
Sensors 2014, 14, 1877-1897; doi:10.3390/s140101877

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Secure Trust Establishment Scheme for
Wireless Sensor Networks

Farruh Ishmanov, Sung Won Kim * and Seung Yeob Nam

Department of Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong,

Gyeongsan-si, Kyongsan 712-749, Gyeongsangbuk-do, Korea; E-Mails: farruh.uzb@gmail.com (F.I.);

synam@ynu.ac.kr (S.Y.N.)

* Author to whom correspondence should be addressed; E-Mail: swon@yu.ac.kr;

Tel.: +82-53-810-2483; Fax: +82-53-810-4742.

Received: 14 October 2013; in revised form: 10 January 2014 / Accepted: 15 January 2014 /

Published: 22 January 2014

Abstract: Trust establishment is an important tool to improve cooperation and enhance

security in wireless sensor networks. The core of trust establishment is trust estimation. If a

trust estimation method is not robust against attack and misbehavior, the trust values

produced will be meaningless, and system performance will be degraded. We present a

novel trust estimation method that is robust against on-off attacks and persistent malicious

behavior. Moreover, in order to aggregate recommendations securely, we propose using a

modified one-step M-estimator scheme. The novelty of the proposed scheme arises from

combining past misbehavior with current status in a comprehensive way. Specifically, we

introduce an aggregated misbehavior component in trust estimation, which assists in

detecting an on-off attack and persistent malicious behavior. In order to determine the

current status of the node, we employ previous trust values and current measured

misbehavior components. These components are combined to obtain a robust trust value.

Theoretical analyses and evaluation results show that our scheme performs better than

other trust schemes in terms of detecting an on-off attack and persistent misbehavior.

Keywords: trust establishment; wireless sensor networks; misbehavior detection

OPEN ACCESS

Sensors 2014, 14 1878

1. Introduction

The power of wireless sensor networks (WSNs) relies on distributed collaboration among sensor

nodes for various tasks, such as event monitoring, relaying data, etc. [1,2]. Hence, it is important to

maintain successful collaboration in order to maintain network functionality. Successful collaboration

is assured only when all nodes operate in a trustworthy manner [3–5]. Trust establishment

allows detection of trustworthy and untrustworthy nodes by evaluating them based on their

behavior/performance. As sensor nodes often lack tamper-resistant hardware and are easily

compromised, cryptographic solutions cannot ensure full protection of the network. Hence, trust

establishment improves security by continuously monitoring node behavior/performance, evaluating

the trustworthiness of the nodes and finding trustworthy nodes to collaborate with. Specifically,

establishing trust in the network provides many benefits, such as the following [6]:

• Trust provides a solution for granting corresponding access control based on the quality of the

sensor nodes and their services, which cannot be solved through traditional security mechanisms.

• Trust assists routing by providing reliable routing paths that do not contain malicious, selfish,

or faulty nodes.

• Trust makes traditional security more robust and reliable by ensuring that only trustworthy

nodes participate in authentication, authorization, or key management.

Recently, many trust establishment schemes have been proposed in various fields such as

e-commerce, web-based services, peer-to-peer networks and WSNs. Basically, in WSNs trust is

estimated periodically based on the number of instances of good and bad behavior counted during a

certain time interval and using a certain method [3–8]. In addition, the number of instances of good

and bad behavior during the previous time interval is added, but with a forgetting factor [3–8].

The problem with this kind of trust estimation method is that it focuses more on recent behavior of the

node rather than comprehensively combining the nodes’ past behavior with current behavior. As a

consequence, a malicious node can easily remove any bad history by either displaying good behavior

or waiting during subsequent time periods to increase its trust value, and in this way, continue

attacking. For example, in an on-off attack, the malicious node alternates its behavior from good to bad

and from bad to good so it is not detected while attacking. Moreover, persistence of the misbehavior is

not considered under traditional trust estimation methods because trust values are obtained based on

current instantaneous behavior, which does not indicate continuity of misbehavior. Specifically,

only weight of measured misbehavior is considered rather than frequency of the misbehavior along

with weight of measured misbehavior. For example, when measured misbehavior falls below a trust

threshold, it can be detected at once; otherwise, it is not detected at all. Hence, when measured

misbehavior is insignificant but persistent, it is not detected by traditional trust estimation methods.

Detection of such misbehavior is important in WSNs, since a large number of nodes will misbehave

due to faults in software and hardware [8]. Because nodes are error prone, they may get stuck

malfunctioning for a long time [8]. Moreover, as sensor nodes often lack tamper-resistant hardware

and are easily compromised, they may launch intelligent attacks against a trust-establishment

mechanism. For example, a malicious node might misbehave for a long time, keeping its trust value

above a trust threshold without being detected.

Sensors 2014, 14 1879

To overcome the aforementioned problems, we propose a novel trust estimation method that

considers previous trust value, aggregated misbehavior and current measured misbehavior components

to estimate the trust value of each node. The aggregated misbehavior component is a summation

of periodically measured misbehavior, but with a forgetting factor. It helps to detect persistent

misbehavior and an on-off attack, since it indicates the misbehavior history of the node

comprehensively. So, if a node misbehaves continuously, then aggregated misbehavior will increase

continuously over time till it reaches its maximum value,1, and its trust value will be decreased until it

is under the trust threshold. If there is no misbehavior by a node in the current trust estimation time

period, then aggregated misbehavior will be decreased, but with a forgetting factor, and the current

trust value will be increased accordingly. However, the forgetting factor will be lower for aggregated

misbehavior, if the node’s trust value falls below the trust threshold. This is to mitigate the effect of an

on-off attack and to punish malicious nodes. Moreover, current measured misbehavior and previous

trust value emphasize recent behavior of the node. These three components are utilized to produce a

robust trust value. To the best of our knowledge, this is the first persistent malicious detection trust

establishment scheme. Moreover, we propose using a modified one-step M-estimator to securely

aggregate recommendations. It is a lightweight scheme, yet robust against a bad-mouthing attack,

which detects dishonest recommendations and excludes them before recommendation aggregation.

