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Abstract: Indoor positioning systems based on the fingerprint method are widely used due 

to the large number of existing devices with a wide range of coverage. However, extensive 

positioning regions with a massive fingerprint database may cause high computational 

complexity and error margins, therefore clustering methods are widely applied as a 

solution. However, traditional clustering methods in positioning systems can only measure 

the similarity of the Received Signal Strength without being concerned with the continuity 

of physical coordinates. Besides, outage of access points could result in asymmetric 

matching problems which severely affect the fine positioning procedure. To solve these 

issues, in this paper we propose a positioning system based on the Spatial Division 

Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance 

constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can 

achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms 

of fine localization, based on the Kernel Principal Component Analysis method, the 

proposed positioning system outperforms its counterparts based on other feature extraction 

methods in low dimensionality. Apart from balancing online matching computational burden, 

the new positioning system exhibits advantageous performance on radio map clustering, 

and also shows better robustness and adaptability in the asymmetric matching problem aspect. 
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1. Introduction 

With the rapid development in the areas of mobile computing terminals and wireless techniques, 

indoor positioning systems have become unprecedentedly popular in recent years. Although the Global 

Positioning System (GPS) has been in service for decades, the indoor positioning ability of GPS is 

limited in indoor environments by the insufficient satellite coverage and poor positioning signals [1]. 

Not only does the indoor positioning draw attention from world famous academic research institutions 

but also large scale business activities have been deployed to solve this problem, such as the 

cooperation between Apple and WiFiSLAM, and the competition between Baidu and AutoNavi. As a 

consequence, several indoor positioning systems have been proposed in recent years, which are based 

on infrared [2], ultrasound and Radio Frequency (RF) [3], etc. Because the RF-based indoor 

positioning systems are capable of providing a wide range of coverage and using the existed WLANs 

as the fundamental infrastructure, fingerprinting methods [4–6] based on WLANs, as one of the most 

popular RF techniques, outperforms the other existing indoor positioning systems in civilian fields [7,8]. 

For instance, a convenient way based on propagation models for real-time indoor positioning without 

fingerprinting radio map basis is proposed in [9], but the Maximum Likelihood Estimation (MLE)  

and Least Square Optimization (LSO)-based probabilistic method used in the system would be  

time-consuming and computationally expensive in terms of mobile terminals. More importantly, the 

given confidence probability is lower than 10% under the condition that positioning accuracy is 2 m, 

which is sometimes insufficient for indoor positioning services, while fingerprinting positioning 

systems may normally provide confidence probabilities over 50% under the same conditions. 

A typical fingerprinting indoor positioning system can be described as a situation where an end user 

takes RSS readings from available access points (AP) with a mobile terminal in an indoor 

environment. The positioning system then estimates the current location of the user according to a 

database, the so called fingerprint radio map, which contains pre-measured RSS values and the 

corresponding coordinates.  

On the one hand, since a large indoor positioning region with a large fingerprint dataset could lead 

to high computational complexity and error margins, dividing it into several sub-regions is supposed to 

be able to improve the positioning performance [10]. Consequently clustering methods are  

widely applied to dividing the fingerprinting radio map into several sub-radio maps. However, the  

traditional clustering methods, e.g., K-Means, Fuzzy C-Means and Affinity Propagation [11,12], 

cannot theoretically process the outliers or singular points (an outlier means a sample point is assigned 

to a class by a cluster method but in physical space it is actually located in another class). This is a 

typical problem when deploying pattern recognition clustering methods in positioning systems. Most 

researchers simply ignore the outliers or delete those points, or artificially change the class label of the 

outlier to the one it is located in. Nevertheless, any of those solutions may lead to an increase in the 

positioning error rate. Furthermore, those methods for clustering the radio map essentially only depend 

on Received Signal Strength (RSS) values in signal space instead of considering their coordinate 

proximity in physical space. They actually generate the sub-radio maps in signal space, rather than in 

real sub-regions of the positioning area. Therefore, the coarse positioning in that case actually cannot 

prove that the terminal is located in a certain area, but only illustrate that the received RSS value may 

belong to one of the sub-datasets. 
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Besides, location privacy also should be taken into consideration sometimes [13]. For security 

reasons, sample points of certain areas such as confidential rooms within the radio map might be 

required to be clustered together, thereby providing the indoor positioning services of the dedicated 

area only to those authorized people. In this case, the traditional methods may not run well. 

On the other hand, the deployment of feature extraction algorithms in the fingerprinting system is 

able to effectively process the radio map, i.e., mapping it from the original signal space to a new 

feature space, thereby decreasing the noise interference and improving the location performance at the 

cost of increased computational complexity [14,15]. For instance, Reference [16] presents a 

positioning system based on Multiple (Linear) Discrimination Analysis (MDA or LDA) and Adaptive 

Neural Network (ANN). Though the Artificial Neural Network may suffer from the local minimum 

problem and over-fitting problems, the conception of Discriminant Components (DC) derived from 

MDA is efficiently introduced into the fingerprinting system. Parallel with DC, Principal Components 

(PC) derived from PCA is introduced in [17]. Apart from improved positioning accuracy, the proposed 

method also could reduce the number of training samples needed. Like the DC and PC used in [16–18], 

we pay attention to the aspect of dimensional reduction [19,20] (the original dimensionality of the 

radio map could be considered as the number of available APs) which is also a key factor for adjusting 

the available features of the feature extraction algorithm for indoor positioning. In fact, an appropriate 

algorithm can also enhance the robustness, balance the computational burden and save storage, which 

are all significant in terms of mobile computing. 

Moreover, the number of APs received by a user in real-time phase may not always match the  

pre-stored radio map, e.g., one of those APs might be out of service or powered off at times. In that 

case, the traditional fingerprinting location method may not work out. Although some candidate 

options could deal with that, for instance set the RSS readings of the blocked AP as zero or remove the 

corresponding dimension of the radio map, the asymmetric matching problem still introduces severe 

systematic errors and reduces the positioning performance. However, by deploying an adaptive 

dimensional reduction technique, the impact of the missing APs could be strictly confined. 

