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Abstract: Trust establishment is an important tool to improve cooperation and enhance 

security in wireless sensor networks. The core of trust establishment is trust estimation. If a 

trust estimation method is not robust against attack and misbehavior, the trust values 

produced will be meaningless, and system performance will be degraded. We present a 

novel trust estimation method that is robust against on-off attacks and persistent malicious 

behavior. Moreover, in order to aggregate recommendations securely, we propose using a 

modified one-step M-estimator scheme. The novelty of the proposed scheme arises from 

combining past misbehavior with current status in a comprehensive way. Specifically, we 

introduce an aggregated misbehavior component in trust estimation, which assists in 

detecting an on-off attack and persistent malicious behavior. In order to determine the 

current status of the node, we employ previous trust values and current measured 

misbehavior components. These components are combined to obtain a robust trust value. 

Theoretical analyses and evaluation results show that our scheme performs better than 

other trust schemes in terms of detecting an on-off attack and persistent misbehavior. 
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1. Introduction 

The power of wireless sensor networks (WSNs) relies on distributed collaboration among sensor 

nodes for various tasks, such as event monitoring, relaying data, etc. [1,2]. Hence, it is important to 

maintain successful collaboration in order to maintain network functionality. Successful collaboration 

is assured only when all nodes operate in a trustworthy manner [3–5]. Trust establishment  

allows detection of trustworthy and untrustworthy nodes by evaluating them based on their 

behavior/performance. As sensor nodes often lack tamper-resistant hardware and are easily 

compromised, cryptographic solutions cannot ensure full protection of the network. Hence, trust 

establishment improves security by continuously monitoring node behavior/performance, evaluating 

the trustworthiness of the nodes and finding trustworthy nodes to collaborate with. Specifically, 

establishing trust in the network provides many benefits, such as the following [6]: 

• Trust provides a solution for granting corresponding access control based on the quality of the 

sensor nodes and their services, which cannot be solved through traditional security mechanisms. 

• Trust assists routing by providing reliable routing paths that do not contain malicious, selfish, 

or faulty nodes. 

• Trust makes traditional security more robust and reliable by ensuring that only trustworthy 

nodes participate in authentication, authorization, or key management. 

Recently, many trust establishment schemes have been proposed in various fields such as  

e-commerce, web-based services, peer-to-peer networks and WSNs. Basically, in WSNs trust is 

estimated periodically based on the number of instances of good and bad behavior counted during a 

certain time interval and using a certain method [3–8]. In addition, the number of instances of good 

and bad behavior during the previous time interval is added, but with a forgetting factor [3–8].  

The problem with this kind of trust estimation method is that it focuses more on recent behavior of the 

node rather than comprehensively combining the nodes’ past behavior with current behavior. As a 

consequence, a malicious node can easily remove any bad history by either displaying good behavior 

or waiting during subsequent time periods to increase its trust value, and in this way, continue 

attacking. For example, in an on-off attack, the malicious node alternates its behavior from good to bad 

and from bad to good so it is not detected while attacking. Moreover, persistence of the misbehavior is 

not considered under traditional trust estimation methods because trust values are obtained based on 

current instantaneous behavior, which does not indicate continuity of misbehavior. Specifically,  

only weight of measured misbehavior is considered rather than frequency of the misbehavior along 

with weight of measured misbehavior. For example, when measured misbehavior falls below a trust 

threshold, it can be detected at once; otherwise, it is not detected at all. Hence, when measured 

misbehavior is insignificant but persistent, it is not detected by traditional trust estimation methods. 

Detection of such misbehavior is important in WSNs, since a large number of nodes will misbehave 

due to faults in software and hardware [8]. Because nodes are error prone, they may get stuck 

malfunctioning for a long time [8]. Moreover, as sensor nodes often lack tamper-resistant hardware 

and are easily compromised, they may launch intelligent attacks against a trust-establishment 

mechanism. For example, a malicious node might misbehave for a long time, keeping its trust value 

above a trust threshold without being detected.  
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To overcome the aforementioned problems, we propose a novel trust estimation method that 

considers previous trust value, aggregated misbehavior and current measured misbehavior components 

to estimate the trust value of each node. The aggregated misbehavior component is a summation  

of periodically measured misbehavior, but with a forgetting factor. It helps to detect persistent 

misbehavior and an on-off attack, since it indicates the misbehavior history of the node 

comprehensively. So, if a node misbehaves continuously, then aggregated misbehavior will increase 

continuously over time till it reaches its maximum value,1, and its trust value will be decreased until it 

is under the trust threshold. If there is no misbehavior by a node in the current trust estimation time 

