 2.13% 2.00%
7.18%

Unsupervised 7.78% 6.55% 6.69% 5.55% 3.40%
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The results show that, compared to the Holter data, the error provided by the smartwatch-based
HR estimation is 7.18%.

Regarding the performance of our method, the consideration of a VPG built by averaging values
obtained from different ROIs allowed reducing the noise and increasing the SNR. Both supervised and
unsupervised approaches have been considered to validate the system based on VPG. The method has
been implemented considering the parameters described in the previous section.

The best result, represented by an error of 2%, has been obtained with the supervised approach
on the ROI labeled as T, which requires considering the contribution from all of the ROIs: forehead,
cheeks and neck. The contribution from all of the ROIs is calculated by averaging the luminance in
the total area obtained adding each single ROI. The unsupervised approach was able to achieve a
minimum error of 3.4% with the same ROI. If the ROI contributions are considered separately, the area
related to the forehead is the one featuring the higher error, for both approaches (4.13% for supervised
and 7.78% for unsupervised), as can be seen from Table 2. In fact, the forehead area is the most exposed
to the light, which may introduce noise in the VPG signal generated by EVM. Cheek and neck ROIs
feature a lower error in HR estimation, which is around 3% for the supervised method and 6.5% for
the unsupervised one. This is because the neck area contains the carotid artery and the presence of
blood vessels in the area related to cheeks. The ROI named N + F considers the joint contribution of
neck and forehead, and it is able to improve the results of the separated regions, bringing an error of
2.13% for supervised and 5.55% for unsupervised.

Table 3 provides a more detailed overview of the results obtained with RGB data from Kinect,
since it includes the average results for each subject. Subjects are grouped considering their lifestyle
(according to their own judgment) by assigning the label A to athletes and NA to all of the other
subjects, and the results for all of the selected ROIs and two different approaches are shown. The
comparison of the results included in Table 3 highlights an error that is lower for the supervised
approach in both the subject groups: Athletes (A) and Non-Athletes (NA). Furthermore, the results
considering different ROIs confirm the conclusion derived from Table 2, since the minimum error
is represented by ROI T, and the maximum one is given by ROI F. For example, the unsupervised
approach using the forehead ROI is characterized by the maximum error in both populations, which
is 5.83% for A and 8.27% for NA. The use of the supervised approach allows reducing the error,
giving a percentage of 4.95% for A and 3.89% for NA. Moreover, this approach allows using the entire
sequence of frames, which has a length of 40 s, for the extraction of the VPG signal. In fact, many noise
contributions are filtered by using fL = 1.1 Hz in most of the cases (NA subjects) and fL = 0.5 Hz
only when a larger frequency band is required (A subjects). In the unsupervised approach, where the
frequency band is fixed and fL = 0.83 Hz is considered for each subject, there is the need to remove
some noise contributions, which are localized at the beginning and at the end of the VPG signals. Thus,
a subset of frames is considered to extract the VPG signal by removing the first 7 s and the last 3 s
from the entire sequence, leading to the consideration of a time sequence of 30 s in the unsupervised
approach. Finally, it can be stated that, even considering the unsupervised approach with the ROI
related to the forehead, which is the simplest test configuration, the average error on 100 sequences
acquired in different environmental conditions is lower than 8%.

The relation between HR estimation error and the environmental light conditions has been
also investigated for the system based on RGB data from Kinect, and the results are summarized in
Figure 6a,b, respectively, for the supervised and unsupervised approaches.

The scatter graphs include the results for each test in addition to the linear trend lines, revealing
the dependence between relative intensity of light and error in HR estimation. The figures show
these trends only for the total ROI (T), even if the same conclusion can be drawn for the other
ROIs. The intensity of environmental light (natural and artificial) influences the HR estimation. Both
approaches (supervised and unsupervised) benefit from the increasing of environmental light, even if
the unsupervised approach shows a higher gradient of error. Considering the supervised approach, the
higher the light intensity, the better the HR estimation, even if a good HR estimation can be obtained
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also with low environmental light. This behavior suggested to us that the Kinect device is also suitable
for different applications in low-light conditions.