In this paper, for one thing, we propose the Spatial Division Clustering (SDC) method for 

reasonably dividing the radio map without singular points and the constraints presented above. After 

being integrated with optimized Support Vector Machine (SVM) technique [21,22], it is able to 

localize the test point (TP) into the sub region correctly during the so called coarse positioning process. 

To be specific, the SVM within the proposed positioning system is further optimized by a Genetic 

Algorithm (GA) [23], and generalized for multi-classification by the One versus One procedure. The 

proposed One versus One GA-SVM (OG-SVM) algorithm combined with the SDC method can 

reasonably cluster the radio map on the basis of coordinates and then classify the RSS sample into  

sub- regions for coarse positioning. 

For another thing, we propose the Kernel PCA feature extraction algorithm based on Principal 

Component Analysis (PCA) [24–26] for dimensional reduction also as a solution for the asymmetric 

matching problem. Compared with other typical feature extraction methods such as Linear Discrimination 

Analysis (LDA) [27,28] and Local Discriminant Embedding (LDE) [29,30] used in positioning 

systems in our early works [14,15,20], the proposed method performs better in both low dimensional 

feature extraction and asymmetric matching accuracy when there is an AP outage. 
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The rest of this paper is arranged as follows: In Section 2, we will describe the structure of the 

traditional fingerprinting method for indoor positioning. After that, Section 3 starts with the 

introduction of the proposed new indoor positioning system, followed then by the theoretical analysis 

of the proposed SDC method with OG-SVM classification procedure and the Kernel PCA feature 

extraction method. In Section 4 we will provide experimental performances of the proposed methods 

and make comparisons with other typical algorithms. Section 5 finally presents the conclusions. 

2. Fingerprinting Indoor Positioning System 

A typical fingerprinting indoor positioning system is introduced in this section. Firstly, an end user 

takes RSS readings from available APs with his/her (WLAN adapter equipped) device in an indoor 

environment. The positioning system then estimates the current location of the user based on the 

measured RSS values by matching the received values with the fingerprint database, which is the  

pre-stored table of RSS values over a grid of reference points (both their RSS values and location 

coordinates are recorded) on the positioning area. Therefore the traditional fingerprinting method mainly 

consists of two parts, which are radio map building and the online matching procedures, respectively. 

2.1. Source of Received Signal Strength 

It is significant and necessary to briefly introduce where and how the RSS derives, based on which 

we could better analyze the unstable factors and sources of noise for the radio map. Actually, the  

RSS values derived from different APs are mainly calculated based on the received beacon frames of 

the device. 

The beacon frame is one of the management frames in IEEE 802.11-based WLANs and its structure 

is illustrated in Figure 1. It is periodically broadcast and terminal devices in passive scan mode can 

receive it without building a connection with any AP. The beacon frame is transmitted to announce the 

presence of a WLAN and includes all supported parameters. After receiving it, according to the 

information labeled with red rectangles in Figure 1, the terminal device is able to discriminate APs and 

calculate the RSS values over a sampling period. Specifically, The Beacon Interval is generally set to 

100 microseconds; SSID identifies a specific WLAN; Supported Rate is a constant 1 Mbps and Time 

Stamp normally is used for compensation of interval inaccuracy [31]. Besides, the size of a beacon 

frame varies, depending on the instant transmitting status. Apart from the parameters presented above 

and the complexity of indoor propagation, the state of being in connection with an AP or not, the 

WLAN card, antenna and driver version of a terminal device (sensitivity of the adapter and the 

manufacturer) [32] also affect RSS values. 
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Figure 1. Main structure of a Beacon Frame. 

 

2.2. Building Radio Map 

Radio map actually is a dataset used to bridge RSS values with location information. By setting 

amounts of Reference Points (RP), it is able to statistically describe the electromagnetic environment 

of an indoor positioning area. It is similar to many published researches [12,33] about fingerprinting 

where building a radio map is composed of two parts, which are sampling RSS values and recording 

coordinates information, respectively. 
Firstly, we sample and record RSS readings at known locations with a mobile terminal device. As 

presented above, the height and the direction of a device antenna affects the online signals quality 

which directly influences the system positioning accuracy. For simplicity and concentrating on the 

proposed algorithms, as a compromise resolution, we only take a holding-in-hand situation (a user is 

holding the mobile in hand for using the positioning service, therefore the height of the terminal normally 

is set to 1.2 m) into consideration and take four RPs in four directions (North, South, East and West), 

respectively, from the same location (the four RPs in four directions share the same coordinates). We 

denote the RSS values derived from APi at RPj as i,j(δ), δ = 1,2,…,q, q ≥ 1 where q stands for the 

number of collected time samples, the average of the time samples thereby can be computed by: 

߶௜,௝ ൌ
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௤

ଵ

 (1)

where i,j is considered as actual RSS readings (in dBm) of APi at RPj. So the radio map of RSS part is 

denoted as Φ: 
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where M and N stand for the total number of available APs and RPs respectively. Therefore each row 

of Φ, the vector of the matrix, actually represents the RSS values of each RP, which is denoted as: 

߶௝ ൌ ൣ߶௝,ଵ, ߶௝,ଶ, ߶௝,ଷ, … , ߶௝,ெ൧, ݆ ൌ 1,2,… , ܰ (3) 

Then, the radio map can be denoted as ൫ ௫ܲ௬
௝, ߶௝൯, j = 1,2,…N, ߶௝ א Թெ, where the element ௫ܲ௬

௝ is 

the coordinates of the RPj, which is represented by  ൫ݔ௝,  ௝൯. In the case when no RSS readings can beݕ
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detected from several APs at some RPs, the corresponding value is then set to be a minimal value 

instead of putting a zero because of the subsequent algorithm computation. 

In addition, RSS should be collected systematically during different months or seasons which may 

cause evident RSS fluctuations. In this case, we could improve the system performance by enabling the 

radio map to store RSS samples of different periods and choose the corresponding database for the 

online matching process according to the current time which can be obtained from the timestamp of 

the beacon frame. Also, some extended Location Based Services (LBS) based on user gestures could 

be discriminated by built-in sensors of the mobile terminal firstly, and then the dedicated radio maps 

could be selected accordingly to provide the relative services. 