period, then aggregated misbehavior will be decreased, but with a forgetting factor, and the current 

trust value will be increased accordingly. However, the forgetting factor will be lower for aggregated 

misbehavior, if the node’s trust value falls below the trust threshold. This is to mitigate the effect of an 

on-off attack and to punish malicious nodes. Moreover, current measured misbehavior and previous 

trust value emphasize recent behavior of the node. These three components are utilized to produce a 

robust trust value. To the best of our knowledge, this is the first persistent malicious detection trust 

establishment scheme. Moreover, we propose using a modified one-step M-estimator to securely 

aggregate recommendations. It is a lightweight scheme, yet robust against a bad-mouthing attack, 

which detects dishonest recommendations and excludes them before recommendation aggregation.  

We prove the correctness and efficiency of our proposed method through theoretical analyses and 

evaluations. Evaluation results show that our proposed method can detect all kind of persistent 

malicious nodes provided the persistent measured misbehavior is equal or greater than 0.2. Moreover, 

under a given scenario, the proposed scheme can detect an on-off attack up to 70% of the time. For 

secure recommendation aggregation, the one-step M-estimator shows resilience against dishonest 

recommendations when they constitute up to 40% of the total number of recommendations. Hence, 

nodes can securely aggregate recommendations when dishonest recommendations account for up to 

40% of the total recommendations. 

The remainder of this paper is organized as follows: in Section 2, we present an overview of related 

work. Section 3 describes the proposed trust establishment scheme. Evaluation results and theoretical 

analyses of the proposed scheme are provided in Section 4 and Section 5. Section 6 concludes  

the paper. 

2. Related Work  

Recently, many trust establishment schemes have been proposed in various fields, such as  

e-commerce, web-based services, peer-to-peer networks and WSNs, which demonstrates the 

importance of trust establishment in general [9–14]. 

One of the earliest comprehensive trust establishment schemes which is called Group-Based  

Trust Management Scheme for Clustered Wireless Sensor Networks (GTMS) was proposed by  

Shaikh et al. [6]. The scheme works in three phases: 

• Trust calculation at the node level  

• Trust calculation at the cluster head (CH) level 

• Trust calculation at the base station (BS) level 
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Nodes estimate trust value based on direct and indirect observations. A timing window mechanism 

is used to eliminate the effect of the time on trust values and to countermeasure on-off attacks. The 

timing window Δt, which has several units, counts the number of successful and unsuccessful 

interactions. Using information in the time window, the trust value of node y at node x is estimated as 

follows [6]:
   2
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where [·] is the nearest integer function, Sx,y is the total number of successful interactions of node x 

with node y during time Δt, and Ux,y is the total number of unsuccessful interactions of node x with 

node y during time Δt. After estimation of the trust value, a node will quantize trust into three states in 

the proposed mechanism: trusted, uncertain, and untrusted. 

Each CH will periodically broadcast a request packet within its cluster to estimate global trust for 

its members. Upon receiving trust states from member nodes on their neighbor nodes, the CH will 

maintain these states in matrix form. After determining relative differences in the trust states of the 

node, a global value is assigned by the CH. The relative difference is emulated through a standard 

normal distribution. 

The BS also maintains a record of past interactions with CHs, and the BS estimates trust for the 

CHs. The advantages of this scheme are that it is lightweight and energy-aware, which meets the 

requirements of WSNs. Furthermore, the authors proved that GTMS is resilient against cheating, bad 

behavior, and group attacks under the assumption that the number of unsuccessful interactions is equal 

to, or more than, the number of successful interactions. However, this may not always be true, because 

an attacking node usually tries as much as possible to avoid detection.  

One of the more recent trust establishment schemes, ReTrust, is proposed by He et al. [15]. Similar 

to work by Shaikh et al. [6], the proposal also works in a two-tier architecture. The entire network is 

divided into cells, and each cell has member nodes and one manager node. In a certain cell, node x 

estimates a trust value for node y as follows [15]: 

(2) 

where α value determines the range and format of the trust value as [0, α] [15] and m is the number of 

units in a window-based forgetting mechanism. The authors use the window mechanism to forget 

previous actions. Moreover, they introduce an aging-factor parameter, βj, which is different for each 
time unit m in the window. βj is defined as ߚ௝ = ߮௠ି௝, where 0<φ<1. pj shows a successful interaction 

rate. It is estimated as follows [15]: 

      (3)  

where sj is the number of successful interactions during the j’th unit of the window, and yj is the 

number of unsuccessful interactions during the j’th unit of the window. 