We prove the correctness and efficiency of our proposed method through theoretical analyses and

evaluations. Evaluation results show that our proposed method can detect all kind of persistent

malicious nodes provided the persistent measured misbehavior is equal or greater than 0.2. Moreover,

under a given scenario, the proposed scheme can detect an on-off attack up to 70% of the time. For

secure recommendation aggregation, the one-step M-estimator shows resilience against dishonest

recommendations when they constitute up to 40% of the total number of recommendations. Hence,

nodes can securely aggregate recommendations when dishonest recommendations account for up to

40% of the total recommendations.

The remainder of this paper is organized as follows: in Section 2, we present an overview of related

work. Section 3 describes the proposed trust establishment scheme. Evaluation results and theoretical

analyses of the proposed scheme are provided in Section 4 and Section 5. Section 6 concludes

the paper.

2. Related Work

Recently, many trust establishment schemes have been proposed in various fields, such as

e-commerce, web-based services, peer-to-peer networks and WSNs, which demonstrates the

importance of trust establishment in general [9–14].

One of the earliest comprehensive trust establishment schemes which is called Group-Based

Trust Management Scheme for Clustered Wireless Sensor Networks (GTMS) was proposed by

Shaikh et al. [6]. The scheme works in three phases:

• Trust calculation at the node level

• Trust calculation at the cluster head (CH) level

• Trust calculation at the base station (BS) level

Sensors 2014, 14 1880

Nodes estimate trust value based on direct and indirect observations. A timing window mechanism

is used to eliminate the effect of the time on trust values and to countermeasure on-off attacks. The

timing window Δt, which has several units, counts the number of successful and unsuccessful

interactions. Using information in the time window, the trust value of node y at node x is estimated as

follows [6]:
 2

,
,

, , ,

()
 [100 ()]

()(1)
x y

x y
x y x y x y

S
T

S U S
= ×

+ +
(1)

where [·] is the nearest integer function, Sx,y is the total number of successful interactions of node x

with node y during time Δt, and Ux,y is the total number of unsuccessful interactions of node x with

node y during time Δt. After estimation of the trust value, a node will quantize trust into three states in

the proposed mechanism: trusted, uncertain, and untrusted.

Each CH will periodically broadcast a request packet within its cluster to estimate global trust for

its members. Upon receiving trust states from member nodes on their neighbor nodes, the CH will

maintain these states in matrix form. After determining relative differences in the trust states of the

node, a global value is assigned by the CH. The relative difference is emulated through a standard

normal distribution.

The BS also maintains a record of past interactions with CHs, and the BS estimates trust for the

CHs. The advantages of this scheme are that it is lightweight and energy-aware, which meets the

requirements of WSNs. Furthermore, the authors proved that GTMS is resilient against cheating, bad

behavior, and group attacks under the assumption that the number of unsuccessful interactions is equal

to, or more than, the number of successful interactions. However, this may not always be true, because

an attacking node usually tries as much as possible to avoid detection.

One of the more recent trust establishment schemes, ReTrust, is proposed by He et al. [15]. Similar

to work by Shaikh et al. [6], the proposal also works in a two-tier architecture. The entire network is

divided into cells, and each cell has member nodes and one manager node. In a certain cell, node x

estimates a trust value for node y as follows [15]:

(2)

where α value determines the range and format of the trust value as [0, α] [15] and m is the number of

units in a window-based forgetting mechanism. The authors use the window mechanism to forget

previous actions. Moreover, they introduce an aging-factor parameter, βj, which is different for each
time unit m in the window. βj is defined as ߚ௝ = ߮௠ି௝, where 0<φ<1. pj shows a successful interaction

rate. It is estimated as follows [15]:

 (3)

where sj is the number of successful interactions during the j’th unit of the window, and yj is the

number of unsuccessful interactions during the j’th unit of the window.

Velloso et al. [16] proposed another trust establishment approach that they called maturity-based

trust management for mobile ad hoc networks. The main contribution of the paper was introducing the

1
,

1

(1)
 [)]

(1)

m j j
jj

x y m j
jj

p p
T

p

β
α

β
=

=

× − ×
= ×

× −




1

2

j
j

j j

s
p

s y

+=
+ +

Sensors 2014, 14 1881

concept of relationship maturity, which improves the quality of a trust evaluation in the presence of

mobility. According to the employed concept, recommendations by long-term neighbors are given

more importance than recommendations by short-term neighbors. The trust level for node b given by

node a is estimated as follows [16]:

 () (1) () () a a aT b Q b R bα α= − + (4)

where ܳܽ(ܾ) is an observation-based derived trust value of node ܽ about node ܾ, from the range [0,1],

and ܴܽ(ܾ) represents aggregated value of the recommendations from all other neighbors. The variable ߙ is a parameter that provides a relevant weight to each factor. (ܾ) is given by:

 () () (1) () a a aQ b E b T bβ β= + − (5)

where ܽܧ is the currently obtained trust value, and ܶa represents the last trust value. The variable ߚ,

from the range [0,1], is a parameter that provides a relevant weight to each factor.

Moreover, the authors propose a recommendation exchange protocol to efficiently manage

recommendation exchanges. It consists of three messages: a Trust Request (TREQ) message, a Trust

Reply (TREP) message, and a Trust Advertisement (TA) message. TREQ is used to request

recommendations from neighbors on a target node. Neighbors of the target node reply with a Trust

Reply (TREP) message after waiting a random period of time, ܲܧܴݐ, to avoid collisions and to wait for

other TREQs. TA is used to inform its neighbors about a drastic change in trust value of a certain node

during a trust update.

Even though this work has advantages, such as improving trust estimation in a mobile environment,

the proposed scheme does not include a mechanism against on-off and bad-mouthing attacks. Since

these attacks have a direct influence on estimated trust values, not considering the influence leads to

incorrect decisions.