2.3. WKNN for Online Matching 

Many algorithms are widely used in fingerprinting method for matching the test points (TP) with 

the radio map, including K-Nearest Neighbors (KNN), Kernel Method [34], probabilistic approach [35] 

and Support Vector Regression (SVR) [15]. However, for simplicity and low complexity, we here  

take Weight K-Nearest Neighbors (WKNN) algorithm for the matching process in the proposed 

positioning system. 

Specifically, in the online phase, a group of RSS readings is sampled by a terminal, and then it is 

matched with the most likely location by traversing all RPs of the radio map. For measuring the 

similarity between TP and each RP, WKNN algorithm calculates the distances between the TP and 

each RP by: 

௜ܦ ൌ ቌ෍ฮ߶௧௘௦௧,௝ െ ߶௜,௝ฮ
௣

ெ

௝ୀଵ

ቍ

ଵ
௣

, ݅ ൌ 1,2, … , ܰ, ݆ ൌ 1,2, …  (4) ܯ,

where test,j is the received RSS value from AP j of TP, Di is the Manhattan distance and Euclidean 

distance when p=1 and 2, respectively. The first K RPs with the shortest distance are chosen to 

estimate the location of TP. Then the weight for each RP based on distance is defined as: 

ω఍ ൌ
ߪ

఍ܦ ൅ ߤ
, s. t.෍ω఍

௄

఍ୀଵ

ൌ 1, ߞ ൌ 1,2, … , (5) ܭ

where is the normalized parameter of the weight, μ is a minimal value set to prevent denominator 

becomes zero. Finally the output coordinates of the TP can be given by: 

௫ܲ௬
௧௘௦௧ ൌ෍߱఍ ௫ܲ௬

఍

௄

఍ୀଵ

, ߞ ൌ 1,2, … , (6) ܭ

It is obvious that the dimensionality of a radio map depends on both the number of RPs and 

quantity of deployed APs. Therefore, in the case of positioning a quite large area with many RPs needs 

to be set and numerous APs are required for dense coverage, so the size of radio map will be expanded 

considerably and the computational burden will be increased sharply. Besides, in case of some APs are 

broken down, the fingerprinting system may be severely damaged or even malfunction due to the 

missed dimension. 
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3. New Indoor Positioning System and the Proposed Methods Analysis 

The process used by some positioning systems is designed to transmit the RSS to a central server 

first for subsequent computing and then download coordinates from the server [16]. Different from 

that, the proposed system is designed to be able to run independently on a mobile terminal without a 

requirement of being in connection with any AP. But in this case, the trained radio maps and models 

need to be stored on the mobile terminal. For the purpose of reducing the fingerprint dataset thereby 

facilitating the mobile terminal resource consumption and improving robustness, the proposed 

positioning system is designed with two phases, which are the offline and online phase, respectively, 

and the corresponding flow chart is presented in Figure 2. 

Figure 2. Flow chart of the proposed indoor positioning system. 

 

In the offline phase, RSS values are collected evenly on a grid with their coordinates as the radio 

map of the positioning area. After that the radio map is split into several sub-radio maps based on  

the SDC method. Then those sub-radio maps are trained by GA-SVM for building the classifiers. 

Thereafter the Kernel PCA algorithm is applied in each sub-radio map to extract the fingerprinting 

database into feature space and reduce the dimension of the radio maps. The low dimensional  

sub-radio maps for each cluster and corresponding trained transfer matrixes derived from the last step 

would be saved together with the GA-SVM classifiers and transferred to the mobile terminal for online 

real-time localization. 

In the online phase, for real-time positioning, RSS values are measured by the mobile terminal user 

first. GA-SVM classifiers then will be used for locating the RSS value in the sub-region, which is also 

known as coarse positioning. Then, the transfer matrix of the sub-region is deployed to transfer the 

original received RSS values into corresponding low dimensionality in order to match with the low 

dimensional radio map of the sub-region. Afterwards, the WKNN algorithm is implemented as the 

precise location estimation method to match the RSS values with the low dimensional sub-radio map. 

Finally the positioning system outputs the estimated location coordinates. 

Moreover, it is worth noting that the computational complexity, positioning error rate and the 

resource limitations of mobile phones are all comprehensively considered in our proposed system. 

Therefore most of the computational consumption is handled in the offline phase by a powerful 

computer processor (i.e., clustering sub-radio maps, training SVM classifiers and generating transfer 

matrixes), thereby relieving the computational burden introduced by the proposed algorithms in the 

online stage. Furthermore, the proposed new indoor positioning system is designed to be well modularized 
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for conveniently adding other functionality modules. For instance, we could independently deploy the 

SDC with a OG-SVM coarse positioning module or Kernel PCA feature extraction module as two 

positioning systems, which are shown in Figure 3. 

Figure 3. Flow charts of the indoor positioning system with a single module. 

 

3.1. Spatial Division Clustering Method 

As presented before, the outliers problem severely influences the coarse positioning accuracy and 

the integrity of sub-regions. Generally, the outliers only account for a small part of the radio map, but 

for a large scale radio map, getting rid of all the outliers may not be a reasonable way to proceed. Also, 

simply changing the class of those outliers to the nearest one may introduce unexpected errors, 

because, in terms of traditional cluster methods such as K-Means, the cluster centers would be changed 

accordingly as well. 