Velloso et al. [16] proposed another trust establishment approach that they called maturity-based 

trust management for mobile ad hoc networks. The main contribution of the paper was introducing the 

1
,

1

(1 )
                                   [ )]                                         

(1 )

m j j
jj

x y m j
jj

p p
T

p

β
α

β
=

=

× − ×
= ×

× −




1

2

j
j

j j

s
p

s y

+=
+ +



Sensors 2014, 14 1881 

 

 

concept of relationship maturity, which improves the quality of a trust evaluation in the presence of 

mobility. According to the employed concept, recommendations by long-term neighbors are given 

more importance than recommendations by short-term neighbors. The trust level for node b given by 

node a is estimated as follows [16]: 

                                             ( ) (1 ) ( ) ( )                                              a a aT b Q b R bα α= − + (4) 

where ܳܽ(ܾ) is an observation-based derived trust value of node ܽ about node ܾ, from the range [0,1], 

and ܴܽ(ܾ) represents aggregated value of the recommendations from all other neighbors. The variable ߙ is a parameter that provides a relevant weight to each factor. (ܾ) is given by: 

                                        ( ) ( ) (1 ) ( )                                                 a a aQ b E b T bβ β= + − (5)  

where ܽܧ is the currently obtained trust value, and ܶa represents the last trust value. The variable ߚ, 

from the range [0,1], is a parameter that provides a relevant weight to each factor. 

Moreover, the authors propose a recommendation exchange protocol to efficiently manage 

recommendation exchanges. It consists of three messages: a Trust Request (TREQ) message, a Trust 

Reply (TREP) message, and a Trust Advertisement (TA) message. TREQ is used to request 

recommendations from neighbors on a target node. Neighbors of the target node reply with a Trust 

Reply (TREP) message after waiting a random period of time, ܲܧܴݐ, to avoid collisions and to wait for 

other TREQs. TA is used to inform its neighbors about a drastic change in trust value of a certain node 

during a trust update.  

Even though this work has advantages, such as improving trust estimation in a mobile environment, 

the proposed scheme does not include a mechanism against on-off and bad-mouthing attacks. Since 

these attacks have a direct influence on estimated trust values, not considering the influence leads to 

incorrect decisions. 

Feng et al. [17] proposed a node behavioral belief theory evaluation algorithm, which combines the 

method of node behavioral strategies and modified evidence theory. Based on the behaviors of sensor 

nodes and a variety of trust factors and coefficients related to the network application, both direct and 

indirect trust values are obtained by calculating a weighted average of trust factors. Specifically, the 

following factors are considered to estimate trust: 

• Received packet rate  

• Successfully sent packet rate  

• Packet forwarding rate 

• Data consistency  

• Time relativity of context content in period t 

• Node availability  

• Security grade  

Indirect trust is estimated by simply multiplying the trust value of the recommendation provider by 

the provided trust value. To integrate direct and indirect trust, Dempster–Shafer evidence theory is 

used. After obtaining trust values, fuzzy classification of trust values is performed as follows: first, 

trust is one of three states: completely distrust, uncertain, and completely trust. Second, according to 
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the three states, it marks up three fuzzy subsets T1, T2 and T3 on the universe of nodes’ trust value T 

([0, 1]). The corresponding membership functions are u1(t), u2(t) and u3(t), u1(t) + u2(t) + u3(t) = 1. 

3. Secure Trust Establishment Scheme 

3.1. Assumptions  

We assume that nodes can monitor other nodes’ activities within their communication range. For 

example, a node can overhear its neighbors’ transmissions, and in this way, can detect whether the 

node is forwarding or dropping the packets. Moreover, trust value is estimated for each certain time 

interval by each node based on the results of monitoring within the trust estimation time interval. A 

malicious node acts intelligently, that is, it tries to keep its trust value in the trusted zone while 

attacking the network. 

3.2. Observation-Based Trust Calculation  

Trust is calculated based on either past interactions or past recommendations. A past  

interaction–based trust estimation method considers three factors to estimate the current trust value: 

current measured misbehavior, aggregated misbehavior, and previous trust value. Current measured 

misbehavior shows a node’s behavior during the current time, whereas aggregated misbehavior and 

previous trust value demonstrate how much a node has misbehaved in the past. Current misbehavior of 

node x at time t by node y is measured as follows: 

( ) xy
xy

xy xy

b
a t

b c
=

+
       (6) 

where bxy and cxy are the number of instances of bad behavior and the number of instances of good 

behavior of node y with node x within the Δ time interval. 