Feng et al. [17] proposed a node behavioral belief theory evaluation algorithm, which combines the

method of node behavioral strategies and modified evidence theory. Based on the behaviors of sensor

nodes and a variety of trust factors and coefficients related to the network application, both direct and

indirect trust values are obtained by calculating a weighted average of trust factors. Specifically, the

following factors are considered to estimate trust:

• Received packet rate

• Successfully sent packet rate

• Packet forwarding rate

• Data consistency

• Time relativity of context content in period t

• Node availability

• Security grade

Indirect trust is estimated by simply multiplying the trust value of the recommendation provider by

the provided trust value. To integrate direct and indirect trust, Dempster–Shafer evidence theory is

used. After obtaining trust values, fuzzy classification of trust values is performed as follows: first,

trust is one of three states: completely distrust, uncertain, and completely trust. Second, according to

Sensors 2014, 14 1882

the three states, it marks up three fuzzy subsets T1, T2 and T3 on the universe of nodes’ trust value T

([0, 1]). The corresponding membership functions are u1(t), u2(t) and u3(t), u1(t) + u2(t) + u3(t) = 1.

3. Secure Trust Establishment Scheme

3.1. Assumptions

We assume that nodes can monitor other nodes’ activities within their communication range. For

example, a node can overhear its neighbors’ transmissions, and in this way, can detect whether the

node is forwarding or dropping the packets. Moreover, trust value is estimated for each certain time

interval by each node based on the results of monitoring within the trust estimation time interval. A

malicious node acts intelligently, that is, it tries to keep its trust value in the trusted zone while

attacking the network.

3.2. Observation-Based Trust Calculation

Trust is calculated based on either past interactions or past recommendations. A past

interaction–based trust estimation method considers three factors to estimate the current trust value:

current measured misbehavior, aggregated misbehavior, and previous trust value. Current measured

misbehavior shows a node’s behavior during the current time, whereas aggregated misbehavior and

previous trust value demonstrate how much a node has misbehaved in the past. Current misbehavior of

node x at time t by node y is measured as follows:

() xy
xy

xy xy

b
a t

b c
=

+
 (6)

where bxy and cxy are the number of instances of bad behavior and the number of instances of good

behavior of node y with node x within the Δ time interval.

Aggregated misbehavior, aggregates measured misbehavior over time using proposed method. It

shows the persistency of the misbehavior. So, according to our proposed method if measured

misbehavior is persistent, that is, it is always greater than predefined threshold, then each time

aggregated misbehavior will be increased until it reaches to maximum value(that is one).Aggregated

misbehavior of node x is estimated at time t by node y as follows:

{ }
{ }

min () (1) () ,1 , if (-) ,
()

min () () ,1 , otherwise,

xy xy xy

xy

xy xy

a t S M t T t Q
M t

a t S M t

  + − × − Δ Δ ≥ = 
 + × − Δ  

 (7)

where S is forgetting factor for aggregated misbehavior, which ranges from [0.5, 1], 0.5 ≤ S≤ 1. Our

goal to define the forgetting factor in this way is to provide adaptability and improve the attack

detection. For example, if a network designer wants to assign the same value for forgetting factor

regardless of trust value, then he can assign 0.5. On the other hand, if he prefers to assign different

values according to trust value, then the equation allows him to use this way, too. Hence, it provides a

room for adaptability according to preference of the designer. According to Equation (7) once the

node’s trust value is under the trust threshold, aging factors for previous aggregated misbehavior will

Sensors 2014, 14 1883

be different. It means the malicious node or on-off attack node requires a longer time to recover its

trust value once it has been determined to be a malicious node. In order to estimate trust value, we use

aggregated misbehavior, previous trust value, and current measured misbehavior to. While aggregated

misbehavior focuses on the past misbehavior of the node, previous trust value and current measured

misbehavior emphasize on the current status of the node. Then, node y estimates the trust value of node

x at time t as follows:

()

()

() 1 ()
, if () 0,

2 ()
()

() 1 ()
, otherwise,

2 ()

xy xy

xy
xy

xy

xy xy

xy

T t M t
a t

M t
T t

T t a t

M t

 − Δ + −
 =

+
= 

− Δ + −
 +

(8)

where Txy(t-Δ) is the trust value of node x by node y at time t-Δ. If current measured misbehavior is

zero by node y on node x (that is, if there is no misbehavior currently by node x) then its previously

aggregated misbehavior is used to estimate its current trust value. This is to protect the trust

mechanism from an on-off attack and attacks similar to an on-off attack. Moreover, unlike a traditional

trust estimation mechanism, our trust mechanism maintains previous trust value to estimate current

trust value, which helps to track a node’s behavior more accurately. After calculating the trust value,

node y determine node’s x status based on its trust value as follows:

1 () 1 highly trusted

1 () 1 trusted
(())

1- () 1 untrusted

0 () 1- highly untrusted

xy

xy

xy
xy

xy

f T t

g T t f
Q T t

h T t g

T t h

− ≤ ≤ 
 − ≤ < − =  ≤ < − 
 ≤ < 

 (9)

where 1f g h< < < and f, g, h can be tuned according to the system and security requirements to

determine the node’s state. Since these values depend on network and security conditions, it will be set

accordingly. For instance, whether a node’s trust value should be considered within the untrusted zone

depends on the performance degradation tolerance of the network. Moreover, these parameters can be

adaptive or fixed, depending on the security conditions. For instance, if the number of nodes with a

trust value just above the trust threshold increases, degradation will be greater than in a situation where

most of the nodes’ trust values are in the highly trusted zone.

3.3. Recommendation-Based Trust Calculation

Nodes might need recommendations for certain nodes from other nodes for the following reasons:

• Lack of knowledge about the node, either due to a mobile environment or due to less

interaction among the nodes.

• To combine recommendations with direct trust to obtain a comprehensive trust value.

If node y needs a recommendation about node x, it will ask only trustworthy nodes in unicast mode

because it is more energy efficient than broadcast mode [18]. After receiving recommendations, it will

aggregate all recommendations according to the defined method. Li et al. [18] showed that lightweight

Sensors 2014, 14 1884

averaging algorithms perform better than complex aggregation algorithms. However, even though

simple averaging performs better, in the presence of dishonest recommendations, an aggregated value

can be distorted. Considering these factors, we use a modified one-step M-estimator (MOSE) [19,20],

which is one of the robust measures of central tendency, to aggregate recommendations. It checks

outliers using the median absolute deviation (MAD)-median rule, eliminates any found outliers, and

then averages the remaining values [19]. MAD is measure of dispersion, or spread, around the median.