The proposed SDC algorithm solves the problem by extracting the problem as a clustering process 

with distance constraints of physical location coordinates. The spatial division algorithm starts with 

defining the within-class scatter as: 
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where ܵ௪
௖ stands for the within-class scatter of the cluster ܿ, and ܿ ൑  where G is the total number of ܩ

possible clusters. ܷ,ܷ ൑ ܰ  is the total number of RPs that belongs to the cluster  ܿ . ߶௜
௖  are those 

vectors (RSS values ) of the RPs within the cluster ܿ, and ߶ത௖ is the mean value of the counterpart, 

which can be given by: 
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1
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After that the between-class scatter is defined as: 
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where ܵ஻
௖  stands for the Between-class scatter of the cluster ܿ, and  ߶ത௝ is the mean value of the RPs 

within the cluster j. Actually, ܵ௪
௖ is the covariance matrix of the zero mean vectors assigned to the 

cluster c while the ܵ஻
௖ is the covariance matrix of the cluster means, and the purpose of the proposed 
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clustering algorithm is to optimize the radio between the within-class scatter ܵ௪ and the between-class 

scatter ܵ஻, which is denoted as Q, hence the objective function can be expressed as: 

argmin ෍ܳ௖

ீ

௖ୀଵ

ൌ argmin෍
ܵ௪

௖

ܵ஻
௖

ீ

௖ୀଵ

 (10)

The definitions of the within-class scatter and the between-class scatter are primarily derived from 

the Fisher Criterion which is used in LDA. The proposed clustering algorithm for indoor positioning 

employs the minimum radio between ܵ௪ and ܵ஻ as the criterion mainly because of the fact that the RPs 

nearby each other would share the same spatial structure, which means that RPs within same class are 

supposed to be nearby each other and a within-class scatter should be as small as possible, while on the 

contrary RPs in different classes are supposed to be far away from each other and the between-class 

scatters should be as large as possible. 

Therefore maximizing the similarity meanwhile minimizing the difference may effectively cluster 

the RPs. Different from the traditional clustering methods, taking ܵ௪  ܵ஻⁄  as the measurement not only 

considers the distance between the independent RPs and updating the coefficient or cluster center,  

but also takes the similarity between classes into account. Instead of maximizing the value of the radio 

Q with classic convex optimization methods, the proposed algorithm previously assigns each two 

continuous RPs as a minimum class. It takes Q as the property of each class and runs clustering 

procedures in four steps as follows. 

Step 1: Clustering centers determination 

The radio Q of each class can be computed by: 
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(11)

where G here equals to ܰ 2⁄  (in case of N is not divisible by 2, G equals to ሺܰ െ 1ሻ 2⁄  and the last  

3 RPs assigned to a class). Then calculating the similarity of each pair of Q, hence the similarity 

between one class and all others is referred to as: 

1

, 1, 2, , ,
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

      (12)

The Q of class ܿ  corresponding to the  ݉ܽݔ  ܵொ
௖  is chosen as the first cluster center which is 

denoted as ݎݐܥଵ. Then we compare all the other Q with the ݎݐܥଵ and find the one with the lowest 

similarity (i.e., to find  ݉ܽݔԡܳ௖ െ ,ଵԡݎݐܥ ܿ ൌ 1,2, … ,  ଶ. For theݎݐܥ  as the second cluster center (ܩ

third center and so on, the similarity is calculated in advance, namely: 

EjGiCtrQS j
i

ij
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 (13)

where E is the number of centers have been set. Therefore the next most suitable center with the  

least similarity can be set by min  ܵொ
௜,௝, hence the ሺܧ ൅ 1ሻth center is the Q of class i subjected to 

൛݉݅݊൫ܵொݔܽ݉
௜,ଵ, ܵொ

௜,ଶ, … , ܵொ
௜,ா൯ൟ. ݅ ൌ 1,2, … ,  .ܩ
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Step 2: Combination of clusters 

Based on the centers derived from the previous step, the following process is to calculate similarity 

between each class and its centers, where Equation (13) is deployed here. Then the class is assigned  

to the most similar center in turn. Meanwhile, Q of the center will be updated by Equation (11)  

after each class is allocated in. If the total number of centers E is assigned, then E clusters will be 

formed consequently. 

Step 3: Splitting of the clusters 

In order to meet the condition that no outliers in positioning area after the radio map is clustered, 

RPs within a class is supposed to be subjected to the criterion: 

     22
jiji yyxx

 (14)

where ݔ௜ݕ௜, ௝ݕ௝ݔ  are any two sets of coordinates of RPs within a same class, and ߝ is the distance 

threshold based on the density of sampled RPs and location environment. Different from the 

combination process based on the signal features, the splitting process depends on the coordinates 

information (which is another part of radio map), namely: 

 N
xyxyxy P,,P,PLoc 21


 (15)

Denoting the coordinates information of cluster C as: 

 U
xyxyxy

C2C1CC P,,P,PLoc 
 (16)

where P௫௬
஼ stands for the coordinates information of the RPs belonging to the cluster C, and U here is 

the total number of RPs belong to the cluster C. Then the procedures of cluster splitting are addressed 

as follows: 

a. Initialization: Initialize the P௫௬
஼ଵ as an element of new cluster C1, where C1 is considered as the 

first sub cluster of C. 

b. IF P௫௬
஼ଶ satisfy the criterion Equation (14) with P௫௬

஼ଵ, THEN assign it to C1. 

ELSE set the P௫௬
஼ଶ as an element belongs to a new cluster C2. 

End IF 

c. FOR P௫௬
஼௜, ݅ ൌ 3,4, … , ܷ 

IF P௫௬
஼௜ meets the criterion Equation (14) with P௫௬

஼௝, ݆ ൌ 1,2, … , ݅ െ 2, THEN assign P௫௬
஼௜ to 

the cluster which P௫௬
஼௝ belongs to. 

ElSE IF P௫௬
஼௜  meets criterion Equation (14) with more than one P௫௬

஼௝ , THEN combine  

the clusters corresponding to those P௫௬
஼௝  with the P௫௬

஼௜  as a new cluster. P௫௬
஼௜  works as  

bridge connection. 
ELSE set a new cluster with P௫௬

஼௜ as an element. 

END FOR 

For special requirements of the indivisible sub region, we could assign the RPs within that region as 

an independent cluster without participating in the combination and splitting steps. 
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Step 4: Outputs of clustering 

Looping step1 to Step 3 until the number of output clusters comes to convergence, and then the 

clusters are formed. For some of the small clusters, they could be simply assigned into the nearest 

clusters. Finally the whole SDC method process is completed. 