Aggregated misbehavior, aggregates measured misbehavior over time using proposed method. It 

shows the persistency of the misbehavior. So, according to our proposed method if measured 

misbehavior is persistent, that is, it is always greater than predefined threshold, then each time 

aggregated misbehavior will be increased until it reaches to maximum value(that is one).Aggregated 

misbehavior of node x is estimated at time t by node y as follows: 
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where S is forgetting factor for aggregated misbehavior, which ranges from [0.5, 1], 0.5 ≤ S≤ 1. Our 

goal to define the forgetting factor in this way is to provide adaptability and improve the attack 

detection. For example, if a network designer wants to assign the same value for forgetting factor 

regardless of trust value, then he can assign 0.5. On the other hand, if he prefers to assign different 

values according to trust value, then the equation allows him to use this way, too. Hence, it provides a 

room for adaptability according to preference of the designer. According to Equation (7) once the 

node’s trust value is under the trust threshold, aging factors for previous aggregated misbehavior will 
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be different. It means the malicious node or on-off attack node requires a longer time to recover its 

trust value once it has been determined to be a malicious node. In order to estimate trust value, we use 

aggregated misbehavior, previous trust value, and current measured misbehavior to. While aggregated 

misbehavior focuses on the past misbehavior of the node, previous trust value and current measured 

misbehavior emphasize on the current status of the node. Then, node y estimates the trust value of node 

x at time t as follows: 
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where Txy(t-Δ) is the trust value of node x by node y at time t-Δ. If current measured misbehavior is 

zero by node y on node x (that is, if there is no misbehavior currently by node x) then its previously 

aggregated misbehavior is used to estimate its current trust value. This is to protect the trust 

mechanism from an on-off attack and attacks similar to an on-off attack. Moreover, unlike a traditional 

trust estimation mechanism, our trust mechanism maintains previous trust value to estimate current 

trust value, which helps to track a node’s behavior more accurately. After calculating the trust value, 

node y determine node’s x status based on its trust value as follows: 
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   (9) 

where 1f g h< < <  and f, g, h can be tuned according to the system and security requirements to 

determine the node’s state. Since these values depend on network and security conditions, it will be set 

accordingly. For instance, whether a node’s trust value should be considered within the untrusted zone 

depends on the performance degradation tolerance of the network. Moreover, these parameters can be 

adaptive or fixed, depending on the security conditions. For instance, if the number of nodes with a 

trust value just above the trust threshold increases, degradation will be greater than in a situation where 

most of the nodes’ trust values are in the highly trusted zone. 

3.3. Recommendation-Based Trust Calculation  

Nodes might need recommendations for certain nodes from other nodes for the following reasons: 

• Lack of knowledge about the node, either due to a mobile environment or due to less 

interaction among the nodes. 

• To combine recommendations with direct trust to obtain a comprehensive trust value. 

If node y needs a recommendation about node x, it will ask only trustworthy nodes in unicast mode 

because it is more energy efficient than broadcast mode [18]. After receiving recommendations, it will 

aggregate all recommendations according to the defined method. Li et al. [18] showed that lightweight 
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averaging algorithms perform better than complex aggregation algorithms. However, even though 

simple averaging performs better, in the presence of dishonest recommendations, an aggregated value 

can be distorted. Considering these factors, we use a modified one-step M-estimator (MOSE) [19,20], 

which is one of the robust measures of central tendency, to aggregate recommendations. It checks 

outliers using the median absolute deviation (MAD)-median rule, eliminates any found outliers, and 

then averages the remaining values [19]. MAD is measure of dispersion, or spread, around the median. 

In other words, it indicates the variability or diversity of the data around the median. It is more resilient 

to outliers in a data set than the standard deviation [19,20]. In order to determine the MAD for given 

dataset X1, X2,…, Xi, absolute deviations from the median for each data is determined: 

( )iX Md X−        (10) 

where Xi is ith data and Md(X) is median of the given data. Then, the MAD is defined as the median of 

the absolute deviations from the data’s median: 

( )( )i i j jMAD median X median X= −     (11) 

Next, the median of these absolute values (median absolute deviation, or MAD) is estimated and 

scaled by a constant [19]: 

                                           
0.675

MAD
MADN =   (12) 

The recommendation is defined as an outlier or a dishonest recommendation if it is different from 

the majority of the group and the following statement is true [19]: 

( )
                                     iX Md x

K
MADN

−
>    (13) 

where ( )Md x is the median of the recommendation values, and Xi is ith recommendation value. K is 

the threshold to determine the outlier and commonly used threshold value is 2.24. Any other threshold 

value can be used, which represents a stricter or a more tolerant criterion for determining an outlier. 