In other words, it indicates the variability or diversity of the data around the median. It is more resilient

to outliers in a data set than the standard deviation [19,20]. In order to determine the MAD for given

dataset X1, X2,…, Xi, absolute deviations from the median for each data is determined:

()iX Md X− (10)

where Xi is ith data and Md(X) is median of the given data. Then, the MAD is defined as the median of

the absolute deviations from the data’s median:

()()i i j jMAD median X median X= − (11)

Next, the median of these absolute values (median absolute deviation, or MAD) is estimated and

scaled by a constant [19]:

0.675

MAD
MADN = (12)

The recommendation is defined as an outlier or a dishonest recommendation if it is different from

the majority of the group and the following statement is true [19]:

()
 iX Md x

K
MADN

−
> (13)

where ()Md x is the median of the recommendation values, and Xi is ith recommendation value. K is

the threshold to determine the outlier and commonly used threshold value is 2.24. Any other threshold

value can be used, which represents a stricter or a more tolerant criterion for determining an outlier.

Moreover, we add one condition for a recommendation to be considered an outlier, or dishonest. The

reason is that the outlier detection algorithm might determine that some recommendations are outliers

even though they are not likely to be outliers. For example, the majority of the nodes might assess a

certain node as trustworthy. However, when their recommendation values are highly dispersed, the

outlier detection algorithm might determine some recommendations to be outliers since some values

are far from the other values. Hence, considering majority opinion, we suggest not excluding from

aggregation recommendations that belong to the majority. Moreover, for determining dishonest

recommendations, simple averaging is performed on the remaining recommendations:

1

n

i
i

A

X
R

n
==


 (14)

where n is number of recommendations, and xi is the ith recommendation.

Sensors 2014, 14 1885

4. Performance Evaluation

In this section, we evaluate and compare our proposed trust mechanism with other schemes

proposed earlier. Evaluations are done for detection of persistent malicious behavior, on-off attacks,

and bad-mouthing attacks. If an estimated trust value is under the trust threshold in persistent

misbehavior or an on-off attack, we consider that misbehavior or attack have been detected. We

compare our scheme with GTMS [6] and Retrust [15]. The former is one of the earliest comprehensive

trust schemes for WSNs. On the other hand, the latter is one of the most recent comprehensive

trust schemes.

4.1. Persistent Malicious Behavior Detection

Our scheme has a feature whereby it continuously decreases the trust value of a malfunctioning or

malicious node when it persistently misbehaves. Misbehavior of the node is measured based on the

proportion of the number of instances of bad behavior to the total number of behavior instances, ܽ = ௕௕ା௖, where b the number of instances of bad behavior and c is the number of instances of good

behavior. When measured misbehavior exceeds a predefined threshold value, a > S, the node is

considered to be malicious under the trust estimation scheme. Sometimes a node might have a

hardware or software problem that causes it to malfunction consistently [8]. For example, a node might

drop a percentage of packets all the time, or it might always report false sensor data [8]. In this case, if

the measured misbehavior exceeds the threshold, the malfunctioning node can be detected by

traditional trust mechanisms; otherwise, it is considered a benevolent node even though it misbehaves

persistently. Moreover, a malicious node might launch insignificant attacks consistently but keep its

trust value above the trust threshold so it cannot be detected. When the attack is significant, it is easy to

detect because it will be obvious from its performance within a short time. However, when the attack

or misbehavior is insignificant but consistent, it is difficult to detect; it is even not possible for current

trust estimation schemes because they do not consider continuity of the misbehavior in the trust

estimation. Hence, detection of a consistent attack is important. To emulate consistent malicious

behavior and to demonstrate detection of it, the parameters in Table 1 are used.

Table 1. Parameters to emulate persistent misbehavior.

Parameters Value

Measured misbehavior
Fixed from 0.1 to 0.4
Random between 0.1 and 0.4

Forgetting factor (S) 0.6
Trust estimation time interval Δ
Trust threshold (Q) 0.6 and 0.5 (60 and 50 for GTMS)
Experiment time 50 Δ
Initial trust value 1

For each trust estimation time period, measured misbehavior is generated in random or fixed

manner and trust is estimated based on generated misbehavior. We compare our trust estimation

mechanism with GTMS [6] and Retrust [15]. Values of the system parameters such as trust threshold,

Sensors 2014, 14 1886

forgetting factor, and time window are selected based on heuristic and previously defined values in the

literature. For example, trust threshold is selected as about half of the maximum trust value in the

literature [6,7,10,21–24]. Hence, in these references, defined trust threshold is between 0.4 and 0.8.

In [21] the authors suggest that the most intuitive trust threshold is 0.5 when the maximum trust value

is 1. Optimal trust threshold according to defined scenario in [24] is 0.6. The choice of value for

forgetting factor remains largely heuristic and depends on the strategy of trust establishment [21].

Since forgetting factor is used mainly to combat on-off attack, authors use different values and

different mechanisms to derive the value of forgetting factor according to their trust estimation and

considerations [5,6,10,23]. Following the guidelines and suggestions in [5], we intuitively use

forgetting factor as 0.6. Size of the time-window for GTMS and ReTrust is chosen to be 3 for the sake

of simplicity.

Figure 1 shows estimated trust values over time under persistent malicious behavior. For each trust

estimation period, measured misbehavior randomly measured between 0.1 and 0.4. As Figure 1 shows,

our trust estimation mechanism decreases trust value gradually and keeps it under trust threshold when

node shows consistent misbehavior. Trust values fluctuate because of the measured misbehavior. Since

measured misbehavior is randomly generated between 0.1 and 0.4, that is, sometimes it can be high or

low randomly, trust values fluctuate accordingly. Dynamicity of the trust values shows that our trust

scheme considers efficiently current status of the node.

Figure 1. Persistent malicious behavior detection under random misbehavior.