3.2. Classification by OG-SVM 

3.2.1. Introduction of SVM in the Positioning System 

OG-SVM is deployed to distinguish the TP to which cluster it belongs to, and locate it in the  

sub-region for the coarse location process. An introduction to SVM deployment in positioning is 

briefly given first. Denoting (i,Li), i = 1,2,…,N, ߶௜ א Թெ (according to the experimental positioning 

environment, N here is the total number of RPs of two clusters) as the set of training samples, where i 

is the vector of RP as mentioned before, and Li א ሼ1,െ1ሽ labels which class the vector belongs to. The 

purpose of SVM is to obtain the weight vector  ܟ and the scale b, such that: 

  1 bL ii w  (17)

where ܟۃ ൉ ௜ۄ  stands for the inner product of the vectors  ܟ  and i. ܟۃ ൉ ௜ۄ ൅ ܾ  is the so called  

hyper-plane that enables the training samples with the same label separate with others. In the case of 

nonlinear condition, a slack variable is introduced and denoted as ζi ≥ 0, i = 1,2,…,N, so Equation (17) 

is converted to: 

  iii bL   1w
 (18)

The objective function is:  









 



N

i
iC

12

1
min ww

 
(19)

where C is the key penalty parameter and element ∑ ௜ߦ
ே
௜ୀଵ  defines maximum number of training errors. 

Also the inner product ۃ௜ ൉ ௝ۄ is replaced by kernel function, which is expressed as ܭ ௜ۃ ൉ ௝ۄ. The 

kernel methods are able to map the nonlinear dataset into a high (even infinite) dimensional feature 

space from which the dataset could be linearly separable. Radial basis function (RBF) is one of the 

kernel methods and is adopted in the proposed positioning system, which is defined as: 

   2
exp, ijji gK  

 (20)

where g is another key parameter geometrically defining the width of the RBF. This might lead to the 

over-fitting problem if g is relatively small, while on the contrary, the flexibility and robustness might 

be weakened. 

Lastly, the decision function or so called SVM classifier of the indoor positioning system can be 

obtained as: 

   bsignxf   w
 (21)
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Where w* is the solution of the optimal separating hyper-plane (OSH) that enables the samples with 

different labels to be most distinguishable,  is the vector of a test point with unknown class label, and 

the output of the function will decide which class it belongs to (positive result decides one class and 

negative output decides another one). 

3.2.2. Genetic Algorithm for SVM Optimization 

Although SVM theoretically is a quadratic optimization problem and the optimal solution is given, 

the parameters C in Equation (19) and g in Equation (20) still need to be chosen properly due to 

reasons mentioned before. Therefore GA is integrated into the SVM training process to adjust the two 

parameters adaptively.  

The Genetic Algorithm is derived from the bionic process in which a population evolves by 

competing with others and preserving its superiority in Nature. Each individual in a population would 

be eliminated for its weak adaptability or kept due to its strong performance. Consequently the new 

generation becomes more robust and adaptive. 

GA is able to search a large solution space efficiently by adopting probabilistic transition procedure 

mechanics. It mainly includes three steps, which are selection, crossover and mutation. To be specific, 

selection is aimed at electing the optimal individuals for reproducing the next generation; Crossover is 

applied for exchanging information, thereby preserving and collecting the genetic advantage; Mutation 

is designed to introduce the variation for making new individuals. In terms of GA-SVM, the fitness 

function is defined as: 

 
(22)

where ߢ  is the classification accuracy rate. The searching space of the parameter g is defined by 

minቛ௝ െ ௜ቛ
ଶ
ൈ 10ିଷ, maxቛ௝ െ ௜ቛ

ଶ
ൈ 10ଷ  while the counterpart of C is (0, 10). Generally, after 

randomly initializing the population, the fitness of each individual is calculated by Equation (22). Then 

a probability will be assigned to each individual according to the fitness (higher fitness value with 

higher probability). After that, new individuals are generated by the crossover and mutation operations. 

The whole process would be repeated until the new individual meets the preset values. Finally with  

N-fold cross validation (i.e., training data is separated into N parts, one of which is deployed for 

validating accuracy while the remaining parts are the training sets, and the procedure is taken by N 

turns), the optimal combination of the parameters (C*, g*) can be obtained. 

3.2.3. OG-SVM Method 

Due to the fact that generally more than two clusters (or sub-regions) exist within an indoor 

positioning area, One versus One GA-SVM is adopted as the classification algorithm to deal with the 

multiple classes. Instead of deploying a multiple-class SVM, the OG-SVM method sets a group of 

binary-class SVM classifiers optimized by GA to perform the classification. To be specific, supposing 

that there are G clusters in the positioning region, there are ܩሺܩ െ 1ሻ/2 SVM classifiers that can be 

obtained after training each two clusters as a group with GA-SVM. In term of classifying a test point, 

it will be put into all SVM classifiers in turn. If it goes to the cluster c, c = 1,2,…,G, then cluster c gets 

  1
min ,

1
F C g





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1 vote. Consequently the test point belongs to the cluster with most votes and thus the corresponding 

sub-region can be located. 

3.3. Dimensionality Reduction by Kernel PCA 

Kernel PCA is used in the proposed indoor positioning system to extract the features of the radio 

map and reduce its dimensionality. An analysis on Kernel PCA is presented below. 
As denoted before in the proposed positioning system the RSS values of a cluster is given by  

Φc = {1,2,…,U}, where U is the total number of vectors belong to the cluster c. In order to meet the 

constraint of PCA, vectors of Φc has to be decentralized previously. Defining the nonlinear mapping 

∂:Թெ ՜ ࣠ where Թெ is the Euclidian space of samples and ࣠ is the feature space where inner product 

can be computed by a kernel function. Then the covariance matrix of the samples in feature space can 

be given by: 

   T
1

1
i

U

i
iU

C   
  

(23)

Denoting λ and v as the eigenvalue and the eigenvector of ܥҧ respectively, then the eigen-decomposition 

can be given as: 

VV C  (24)

Based on the fact that the eigenvector v can be expressed in linear spanning space of  
߲൫௜൯, ݅ ൌ 1,2, …ܷ, namely: 

 



U

i
ii

1

V
 

(25)

where ηi is the weight coefficient for each  ߲൫௜൯, we could substitute Equation (25) into Equation (24) 

and by pre-multiplying  ߲ ቀ෠௝ቁ
்
, ݆ ൌ 1,2,…ܷ, then the equation can be given as: 
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(26)

and the equation can be further expressed as λ(Kη)j = 
ଵ

௎
(K2η)j, where ۹ ൌ ,൫߶௜ܭൣ ߶௝൯൧௎ൈ௎ ,  

η = ሺߟଵ, ,ଶߟ … ,  :௡ሻ T. Consequently it can be converted toߟ

Kηη ̂  (27)