Moreover, we add one condition for a recommendation to be considered an outlier, or dishonest. The 

reason is that the outlier detection algorithm might determine that some recommendations are outliers 

even though they are not likely to be outliers. For example, the majority of the nodes might assess a 

certain node as trustworthy. However, when their recommendation values are highly dispersed, the 

outlier detection algorithm might determine some recommendations to be outliers since some values 

are far from the other values. Hence, considering majority opinion, we suggest not excluding from 

aggregation recommendations that belong to the majority. Moreover, for determining dishonest 

recommendations, simple averaging is performed on the remaining recommendations: 

1
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       (14) 

where n is number of recommendations, and xi is the ith recommendation.  
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4. Performance Evaluation 

In this section, we evaluate and compare our proposed trust mechanism with other schemes 

proposed earlier. Evaluations are done for detection of persistent malicious behavior, on-off attacks, 

and bad-mouthing attacks. If an estimated trust value is under the trust threshold in persistent 

misbehavior or an on-off attack, we consider that misbehavior or attack have been detected. We 

compare our scheme with GTMS [6] and Retrust [15]. The former is one of the earliest comprehensive 

trust schemes for WSNs. On the other hand, the latter is one of the most recent comprehensive  

trust schemes.  

4.1. Persistent Malicious Behavior Detection  

Our scheme has a feature whereby it continuously decreases the trust value of a malfunctioning or 

malicious node when it persistently misbehaves. Misbehavior of the node is measured based on the 

proportion of the number of instances of bad behavior to the total number of behavior instances, ܽ = ௕௕ା௖, where b the number of instances of bad behavior and c is the number of instances of good 

behavior. When measured misbehavior exceeds a predefined threshold value, a > S, the node is 

considered to be malicious under the trust estimation scheme. Sometimes a node might have a 

hardware or software problem that causes it to malfunction consistently [8]. For example, a node might 

drop a percentage of packets all the time, or it might always report false sensor data [8]. In this case, if 

the measured misbehavior exceeds the threshold, the malfunctioning node can be detected by 

traditional trust mechanisms; otherwise, it is considered a benevolent node even though it misbehaves 

persistently. Moreover, a malicious node might launch insignificant attacks consistently but keep its 

trust value above the trust threshold so it cannot be detected. When the attack is significant, it is easy to 

detect because it will be obvious from its performance within a short time. However, when the attack 

or misbehavior is insignificant but consistent, it is difficult to detect; it is even not possible for current 

trust estimation schemes because they do not consider continuity of the misbehavior in the trust 

estimation. Hence, detection of a consistent attack is important. To emulate consistent malicious 

behavior and to demonstrate detection of it, the parameters in Table 1 are used.  

Table 1. Parameters to emulate persistent misbehavior. 

Parameters Value 

Measured misbehavior 
Fixed from 0.1 to 0.4 
Random between 0.1 and 0.4 

Forgetting factor (S) 0.6 
Trust estimation time interval Δ 
Trust threshold (Q) 0.6 and 0.5 (60 and 50 for GTMS) 
Experiment time 50 Δ 
Initial trust value 1 

For each trust estimation time period, measured misbehavior is generated in random or fixed 

manner and trust is estimated based on generated misbehavior. We compare our trust estimation 

mechanism with GTMS [6] and Retrust [15]. Values of the system parameters such as trust threshold, 
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forgetting factor, and time window are selected based on heuristic and previously defined values in the 

literature. For example, trust threshold is selected as about half of the maximum trust value in the 

literature [6,7,10,21–24]. Hence, in these references, defined trust threshold is between 0.4 and 0.8.  

In [21] the authors suggest that the most intuitive trust threshold is 0.5 when the maximum trust value 

is 1. Optimal trust threshold according to defined scenario in [24] is 0.6. The choice of value for 

forgetting factor remains largely heuristic and depends on the strategy of trust establishment [21]. 

Since forgetting factor is used mainly to combat on-off attack, authors use different values and 

different mechanisms to derive the value of forgetting factor according to their trust estimation and 

considerations [5,6,10,23]. Following the guidelines and suggestions in [5], we intuitively use 

forgetting factor as 0.6. Size of the time-window for GTMS and ReTrust is chosen to be 3 for the sake 

of simplicity. 

Figure 1 shows estimated trust values over time under persistent malicious behavior. For each trust 

estimation period, measured misbehavior randomly measured between 0.1 and 0.4. As Figure 1 shows, 

our trust estimation mechanism decreases trust value gradually and keeps it under trust threshold when 

node shows consistent misbehavior. Trust values fluctuate because of the measured misbehavior. Since 

measured misbehavior is randomly generated between 0.1 and 0.4, that is, sometimes it can be high or 

low randomly, trust values fluctuate accordingly. Dynamicity of the trust values shows that our trust 

scheme considers efficiently current status of the node. 