Figures 2 and 3 show persistent malicious behavior detection under different fixed measured

misbehavior. Thus, measured misbehavior in each trust estimation period is fixed from 0.1 to 0.4. For

instance, in Figure 2 ‘Proposed01’ means that performance of proposed scheme under fixed measured

misbehavior such as 0.1. Hence, Figure 2 shows misbehavior detection when measured misbehavior

fixed to 0.1 and 0.2. On the other hand, Figure 3 shows misbehavior detection when measured

misbehavior fixed to 0.3 and 0.4, that is, measured misbehavior is set higher in Figure 3 evaluations.

Important note from Figures 2 and 3 is that produced trust values in other schemes are constant even

though misbehavior is persistent. On the other hand, our scheme gradually decreases trust value over

time. When measured misbehavior fixed is to 0.1 in Figure 2, our scheme cannot detect such persistent

1 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(unit)

E
st

im
at

ed
 t

ru
st

 v
al

u
e

Proposed
GTMS
Retrust

S=0.5

S=0.6

Misbehavior
detection

Sensors 2014, 14 1887

misbehavior because estimated trust values do not go under trust threshold. The reason is that we

intentionally design in this way to provide system tolerance. Otherwise, the scheme can be easily

adapted to required parameters. In all other cases, our scheme can detect persistent malicious behavior

as Figures 2 and 3 demonstrates. Trust values gradually go below trust threshold. Selected trust

thresholds in the evaluations are default values because trust threshold is set to equal or greater than

0.5 normally in [6,7,9,14].

Figure 2. Persistent malicious behavior detection under constant misbehavior.

Figure 3. Persistent malicious behavior detection under constant misbehavior.

4.2. On-Off Attack Resilience Evaluation

In this section, we evaluate the resilience of our trust model against on-off attacks. In an on-off

attack, a malicious node alternates its behavior from malicious to normal and from normal to malicious

so it remains undetected while causing damage. Thus, the attack cycle consists of two periods: on and

off. An attack cycle is defined as “on” immediately followed by an “off” [25] (see Figure 4). When the

attack is on, the malicious node launches attacks, and during the off period, either stops doing anything

1 5 10 15 20

0.5

0.6

0.7

0.8

0.9

1

Time(unit)

E
st

im
at

ed
 t

ru
st

 v
al

u
e

Proposed01

GTMS01
Retrust01

Proposed02

GTMS02

Retrust02
S=0.5

S=0.6

Misbehavior
detection

1 5 10 15 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(unit)

E
st

im
at

ed
 t

ru
st

 v
al

u
e

Proposed03

GTMS03
Retrust03

Proposed04

GTMS04

Retrust04
S=0.5

S=0.6

Misbehavior
detection

Sensors 2014, 14 1888

or only performs well. Since the on period has an implication on the trust value of the malicious node,

it will try to increase its trust value during the off period by waiting or performing only good actions.

Durations of both the on period and the off period can differ or be of equal length, depending on the

malicious node’s strategy.

Figure 4. On-off attack cycle.

The length of one attack cycle can be defined as follows:

c on offL A A= +

where Lc is the length of one attack cycle in terms of the time unit, and Aon and Aoff are the lengths of

the on period and off period in terms of the time unit, respectively.

To emulate behavior of an on-off attack node and evaluate the proposed trust scheme under an

on-off attack, we use the parameters in Table 2. To make the emulation more realistic and fair, the

duration of the on and off periods were generated randomly (that is, between one and five time units).

Moreover, during the on period, the number of good and bad behaviors were randomly generated

between ranges [5; 10] and [1; 5], respectively. Hence, in the worst case, the number of good and bad

behaviors will be equal, otherwise the instances of good behavior always number more than bad

behavior. The reason is that we assume that a malicious node tries to balance its misbehavior so it is

not detected, and it can recover its trust value faster to attack again. Trust value is estimated after each

time unit, and if an estimated trust value falls below the trust threshold, the node is considered

untrustworthy for that period. To find the average detection rate of the attack, the sum of the number of

times it was deemed untrustworthy is divided by the total experiment time.

Table 2. Parameters to emulate an on-off attack.

Parameters Value

Duration of the on period Randomly generated between [1;5] Δ
Duration of the off period Randomly generated between [1;5] Δ

Number of instances of good behavior
On period Randomly generated between [5;10]
Off period Randomly generated between [1;10]

Number of instances of bad behavior
On period Randomly generated between [1;5]
Off period 0

Forgetting factor 0.6 and 0.7(60 and 70 for GTMS)
Trust estimation time interval Δ
Experiment time 75 Δ
Initial trust value 1
Trust threshold 0.6 and 0.7

Sensors 2014, 14 1889

As Figure 5 shows, the detection rate is the highest in our proposed scheme under both trust threshold

scenarios. Since our proposed scheme decreases the trust value of the malicious node continuously, the

recovery rate in the off period is slower when the trust value is under the trust threshold.

Figure 5. On-off attack detection.

When the trust threshold is high, the on-off attack detection rate is also high. However, nodes might

be rated as untrustworthy even though they might not actually be malicious nodes. That is why

choosing a trust threshold requires considering all factors. Moreover, it is important to choose a trust

recovery rate intelligently so that an on-off attack node has less chance to increase its trust value after

the on period.

4.3. Bad-Mouthing Attack Resiliency

In a bad-mouthing attack, the malicious node provides a dishonest recommendation to decrease or

increase the trust value of legitimate or malicious nodes, respectively. Moreover, the most dangerous

scenario of such an attack is when a group of malicious nodes provide dishonest recommendations in a

synchronized way (that is, the group of malicious nodes cooperate with each other in providing

recommendations to decrease/increase trust values of certain legitimate/malicious nodes). Hence in

this section, we evaluate resilience of our trust model against such bad-mouthing attacks. To emulate

the bad-mouthing attack and detection of it, we use the following parameters (see Table 3):

Table 3. Parameters to emulate bad mouthing attack.