Where λU is substituted by ߣመ. After eigen decomposition, denoting λ1, λ2,…,λU  are the eigenvalues and 

η1, η2,…, ηU are the eigenvectors of K respectively, therefore the i-th eigenvalue and eigenvector can 

be given by: 

,
ˆ

U

i

i

   j

U

j

i
ji  

1

V  (28)
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where ߟ௝
௜  is the j-th element of ηi, i = 1,2,...,U. Hence, the projection of a test sample  on j-th axis of 

the feature space is represented by: 

       i
U

i

j
i

j
i

U

i

j
i

j
j K  ,

1

T

1

T 


 V
 

(29)

where Δi is a normalized factor computed by equation (V)T·V = 1. By adopting the maximum first d 

eigenvalues ߣመ መߣ,1 መߣ,…,2 d and their corresponding d eigenvectors η1,η2,...,ηd where ݀ ا ܷ , the high 

dimensional dataset can be accordingly reduced to d dimension. 

After defining the radio map of cluster c as ઴௖
௢ ൌ ൫۾௫௬௜ , ௜

௢൯, ݅  ൌ  1,2,… , ܷ, ߶௜ א Թெ and its low 

dimensional counterpart as ઴௖
௢ ൌ ൫۾௫௬௜ , ௜

௢൯, ݅ ൌ  1,2, … , ܷ, ௜
௢ א Թௗ, the transfer matrix of the region 

can be expressed as: 

  djK i
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i

j
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
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
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
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M
 

(30)

To conclude, in the offline phase of the positioning system, a low dimensional radio map for each 

cluster is generated by deploying the Kernel PCA algorithm with RBF aligned with the kernel function 

used in SVM. In the online phase, after a test point is located to a cluster by OG-SVM, the 

corresponding low dimensional radio map will be chosen accordingly. Therefore, a downsized test 

point after being decentralized can be computed by Equation (30) (i.e., running Equation (29) d times 
for d axis or d dimensions) and expressed as ௜

௢ ൌ [௜,ଵ, ௜,ଶ,… , ௜,ௗ,]. Moreover, the transfer matrix 

could be integrated or further compressed by mathematic methods [36,37]. The WKNN algorithm will 
finally be deployed as the measuring method for matching the ௜

௢ throughout the radio map ઴௖
௢ thereby 

obtaining the estimated coordinates. 

4. Implementation and Performance Analysis 

In general, the proposed indoor positioning system runs as following procedures: for the offline 

phase, firstly, we start by constructing the radio map. Secondly, we cluster it into several sub-radio 

maps by the SDC method. The third step is to train the sub-radio maps with OG-SVM, generating 

classifiers. Then, the following step is to reduce the dimension of each sub-radio map by Kernel PCA 

and generate the corresponding transform matrixes. For the online phase, firstly, we classify the test 

point to the sub-region by the OG-SVM method with those classifiers. After that the dimensions of the 

test point are reduced by the matrix generated offline. The final steps are matching the low 

dimensional test points with the low dimensional sub-radio maps by WKNN, and outputting the 

estimated coordinates. In this Section the experimental evaluations of the proposed method for indoor 

positioning system are elaborated in detail. 

4.1. Indoor Positioning Environment 

Figure 4 shows a floor plan of a research center. The fingerprint dataset was carefully measured in 

this typical office environment. The proposed indoor positioning system is built here with 27 Access 

Points (marked as AP1-AP27) located evenly in each room. Then we individually sample and record 

the RSS readings 100 times at each reference point (with a sampling rate of 2 times per second) with a 
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mobile terminal. The area of interest colored with blue is the corridor part (49.4 m × 14.1 m), where 

828 locations are equally distributed as the experimental RPs. 

Figure 4. Floor plan for the indoor positioning experiment and reference point setting. 

 

4.2. Cluster Performance of SDC Method 

In this subsection, the proposed SDC method is evaluated well in terms of both radio map division 

and positioning accuracy for indoor localization. K-Means and Fuzzy C-Means (FCM) algorithms are 

also implemented for verifying the analysis and testing the performance by comparison. 

As shown in Figures 5 and 6, the Radio Map is clustered into six (marked as F1-F6 and K1-K6 

respectively) sub-areas by deploying FCM and K-Means algorithm, where different colors represent 

different sub-regions and the black points stand for the outliers. In addition, the white blanks among 

the RPs are obstacles in the building where RSS cannot be tested. 

Figure 5. Positioning area clustered by the FCM algorithm. 

 

Figure 6. Positioning area clustered by the K-Means algorithm. 
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This demonstrates that, for clustering using FCM, the radio map is divided almost symmetrically 

but the outliers are distributed mainly in the middle three clusters and account for nearly 1% (7/828) of 

RPs, while for K-Means clustering, the divided sub-regions are slightly unbalanced in term of RP 

quantity, but few outliers exist in those regions. It is worth noting that the RPs are sampled on the grid 

evenly, and the experimental environment is relatively stable (few people walk around and all 

windows are closed). In this case, the outliers are supposed to be far less than in a practical 

environment. The proposed SDC method divides the interesting area as illustrated in Figure 7, where 

different regions are marked as S1-S6 with different colors. Compared with the other two algorithms, 

the SDC method is able to cluster the RPs more symmetrically without any outliers problems. 

Figure 7. Positioning area clustered by the SDC algorithm. 

 

Actually, dividing the radio map symmetrically may not prove that the clustering method is 

effective and suitable. Nevertheless, the structure of the experimental region is nearly balanced, 

building materials are almost uniform and all APs are arranged evenly. Therefore, in this case, 

clustering the RPs in a symmetric way is supposed to be more reasonable. Besides, the boundaries of 

each cluster are located near the corner or doors where RSS values normally fluctuate and are more 

distinguishable. It also demonstrates the reliability and effectiveness of the proposed SDC method 

based on the divided structure. 