Table 3. Average error (%) in HR estimation for each subject with RGB data from the Kinect and Holter
average values, with the supervised and unsupervised approach. The subjects are grouped considering
their lifestyle as Athletes (A) and Noon-Athletes (NA).

Subject ID
Supervised Unsupervised

Holter (bpm)
F C N N + F T F C N N + F T

05-A 2.15 1.68 0.95 1.48 0.61 2.71 2.23 1.17 2.04 1.17 65.40

08-A 3.68 2.36 1.71 1.33 1.33 3.61 2.29 1.97 1.59 1.59 58.60

10-A 13.06 6.38 2.97 2.97 2.97 16.11 11.97 9.59 8.05 8.56 50.80

20-A 0.90 1.20 5.81 1.20 1.20 0.90 1.20 5.51 1.20 1.20 66.20

avg-A 4.95 2.91 2.86 1.75 1.53 5.83 4.42 4.56 3.22 3.13 60.25

01-NA 1.92 2.20 4.12 2.44 2.20 5.89 5.89 10.68 6.19 3.46 76.40

02-NA 14.29 1.97 1.75 2.42 2.42 12.18 4.70 2.26 2.04 2.04 91

03-NA 1.59 1.15 1.37 1.37 1.15 4.57 0.87 1.31 15.47 1.09 88

04-NA 3.32 3.61 2.01 2.27 2.79 15.52 7.40 16.23 17.08 12.07 69.80

06-NA 2.06 4.97 5.13 1.64 2.08 6.07 20.69 13.69 5.85 6.73 85.20

07-NA 1.85 1.56 2.28 0.82 1.55 3.49 6.28 8.34 3.37 2.24 90.60

09-NA 4.68 3.06 3.86 3.08 2.79 15.24 3.56 14.22 4.03 4.03 77.40

11-NA 6.88 1.85 2.71 1.85 0.79 17.25 3.80 7.64 20.23 2.26 74.60

12-NA 5.69 6.38 4.22 4.22 4.22 12.90 8.80 11.67 6.72 4.52 79

13-NA 0.76 2.09 2.41 2.41 0.25 1.00 4.61 1.01 0.75 0.49 77.60

14-NA 6.08 4.60 0.87 0.89 0.89 10.18 26.07 4.88 3.62 3.62 89

15-NA 1.71 1.72 1.42 1.42 1.13 1.58 1.57 3.84 1.86 1.29 70.40

16-NA 4.51 3.76 3.50 3.76 3.76 4.59 7.66 5.60 3.84 3.84 79.80

18-NA 2.58 3.58 2.56 2.83 3.58 2.34 2.84 2.32 2.09 2.84 101.40

17-NA 1.75 1.55 1.75 1.75 1.75 10.42 2.06 9.62 2.25 2.25 77

19-NA 2.56 5.98 2.08 2.08 2.08 9.07 6.72 2.82 2.82 2.82 83.80

avg-NA 3.89 3.13 2.63 2.20 2.09 8.27 7.10 7.26 6.14 3.47 81.94

The unsupervised approach can lead to the generation of some artifacts in the image (especially
in the forehead area) that are translated into a noisy VPG signal. Here, the gradient of error given by
total ROI in terms of light intensity is larger, which means that having an environment with enough
light is more important if the unsupervised approach has to be chosen. In conclusion, the supervised
approach is able to compensate the variations due to the environment, leading to a low error in HR
estimation in low light conditions.