Parameters Value

Number of recommendations in each aggregation 10
Value of sincere recommendations Randomly generated between [0.6;0.9]
Value of dishonest recommendations Randomly generated between [0.3;0.5]
Trust threshold(S) 0.6 and 0.5 (60 and 50 for GTMS)
Number of aggregation experiments 50
Outlier detection threshold K = 1 and K = 2

0

10

20

30

40

50

60

70

0.6 0.7

A
tt

ac
k

 d
et

ec
ti

on
(%

)

Trust threshold

GTMS

ReTrust

Proposed

Sensors 2014, 14 1890

Each time 10 recommendations are generated, the percentage of dishonest recommendations is set

between 10% and 60%. We assume that the provided recommendations are for benevolent nodes.

Hence, honest recommendation values are normally above the trust threshold. That is why we consider

honest recommendation values as being between 0.6 and 0.9. Moreover, we assume that malicious

nodes try to avoid being detected while providing dishonest recommendations. Hence, malicious nodes

provide recommendations for benevolent nodes that are under the trust threshold, intending to distort

the aggregated trust value (that is, to make it fall below the trust threshold). However, they act

intelligently (that is, provided the recommendations will not be very low). Otherwise, detection of

these dishonest recommendations will be obvious. Hence, we specifically chose the range for dishonest

recommendations as [0.3; 05].

After generating honest and dishonest recommendations, outlier detection and aggregation is

performed. In order to improve outlier detection, all recommendations are classified into two groups

—trustworthy and untrustworthy—depending on the value of the recommendation. Moreover, one of

the groups is determined the majority according to the number of recommendations in the group. Then,

detected outliers are also classified into two groups—trustworthy and untrustworthy. If one of the

groups belongs to the majority, then it is excluded from the outliers. The reason is that the outlier

detection algorithm might determine some recommendations are outliers, even though they are not

likely to be outliers. For example, a majority of the nodes might assess a certain node as trustworthy.

However, when their recommendation values are highly dispersed, the outlier detection algorithm

might determine some recommendations to be outliers because some values are far from the other

values. Hence, considering majority opinion, we suggest not excluding recommendations that belong

to the majority group. To find the outlier detection rate, the average outlier detection rate is estimated

each time outlier detection is performed; then, a summation of the average is estimated. Among the

criteria for recommendations to be aggregated correctly, the aggregated value should be above the trust

threshold in the presence of dishonest recommendations. To demonstrate the outlier detection rate, we

evaluate our proposed recommendation aggregation with different outlier thresholds and with different

percentages of dishonest recommendations.

Figure 6. Recommendation aggregation in the presence of dishonest recommendations.

1 10 20 30 40 50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of aggregation samples

A
g

g
re

g
at

ed
 v

al
u

e

DR=10%

DR=20%

DR=30%

S=0.6

Sensors 2014, 14 1891

Figure 6 shows correct recommendation aggregation in the presence of dishonest recommendations

of between 10% and 30%. As we can see, with dishonest recommendations at up to 30%, the

aggregated value is not distorted (that is, it is not under the trust threshold). Moreover, Figure 7 shows

dishonest recommendation detection with different outlier detection in the presence of different

percentages of dishonest recommendations. As the figure shows, when the threshold equals one

(K = 1), the detection rate is more than 70% in the worst case.

Figure 7. Dishonest recommendation detection.

Figure 8 shows correct recommendation aggregation in the presence of dishonest recommendations

that vary from 40% to 60%. Figure 8 demonstrates that when dishonest recommendations total 40%,

aggregated values are not distorted.

Figure 8. Recommendation aggregation in the presence of dishonest recommendations.

However, the resilience of the one-step M-estimator is degraded when the percentage of dishonest

recommendations increases to 50% to 60%. Results in Figure 8 are correlated with Figure 9, which

1 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of aggregation samples

A
g

g
re

g
at

ed
 v

al
u

e

DR=40%

DR=50%

DR=60%
S=0.6

S=0.5

Sensors 2014, 14 1892

shows that when the percentage of dishonest recommendations increases to 50% and 60%, dishonest

recommendation detection becomes less than 10%. Evaluation results from Figures 8 and 9 show that a

more suitable outlier threshold is K = 1. Moreover, recommendations can be securely aggregated when

dishonest recommendations constitute up to 40% of the total recommendations.

Figure 9. Dishonest recommendation detection.

5. Analysis of the Upper and Lower Bounds of Estimated Trust Values in

Persistent Malicious Behavior

In this section, we show the upper and lower bounds of estimated trust values in persistent

malicious behavior.

Definition: Node x is said to be malicious continuously when measured misbehavior is larger than

zero, ax>0, all the time.

Hence according to our trust estimation model, estimated trust values will be as follows:

() () (2)....... () x x x xT t T t T t T t n> + Δ > + Δ ≥ + Δ

() 1 () () 1 (2)
()

2 () 2 (2)

((1)) 1 ()
.....

2 ()

x x x x
x

x x

x x

x

T t a t T t a t
T t

M t M t

T t n a t n

M t n

+ − + Δ + Δ + − + Δ
 > > >

+ + Δ + + Δ
+ − ×Δ + − + Δ≥

+ + Δ

 (15)

For the sake of simplicity, we assume that forget factor(S) and measured misbehavior are fixed
values. Moreover, trust value at time t equals one, () 1.xT t = If () 1xT t = then aggregated misbehavior at

time t will be zero, Mx(t)=0.
Lemma 1: () 1, for 1x xa M t n n≤ + Δ ≤ ≥

Proof:

()()() min (1))* ((1)*) ,1 1

() as () 1

x x x

x x x

M t n a S M t n

M t a T t

+ Δ = + − + − Δ ≤

+ Δ = =

Assume that ()x xM t n a+ Δ ≥ . Then since1 0 and ((1)*) 0xS M t n− ≥ + − Δ ≥ , we have:

0

10

20

30

40

50

60

40% 50% 60%

De
te

ct
io

n
ra

te
 (%

)

Dishonest recommendation

K=1

K=2

Sensors 2014, 14 1893

((1)*) (1)* (*) .x x xa t n S M t n a+ + Δ + − + Δ ≥

Because . We have:
()((1)*) min (((1)*) (1)* (*),1 .x x x xM t n a t n S M t n a+ + Δ ≥ + + Δ + − + Δ ≥