Figure 1. Persistent malicious behavior detection under random misbehavior. 

 

Figures 2 and 3 show persistent malicious behavior detection under different fixed measured 

misbehavior. Thus, measured misbehavior in each trust estimation period is fixed from 0.1 to 0.4. For 

instance, in Figure 2 ‘Proposed01’ means that performance of proposed scheme under fixed measured 

misbehavior such as 0.1. Hence, Figure 2 shows misbehavior detection when measured misbehavior 

fixed to 0.1 and 0.2. On the other hand, Figure 3 shows misbehavior detection when measured 

misbehavior fixed to 0.3 and 0.4, that is, measured misbehavior is set higher in Figure 3 evaluations. 

Important note from Figures 2 and 3 is that produced trust values in other schemes are constant even 

though misbehavior is persistent. On the other hand, our scheme gradually decreases trust value over 

time. When measured misbehavior fixed is to 0.1 in Figure 2, our scheme cannot detect such persistent 
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misbehavior because estimated trust values do not go under trust threshold. The reason is that we 

intentionally design in this way to provide system tolerance. Otherwise, the scheme can be easily 

adapted to required parameters. In all other cases, our scheme can detect persistent malicious behavior 

as Figures 2 and 3 demonstrates. Trust values gradually go below trust threshold. Selected trust 

thresholds in the evaluations are default values because trust threshold is set to equal or greater than 

0.5 normally in [6,7,9,14]. 

Figure 2. Persistent malicious behavior detection under constant misbehavior. 

 

Figure 3. Persistent malicious behavior detection under constant misbehavior. 

 

4.2. On-Off Attack Resilience Evaluation 

In this section, we evaluate the resilience of our trust model against on-off attacks. In an on-off 

attack, a malicious node alternates its behavior from malicious to normal and from normal to malicious 

so it remains undetected while causing damage. Thus, the attack cycle consists of two periods: on and 

off. An attack cycle is defined as “on” immediately followed by an “off” [25] (see Figure 4). When the 

attack is on, the malicious node launches attacks, and during the off period, either stops doing anything 
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or only performs well. Since the on period has an implication on the trust value of the malicious node, 

it will try to increase its trust value during the off period by waiting or performing only good actions. 

Durations of both the on period and the off period can differ or be of equal length, depending on the 

malicious node’s strategy.  

Figure 4. On-off attack cycle. 

 

The length of one attack cycle can be defined as follows: 

c on offL A A= +  

where Lc is the length of one attack cycle in terms of the time unit, and Aon and Aoff are the lengths of 

the on period and off period in terms of the time unit, respectively.  

To emulate behavior of an on-off attack node and evaluate the proposed trust scheme under an  

on-off attack, we use the parameters in Table 2. To make the emulation more realistic and fair, the 

duration of the on and off periods were generated randomly (that is, between one and five time units). 

Moreover, during the on period, the number of good and bad behaviors were randomly generated 

between ranges [5; 10] and [1; 5], respectively. Hence, in the worst case, the number of good and bad 

behaviors will be equal, otherwise the instances of good behavior always number more than bad 

behavior. The reason is that we assume that a malicious node tries to balance its misbehavior so it is 

not detected, and it can recover its trust value faster to attack again. Trust value is estimated after each 

time unit, and if an estimated trust value falls below the trust threshold, the node is considered 

untrustworthy for that period. To find the average detection rate of the attack, the sum of the number of 

times it was deemed untrustworthy is divided by the total experiment time. 

Table 2. Parameters to emulate an on-off attack. 

Parameters Value 

Duration of the on period Randomly generated between [1;5] Δ 
Duration of the off period Randomly generated between [1;5] Δ 

Number of instances of good behavior 
On period Randomly generated between [5;10] 
Off period Randomly generated between [1;10] 

Number of instances of bad behavior 
On period Randomly generated between [1;5] 
Off period 0 

Forgetting factor 0.6 and 0.7(60 and 70 for GTMS) 
Trust estimation time interval Δ 
Experiment time 75 Δ 
Initial trust value 1 
Trust threshold 0.6 and 0.7 
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As Figure 5 shows, the detection rate is the highest in our proposed scheme under both trust threshold 

scenarios. Since our proposed scheme decreases the trust value of the malicious node continuously, the 

recovery rate in the off period is slower when the trust value is under the trust threshold.  