In order to verify the performance of different clusters in term of positioning accuracy, the WKNN 

method is directly deployed to all divided sub-regions for fingerprint localization based on the three 

clustering cases without considering coarse positioning (i.e., assuming that which sub-region a TP 

belongs to is known). The fine positioning accuracy is shown in Figure 8, where the FCM method 

achieves a Confidence Probability (CP) over 80% with a positioning error (PE) within 2 m. For the  

K-Means algorithm, the CP is 2% better than the counterpart of the FCM. It is notable that the 

positioning accuracies are calculated for each region independently, and then added together with 

weights of RPs numbers of a cluster. The performance of the proposed SDC method is the same as that 

of the K-Means as PE equals 2 m too, but it is slightly superior to other algorithms when the PE is  

1 or 1.5 m. Therefore, the proposed SDC method is better than other clustering methods for indoor 

localization due to its better positioning performance. 
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Figure 8. Positioning accuracies based on three different clustering methods. 

 

4.3. Coarse Positioning Performance of the OG-SVM Method 

Coarse positioning is responsible for allocating received RSS readings to the sub-regions where 

they belongs. The integrated information of the coarse position for the three clustering methods is 

demonstrated in Figure 9, where the black, red and blue bars represent the number of RPs in the 

regions clustered by K means, SDC and FCM, respectively, while the black, red and blue lines stand 

for the coarse positioning accuracies in the regions clustered by K Means, OG-SVM and FCM, 

respectively. For example, the first region (labeled as S1 before) clustered by SDC consists of 152 RPs, 

and OG-SVM coarse positioning accuracy of the S4 region is 88.9%. It clearly shows the distribution 

of RPs in all six regions and the classification accuracy for each cluster and each clustering method. 

Figure 9. The different clustering results and the coarse positioning performances for the 

three methods. 

 

To be more specific, the coarse positioning accuracy based on the FCM algorithm for each cluster is 

listed in Table 1, while the coarse positioning accuracy of the K-Means algorithm is shown in Table 2. 

The overall classification (i.e., coarse positioning) accuracy of FCM is about 10% higher than the  
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K-Means (90.58% and 81.04%, respectively). Therefore, even if few outliers appear in the K-Means 

clusters which performs better than FCM, in terms of the coarse positioning accuracy it actually shows 

a reverse outcome. 

Table 1. Coarse Positioning performance of FCM method. 

Clusters Number of RPs Number of TPs Classified Correctly 

C1 146 145 
C2 152 149 
C3 132 121 
C4 118 78 
C5 100 81 
C6 180 176 

Classification accuracy: 90.58% 

Table 2. Coarse Positioning performance of K-Means method. 

Clusters Number of RPs Number of TPs Classified Correctly 

K1 216 216 
K2 113 64 
K3 155 130 
K4 99 39 
K5 145 133 
K6 100 89 

Classification accuracy: 81.04% 

Besides, both tables show that the coarse positioning accuracy of the first and the last clusters are 

much higher than the clusters in the middle. According to the experimental results and previous 

analysis of the RSS database, it can be deduced that classification criterion based on the cluster centers, 

which is used by FCM and K-Means, runs well in the areas with distinguishable RSS values, but may not 

classify the TPs efficiently in the regions where RSS change stably or fluctuate within a narrow range. 

Compared with the two traditional clustering algorithms, K-Mean and FCM, the coarse positioning 

based on SDC with OG-SVM performs better, as shown in Table 3. Specifically, the classification 

accuracy of the proposed method is 93.84%, which is 12.80% greater than the result of K-Means and 

3.26% higher than the FCM, while no outliers occur. 

Table 3. Coarse Positioning performance of SDC method. 

Clusters Number of RPs Number of TPs Classified Correctly 

S1 152 143 
S2 136 132 
S3 98 77 
S4 108 96 
S5 130 125 
S6 204 204 

Classification accuracy: 93.84% 
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Taking the coarse positioning procedure into the fingerprinting system (which actually is the single 

module system shown on the left of Figure 3), the advantage of the proposed SDC and OG-SVM 

method would be more apparent. As illustrated in Figure 10, the final estimated positioning accuracy 

of the proposed method is 77.4% under the condition that the positioning error is within 2 m. 

Compared with the 73.3% positioning accuracy of FCM and the 66.9% of K-Means under the same 

conditions, the proposed coarse positioning method is more effective and precise, thereby ensuring the 

following fine positioning procedure. Besides, according to extended experimental results, the coarse 

location accuracy of the proposed method can be further improved with more training samples in the 

OG-SVM, also clustering the radio map into a smaller number of regions by the proposed method may 

yield a better performance. 

Figure 10. Positioning accuracies based on Coarse Positioning procedure. 

 

4.4. Low Dimensional Performance of Kernel PCA Method 

Theoretically, feature extraction algorithms are able to improve the positioning accuracy by 

learning the inner structure of the dataset and eliminating part of the noises normally with a high 

dimension [14,15], but in this paper we focus on the capacities of different algorithms in very low 

dimensionality scenarios. As a direct evaluation of the low dimensionality performance of different 

feature extraction algorithms, Figure 11 demonstrates that the relationship between Confidence 

Probability (CP) and the Positioning Error (PE) distance. Specifically, the green dashed line represents 

the performance of the WKNN fingerprinting method with full dimensionality (27 dimensions for  

27 APs), the red line stands for the performance of WKNN fingerprinting after dimensional reduction 

by the KPCA method. Similarly, the green and black lines represent the counterparte of the LDE and 

LDA methods, respectively. 

As typical linear and manifold feature extraction methods, both LDE and LDA show significant 

properties in many pattern recognition aspects, however, in terms of extracting eigen-features within 

an indoor radio map, the Kernel PCA method reveals a better fitness, because of the fact that in the 

cases of D = 2, 4, 6, 8 where D stands for the dimensionality, the Kernel PCA method shows more 

outstanding performance according to the experimental result shown in Figure 11. 
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Figure 11. Positioning accuracies comparison between methods in the cases of D = 2,  

D = 4, D = 6 and D = 8, respectively. 