Next, we define two sequences, cn and bn, as follows:

1

1

() 1,
 2, 1

,
3

x

n x
n

c T t
nc a

c −

= =
 ≥+ − =


 (16)

1

1

() 1,

, 2. 1

2

x

n x
n

x

b T t

nb a
b

a
−

= =
 ≥+ − = +

 (17)

Then, we can show that cn and bn become the lower and upper bounds of given

as follows:

((1)*) (n 1)n x nc T t n b≤ + − Δ ≤ ≥ (18)

More detailed derivation is given in the following proposition.
Proposition 1: ((1)*) (n 1)n x nc T t n b≤ + − Δ ≤ ≥

Proof:
First we consider the case where n = 1. Since (0*) () 1x xT t T t+ Δ = = , we can obtain the following

relations from Equations (16) and (17):

1

1

1,

1.

c

b

=
=

Thus, we have 1 1() .xc T t b= =

We assume that following relations are valid for (1)n k k= ≥ :

((1)*) ,

((1)*) .
x k

x k

T t k c

T t k b

+ − Δ ≥
+ − Δ ≤

 (19)

() can be expressed asxT t k+ Δ
((1)*) 1

(*) .
2 (*)

x x
x

x

T t k a
T t k

M t k

+ − Δ + −+ Δ =
+ + Δ

Since () 1x xa M t n≤ + Δ ≤ for 1n ≥ , by Lemma 1, we can obtain:

((1)*) 1 ((1)*) 1 ((1)*) 1
(*) .

3 2 () 2
x x x x x x

x
x x

T t k a T t k a T t k a
T t k

M t k a

+ − Δ + − + − Δ + − + − Δ + −≤ + Δ = ≤
+ + Δ +

Combining the above relation and Equation (19) yields
1 1

() .
3 2

k x k x
x

x

c a b a
T t k

a

+ − + −≤ + Δ ≤
+

Combining Equations (16) and (17) and the above relation yields 1 1() .k x kc T t k b+ +≤ + Δ ≤

Thus, the proof is done by induction.
In more detail nc and nb can be expressed as follows (a detailed derivation is given in the Appendix):

1 xa≥

((1)*)xT t n+ − Δ

Sensors 2014, 14 1894

1

1

1 11
* ,

2 3 2

1 21
* .

1 2 1

n

x x
n

n

x x
n

x x x

a a
c

a a
b

a a a

−

−

− +  = +    
   

   −= +    + + +   

 (20)

Combining Equations (18) and (20) yields:
11

1 1 1 21 1
* ((1)*) *

2 3 2 1 2 1

1 1
lim ((1)*) .

2 1

nn

x x x x
x

x x x

x x
x

n
x

a a a a
T t n

a a a

a a
T t n

a

−−

→∞

   − + −  + ≤ + − Δ ≤ +        + + +       
− −

 ≤ + − Δ ≤
+

From Equation (20), we find that the lower bound cn approaches the upper bound bn as ax

approaches 1. Since the lower bound cn and the upper bound bn decreases with respect to n, we assume

that Tx(t+(n-1)*Δ) has the same decreasing trend of Equation (15) in general. The smaller the gap

between the upper and lower bound, the more similar decreasing trend of Tx(t+(n-1)*Δ) will be. As ax

approaches to one, gap between the lower bound and upper bound decreases accordingly. So, in this

case, decreasing trend of Tx(t+(n-1)*Δ) will be same with decreasing trend of the upper and

lower bound.

6. Conclusions

This paper proposes a novel trust establishment scheme, which enables us to detect persistent

malicious behavior and improves detection of on-off attacks. Moreover, it proposes using a one-step

M-estimator, which helps aggregate recommendations securely. To the best of our knowledge, this is

the first persistent malicious behavior detection enabled trust mechanism. The novelty of the scheme

arises from comprehensively considering history and current status of the node and combining them

intelligently. Evaluation results and theoretical analyses prove that it allows detection of consistent

malicious behavior and on-off attacks. Moreover, recommendations can be securely aggregated using

the proposed scheme when the percentage of dishonest recommendations is up to 40%. As a future

work, implementation of the proposed trust scheme in Ad hoc On-Demand Distance Vector Routing

(AODV) is being designed to estimate the performance of algorithm. Moreover, analyses on overhead

of trust establishment in terms of resource consumption such as energy, memory, and computation are

being considered as nodes are resource constraint in wireless sensor networks (WSNs).

Acknowledgments

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning

(NRF-2012R1A1B4000536). The authors would also like to thank the paper’s anonymous reviewers

for their insightful comments.

Conflicts of Interest

The authors declare no conflict of interest.

Sensors 2014, 14 1895

References

1. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor setworks: A survey.

Comput. Netw. 2002, 38, 393–422.

2. Chong, C.-Y; Kumar, S.P. Sensor networks: Evolution, opportunities, and challenges. Proc. IEEE

2003, 91, 1247–1256.

3. Ishmanov, F.; Malik, S.A.; Kim, S.W.; Begalov, B. Trust management system in wireless sensor

networks: Design considerations and research challenges. Trans. Emer. Telecom. Tech. 2013,

doi:10.1002/ett.2674.

4. Zheng, Y.; Holtmanns, S. Trust Modeling and Management: from Social Trust to Digital Trust.

In Computer Security and Politics: Computer Security, Privacy and Politics: Current Issues,

Challenges and Solutions; Subramanian, R., Ed.; IGI Global: Hershey, PA, USA, 2008;

pp. 290–323.

5. Sun, Y.L.; Zhu, H.; Liu, K.J.R. Defense of Trust management vulnerabilities in distributed

networks. IEEE Commun. Mag. 2008, 46, 112–119.

6. Shaikh, R.A.; Jameel, H.; D’Auriol, B.J.; Lee, H.J.; Lee, S.Y.; Song, Y.-J. Group Based Trust

Management Scheme for Clustered Wireless Sensor Networks. IEEE Trans. Parallel. Distrib.