To evaluate the correlation between the two measurement techniques (wearable and contactless)
compared in this work, the Bland–Altman bias plots [52], shown in Figures 7 and 8, are provided.
Each estimated HR value is compared to the value obtained with the Holter monitor (not averaged
values). The statistical values have been calculated as the mean and the Standard Deviation (SD)
of the differences between Holter and VPG measurements. The 95% (from −1.96 SD to +1.96 SD)
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limits of agreement for the difference values and the corresponding mean value are shown in both
Figures 7 and 8a,b (red line). Table 4 shows the Root Mean Square Error (RMSE) and r2 (R-squared)
values between the Holter and the extracted HR values in ROIs. R-squared denotes how well the
regression line approximates the real data points. An R-squared of one indicates that the regression
line perfectly fits the data. Figures 7a–c show the plots of the difference between the Holter and
the extracted HR values in ROI C, ROI F and ROI N, respectively. Figures 8a,b are the best plots
representative of the minimum error between the Holter and the HR extracted from FFT in the areas
respectively of the: ROI N + F and ROI T. As the plots confirm, the best correlation, shown in Figure 8b,
is between the Holter and ROI T.

(a)

(b)

Figure 6. Average error (%) in HR estimation for the system based on RGB data with different light
conditions on different ROIs; (a) supervised approach; (b) unsupervised approach.

Table 4. RMSE and R-squared values.

ROI RMSE (bpm) R-Squared

ROI F 5.2 0.81
ROI C 3.5 0.91
ROI N 3.37 0.92

ROI N + F 2.3 0.96
ROI T 2.2 0.97
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(a)

(b)

(c)

Figure 7. Bland–Altman plot, correlation between HR values extracted by the Holter and through
the proposed method in: (a) ROI C; (b) ROI F; (c) ROI N.

Figure 9 shows the error values provided by the smartwatch and the gold-standard. The smartwatch
features a large error at Sequence-ID 66, which is associated with an athlete with an HR of 46 bpm.
It can be observed that the HR estimation error is greater than 30% only in three sequences featuring
an HR value lower than 50 bmp.
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(a)

[bpm]

(b)

Figure 8. Best correlation values with the Bland–Altman plot, between HR values extracted by the
Holter and through the proposed method in (a) ROI F + N; (b) ROI T.

Figure 9. Average error (%) in HR estimation revealed by the Smartwatch (SW) with respect to
Holter measurements.

5. Conclusions and Future Works

The signals generated by a Microsoft Kinect may be exploited in many different applications,
like in contactless HR detection. This would make possible, for example, the indoor monitoring
of subjects in need of a holistic, constant and economic control of their life conditions (food intake
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monitoring, sleep monitoring, HR monitoring). To this aim, we provided a performance evaluation of
a contactless and Kinect-based non-biomedical system to monitor the HR in non-clinical environments.
The validation of the EVM method based on RGB data extracted from Kinect demonstrated that it is
possible to estimate the HR of a subject in an unobtrusive way, without any contact, with an acceptable
error. This error can be further reduced if some knowledge about the lifestyle of the subject is
introduced in the system. In fact, physically-active subjects feature a normal HR, which is lower
than inactive people. This information allows one to properly choose the parameters used by the HR
estimation algorithm, thus increasing the accuracy of the system.

This project will be further developed to allow HR estimation while the subject is performing
body movements, for example during rehabilitation exercises.

An integrated system for the monitoring of body motion and biomedical parameters should be
implemented in the future, for a global analysis of the subject’s health conditions.
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The following abbreviations are used in this manuscript:

bpm Beats per minute
ECG Electrocardiogram
EVM Eulerian Video Magnification
FFT Fast Fourier Transform
fps Frames per second
HR Heart Rate
HRV Heart Rate Variability
IBI InterBeat Intervals
ICA Independent Components Analysis
PCA Principal Components Analysis
PPG Photoplethysmography
VPG Videoplethysmography
ROI Region Of Interest
RR Respiratory Rate
SNR Signal to Noise Ratio
RGB-D Red, Green, Blue-Depth
YIQ Y Luminance, I and Q Chrominance
IIR Infinite Impulse Response
RMSE Root Mean Square Error
SD Standard Deviation
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