Figure 5. On-off attack detection. 

 

When the trust threshold is high, the on-off attack detection rate is also high. However, nodes might 

be rated as untrustworthy even though they might not actually be malicious nodes. That is why 

choosing a trust threshold requires considering all factors. Moreover, it is important to choose a trust 

recovery rate intelligently so that an on-off attack node has less chance to increase its trust value after 

the on period. 

4.3. Bad-Mouthing Attack Resiliency  

In a bad-mouthing attack, the malicious node provides a dishonest recommendation to decrease or 

increase the trust value of legitimate or malicious nodes, respectively. Moreover, the most dangerous 

scenario of such an attack is when a group of malicious nodes provide dishonest recommendations in a 

synchronized way (that is, the group of malicious nodes cooperate with each other in providing 

recommendations to decrease/increase trust values of certain legitimate/malicious nodes). Hence in 

this section, we evaluate resilience of our trust model against such bad-mouthing attacks. To emulate 

the bad-mouthing attack and detection of it, we use the following parameters (see Table 3): 

Table 3. Parameters to emulate bad mouthing attack. 

Parameters Value 

Number of recommendations in each aggregation 10 
Value of sincere recommendations  Randomly generated between [0.6;0.9] 
Value of dishonest recommendations Randomly generated between [0.3;0.5] 
Trust threshold(S) 0.6 and 0.5 (60 and 50 for GTMS) 
Number of aggregation experiments 50 
Outlier detection threshold K = 1 and K = 2 
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Each time 10 recommendations are generated, the percentage of dishonest recommendations is set 

between 10% and 60%. We assume that the provided recommendations are for benevolent nodes. 

Hence, honest recommendation values are normally above the trust threshold. That is why we consider 

honest recommendation values as being between 0.6 and 0.9. Moreover, we assume that malicious 

nodes try to avoid being detected while providing dishonest recommendations. Hence, malicious nodes 

provide recommendations for benevolent nodes that are under the trust threshold, intending to distort 

the aggregated trust value (that is, to make it fall below the trust threshold). However, they act 

intelligently (that is, provided the recommendations will not be very low). Otherwise, detection of 

these dishonest recommendations will be obvious. Hence, we specifically chose the range for dishonest 

recommendations as [0.3; 05].  

After generating honest and dishonest recommendations, outlier detection and aggregation is 

performed. In order to improve outlier detection, all recommendations are classified into two groups 

—trustworthy and untrustworthy—depending on the value of the recommendation. Moreover, one of 

the groups is determined the majority according to the number of recommendations in the group. Then, 

detected outliers are also classified into two groups—trustworthy and untrustworthy. If one of the 

groups belongs to the majority, then it is excluded from the outliers. The reason is that the outlier 

detection algorithm might determine some recommendations are outliers, even though they are not 

likely to be outliers. For example, a majority of the nodes might assess a certain node as trustworthy. 

However, when their recommendation values are highly dispersed, the outlier detection algorithm 

might determine some recommendations to be outliers because some values are far from the other 

values. Hence, considering majority opinion, we suggest not excluding recommendations that belong 

to the majority group. To find the outlier detection rate, the average outlier detection rate is estimated 

each time outlier detection is performed; then, a summation of the average is estimated. Among the 

criteria for recommendations to be aggregated correctly, the aggregated value should be above the trust 

threshold in the presence of dishonest recommendations. To demonstrate the outlier detection rate, we 

evaluate our proposed recommendation aggregation with different outlier thresholds and with different 

percentages of dishonest recommendations.  

Figure 6. Recommendation aggregation in the presence of dishonest recommendations. 
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Figure 6 shows correct recommendation aggregation in the presence of dishonest recommendations 

of between 10% and 30%. As we can see, with dishonest recommendations at up to 30%, the 

aggregated value is not distorted (that is, it is not under the trust threshold). Moreover, Figure 7 shows 

dishonest recommendation detection with different outlier detection in the presence of different 

percentages of dishonest recommendations. As the figure shows, when the threshold equals one  

(K = 1), the detection rate is more than 70% in the worst case. 

Figure 7. Dishonest recommendation detection. 

 

Figure 8 shows correct recommendation aggregation in the presence of dishonest recommendations 

that vary from 40% to 60%. Figure 8 demonstrates that when dishonest recommendations total 40%, 

aggregated values are not distorted.  