Syst. 2009, 20, 1698–1712.

7. Govindan, K.; Mohapatra, P. Trust Dynamics in Mobile Adhoc networks: A survey. IEEE

Commun. Surv. Tutor. 2012, 14, 279–298.

8. Ganeriwal, S.; Srivastava, M.B. Reputation-based framework for high integrity sensor networks.

ACM Trans. Sens. Netw. 2008, 4, 1–37.

9. Zhan, G.; Shi, W.; Deng, J. Design and Implementation of TARF: A Trust-Aware Routing

Framework for WSNs. IEEE Trans. Dep. Sec. Comp. 2012, 9, 184–197.

10. Jøsang, A.; Ismail, R.; Boyd, C. A Survey of Trust and Reputation Systems for Online Service

Provision. Decision Support Syst. 2012, 9, 407–420.

11. Felix, M.; Wang, G.; Yu, S.; Abdullahi, M.B. Securing recommendations in grouped P2P

e-commerce trust model. IEEE Trans. Netw. Service Manag. 2007, 43, 618–644.

12. Li, X.; Ling, L. PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic

Communities. IEEE Trans. Knowl. Data Eng. 2004, 16, 843–857.

13. Yacine, A. Building Trust in E-Commerce. IEEE Internet Comput. 2002, 6, 18–24.

14. Daojing, H.; Chun, C.; Chan, S.; Bu, J.; Vasilakos, A.V. A Distributed Trust Evaluation Model

and Its Application Scenarios for Medical Sensor Networks. IEEE Trans. Inf. Technol. Biomed.

2012, 16, 1164–1175.

15. Daojing, H.; Chun, C.; Chan, S.; Bu, J.; Vasilakos, A.V. ReTrust: Attack-Resistant and

Lightweight Trust Management for Medical Sensor Networks. IEEE Trans. Inf. Technol. Biomed.

2012, 16, 623–632.

16. Velloso, P.B.; Laufer, R.P.; Cunha, D.O.; Duarte O.C.M.B.; Pujolle, G. Trust Management in

Mobile Ad Hoc Networks Using a Scalable Maturity-Based Model. IEEE Trans. Netw. Serv. Manag.

2010, 7, 172–185.

17. Feng, R.; Xu, X.; Zhou, X.; Wan, J. A. Trust Evaluation Algorithm for Wireless Sensor Networks

Based on Node Behaviors and D-S Evidence Theory. Sensors 2010, 11, 1345–1360.

Sensors 2014, 14 1896

18. Li, X.; Zhou, F.; Du, J. LDTS: A Lightweight and Dependable Trust System for Clustered

Wireless Sensor Networks. IEEE Trans. Inf. Forensics Security 2013, 8, 924–935.

19. Dodonov, Y.S.; Dodonova, Y.A. Robust measures of central tendency: Weighting as a possible

alternative to trimming in responsetime data analysis. Psikhologicheskie Issledovaniya 2011, 19,

1–11.

20. Huber, P.J. Robust Statistics; John Wiley & Sons Ltd.: New York, NY, USA, 1981.

21. Yu, H.; Shen, Z.; Miao, Ch.; Leung, C.; Niyato, D. Survey of trust and reputation management

systems in wireless communications. Proc. IEEE 2003, 98, 1755–1772.

22. Chae, Y.; DiPippOl. L.C.; Sun, Y.L. Predictability Trust for Wireless Sensor Networks to Provide

a Defense against On/Off Attack. In Proceedings of 8th International Conference on Collaborative

Computing: Networking, Applications and Worksharing, Pittsburgh, PA, USA, 14–17 October

2012; pp. 406–405.

23. Carol, J.; Zhang, F.J.; Aib, I.; Boutaba, R.; Cohen, R. Design of a Simulation Framework to

Evaluate Trust Models for Collaborative Intrusion Detection. In Proceedings of IFIP Network and

Service Security Conference (N2S 09), Paris, France, 24–26 June 2009; pp. 13–19.

24. Bao, F.; Chen, I.R.; Chang, M.J.; Cho, J. Trust-Based Intrusion Detection in Wireless Sensor

Networks. In Proceedings of IEEE International Conference on Communications (ICC), Kyoto,

Japan, 5–9 June 2011; pp. 1–6.

25. Perrone, F. L.; Nelson, S.C. A Study of On-Off Attack Models for Wireless Ad Hoc Networks. In

Proceedings of the IEEE International Workshop on Operator-Assisted (Wireless Mesh)

Community Networks, Berlin, Germany, 10–13 October 2006; pp. 1–10.

Appendix

Derivation of bn and cn.

(i) To resolve cn from the recursive relation of Equation (16), we first determine α of the following

relation:

(ii) To resolve bn from the recursive relation of Equation (17), we first determine β of the following

relation:

()1

1 1

1

3
11 2 1 1

Since (1), comparing this relation with equation(14) yields = .
3 3 3 3 2

n n

x
n n n x

c c

a
c c c a

α α

α α

−

− −

− = −

−= + = + −

()
1 1

1 1

1

Then, we can obtain

1 1 11 1 1

2 3 3 2 3 2

1 11
.

2 3 2

n n

x x x
n n

n

x x
n

a a a
c c c

a a
c

α
− −

−

−

− − +      − = − = − =      
      

− +   = +    
   

Sensors 2014, 14 1897

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

()1

1 1

1

1
.

2

This relation can be changed into

11
1 .

2 2 2 2

Comparing this relation with Equation (17) yields

1
= .

1

Then, we can obtain

1 11

1 2

n n
x

n n x
n

x x x x

x

x

x
n n

x x

b b
a

b b a
b

a a a a

a

a

a
b b

a a

β β

β β

β

−

− −

−

− = −
+

  += + − = + + + + + 

−
+

− −− = −
+ +

1 1

1

1

1 21 1

1 2 1 2 1

1 21
.

1 2 1

n n

x x x

x x x x x

n

x x
n

x x x

a a a
b

a a a a a

a a
b

a a a

− −

−

         −= − =         + + + + +         

   −
 = +    + + +   