Figure 8. Recommendation aggregation in the presence of dishonest recommendations. 
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shows that when the percentage of dishonest recommendations increases to 50% and 60%, dishonest 

recommendation detection becomes less than 10%. Evaluation results from Figures 8 and 9 show that a 

more suitable outlier threshold is K = 1. Moreover, recommendations can be securely aggregated when 

dishonest recommendations constitute up to 40% of the total recommendations. 

Figure 9. Dishonest recommendation detection. 

 

5. Analysis of the Upper and Lower Bounds of Estimated Trust Values in  

Persistent Malicious Behavior 

In this section, we show the upper and lower bounds of estimated trust values in persistent 

malicious behavior. 

Definition: Node x is said to be malicious continuously when measured misbehavior is larger than 

zero, ax>0, all the time. 

Hence according to our trust estimation model, estimated trust values will be as follows: 
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   (15) 

For the sake of simplicity, we assume that forget factor(S) and measured misbehavior are fixed 
values. Moreover, trust value at time t equals one, ( ) 1.xT t = If ( ) 1xT t = then aggregated misbehavior at 

time t will be zero, Mx(t)=0. 
Lemma 1: ( ) 1,   for 1x xa M t n n≤ + Δ ≤ ≥  

Proof:  
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( ( 1)* ) (1 )* ( * ) .x x xa t n S M t n a+ + Δ + − + Δ ≥         

Because           . We have: 
( )( ( 1)* ) min ( ( ( 1)* ) (1 )* ( * ),1 .x x x xM t n a t n S M t n a+ + Δ ≥ + + Δ + − + Δ ≥  

Next, we define two sequences, cn and bn, as follows: 
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      (17) 

Then, we can show that cn and bn become the lower and upper bounds of                               given  

as follows: 

( ( 1)* )           (n 1)n x nc T t n b≤ + − Δ ≤ ≥     (18) 

More detailed derivation is given in the following proposition. 
Proposition 1: ( ( 1)* )           (n 1)n x nc T t n b≤ + − Δ ≤ ≥  

Proof:  
First we consider the case where n = 1. Since ( 0* ) ( ) 1x xT t T t+ Δ = = , we can obtain the following 

relations from Equations (16) and (17): 
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Thus, we have 1 1( ) .xc T t b= =  

We assume that following relations are valid for ( 1)n k k= ≥ : 
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Since ( ) 1x xa M t n≤ + Δ ≤  for 1n ≥ , by Lemma 1, we can obtain: 
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Combining the above relation and Equation (19) yields 
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Combining Equations (16) and (17) and the above relation yields 1 1( ) .k x kc T t k b+ +≤ + Δ ≤  

Thus, the proof is done by induction. 
In more detail nc  and nb  can be expressed as follows (a detailed derivation is given in the Appendix): 

1 xa≥

( ( 1)* )xT t n+ − Δ
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Combining Equations (18) and (20) yields: 
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From Equation (20), we find that the lower bound cn approaches the upper bound bn as ax 

approaches 1. Since the lower bound cn and the upper bound bn decreases with respect to n, we assume 

that Tx(t+(n-1)*Δ) has the same decreasing trend of Equation (15) in general. The smaller the gap 

between the upper and lower bound, the more similar decreasing trend of Tx(t+(n-1)*Δ) will be. As ax 

approaches to one, gap between the lower bound and upper bound decreases accordingly. So, in this 

case, decreasing trend of Tx(t+(n-1)*Δ) will be same with decreasing trend of the upper and  

lower bound. 

6. Conclusions 

This paper proposes a novel trust establishment scheme, which enables us to detect persistent 

malicious behavior and improves detection of on-off attacks. Moreover, it proposes using a one-step 

M-estimator, which helps aggregate recommendations securely. To the best of our knowledge, this is 

the first persistent malicious behavior detection enabled trust mechanism. The novelty of the scheme 

arises from comprehensively considering history and current status of the node and combining them 

intelligently. Evaluation results and theoretical analyses prove that it allows detection of consistent 

malicious behavior and on-off attacks. Moreover, recommendations can be securely aggregated using 

the proposed scheme when the percentage of dishonest recommendations is up to 40%. As a future 

work, implementation of the proposed trust scheme in Ad hoc On-Demand Distance Vector Routing 

(AODV) is being designed to estimate the performance of algorithm. Moreover, analyses on overhead 

of trust establishment in terms of resource consumption such as energy, memory, and computation are 

being considered as nodes are resource constraint in wireless sensor networks (WSNs). 
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Appendix 

Derivation of bn and cn. 

(i) To resolve cn from the recursive relation of Equation (16), we first determine α of the following 

relation: 

 

 

(ii) To resolve bn from the recursive relation of Equation (17), we first determine β of the following 

relation:  
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