As shown in Figure 11, the WKNN method achieves a CP of about 80% under the condition that PE 

is within 2 m. Compared with other algorithms, along with the increasing dimensionality, CP of the 

Kernel PCA approaches the WKNN faster. Therefore the proposed method outperforms other 

algorithms in a low dimensionality situation. For example, the CPs of LDA and LDE are 39.2% and 

50.1%, respectively, under the condition that D = 4 and PE is within 2 m. the performance of the 

proposed Kernel PCA reaches up to 72.5%, which is less than the dimension-unreduced WKNN 

method, but far more competitive than others. Moreover, in this case the size of the radio map for 

online matching process is reduced 85% (calculated by (1 − 4/27)). 

In addition, the number of nearest neighbors K also affects the WKNN positioning accuracy in this 

situation. We set the optimized value of K as 4 based on experiments. It is also worth noting that the 

WKNN method is supposed to perform best in an ideal experimental environment (small noise 

intensity) because compared with other dimension-reduced methods, it works on full dimensionality 

with all the radio map information. Dimensionality reduction actually implies that part of the 

information has to be lost though a comprehensive preprocessing has been done before in the feature 

extraction procedure. 
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4.5. Asymmetric Matching of the Kernel PCA Method 

It is unavoidable that outages might occur occasionally, in which case the WKNN fingerprinting 

method is drastically affected and even fails to work. Taking the WKNN method as experimental 

counterpart, we assign the missed dimension as a group of minimum value. Then, according to  

Figures 12 and 13 below, under the condition that PE is within 2 m, the CPs of the WKNN method are 

58.3%, 56.8% and 64.4% when the 6th AP, 12th AP and both 4th 24th APs is/are powered off, 

respectively. Generally, CP declines sharply about 20% compared with the case that all APs run well. 

Figure 12. Positioning accuracies comparison when D = 6 and D = 8 respectively in the 

case of 6th AP outage. 

  

Figure 13. Positioning accuracies comparison in the cases of 12th AP outage and both 4th, 

24th APs outage respectively. 

  

However, the proposed Kernel PCA method is far less affected by AP outages than the WKNN and 

other methods. For instance, with the situation that D = 6 and PE is within 2 m, it only declines 4% of 

CP when the 6th AP is powered off. Also, it keeps CP over 60% in all three cases (6th AP outage,  

12th AP outage, both 4th and 24th APs outage). Specifically, under the condition that D = 6 and PE is 

within 2 m, the CPs of Kernel PCA method are 66.3%, 71.5% and 62.5%, respectively, which ranks 

top in the first two cases and slightly less than the WKNN method in the last case. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error (m)

Pr
ob

ab
ili

ty

 

 

WKNN

D=6 KPCA

D=6 LDE

D=6 LDA

6th AP Outage

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error (m)

Pr
ob

ab
ili

ty

 

 

WKNN

D=8 KPCA

D=8 LDE

D=8 LDA

6th AP Outage

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error (m)

Pr
ob

ab
ili

ty

 

 

WKNN

D=6 KPCA

D=6 LDE

D=6 LDA

12th AP Outage

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error (m)

Pr
ob

ab
ili

ty

 

 

WKNN

D=6 KPCA

D=6 LDE

D=6 LDA

4th &24th APs Outage



Sensors 2014, 14 1871 

 

 

Besides, Figure 12 also illustrates that, in the case of one missing dimension (6th AP outage), the 

CPs are less affected by different target dimensionality (D = 6 or D = 8) in terms of the three feature 

extraction methods. This could mainly be attributed to the fact the lost information of one dimension is 

more significant, whereas the number of reduced dimensions plays a less important role. Moreover, in 

terms of the LDE and LDA methods, both of their CPs are less than either of the WKNN or Kernel 

PCA method, but it is worth noting that normally LDE performs better than LDA without AP outages, 

however the LDA surpasses the LDE in the case of 6th AP outage, and comes close to it when the 4th 

and 24th APs are powered off. Aside from instability and weak robustness of the two methods in low 

dimension situations, it is mainly due to the fact that different APs contribute to different information 

entropy in an indoor positioning environment, which was well analyzed in our previous work [20]. 

For testing the robustness and noise tolerance of the proposed positioning system, we set it in an 

unstable and more noisy circumstance, where we take S1 region shown in Figure 7 as the interesting 

area with 152 reference points and leave doors and windows open, and in addition people walk around 

and RSS values are sampled only 1 time as a test point. The performance of proposed algorithm is 

better than the full dimensional WKNN fingerprinting method and other positioning systems as 

illustrated in Figure 14. Besides, it is worth noting that the situation of APs outage as shown in  

Figures 12 and 13 could be considered as an extreme noisy environment case, which may firmly prove 

the effectiveness of the proposed method as well. 

Figure 14. Positioning accuracies comparison in the noisy circumstance in S1 region. 

 

Moreover, environment dynamics including number of AP deployments and different sampling 

intervals are also taken into consideration. On the basis of ensuring all regions are being covered, 

performances of the proposed positioning system with different types of AP deployment are briefly 

evaluated as shown in Figure 15. 

By and large, the confidence probability increases with the total number of deployed APs in terms 

of the WKNN method and the proposed system based on the KPCA method. However, the LDE shows 

outstanding positioning accuracy in some circumstances, e.g., fifteen APs are deployed in the building, 

though the instability of the method is obvious as well. Besides the reason that target dimension is 

unadjusted, the phenomenon can be partly attributed to the different discrimination of APs for different 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning Error (m)

C
on

fi
de

nc
e 

Pr
ob

ab
ili

ty

 

 

WKNN
D=8 LDE
D=8 LDA
D=8 KPCA



Sensors 2014, 14 1872 

 

 

sample points, which is the reason that some researchers are concerned about AP selection schemes  

(to select most discriminating APs for positioning based on certain criterions, such as max mean, 

information entropy and joint entropy). 

Figure 15. Performances of different positioning systems with different AP deployment 

under the condition that the positioning error distance is within 2 m and D = 8. 

 

In terms of the relationship between sampling density and the system performance, according to the 

experimental results shown in Figure 16, the confidence probability goes down slowly as the sampling 

interval increases (density decrease). Compared with the influence of APs deployment, the positioning 

accuracy is less affected by the sampling interval. 

Figure 16. Performances of different positioning systems with different sampling density 

under the condition that the positioning error distance is within 2 meters. 

 

In sum, the Kernel PCA algorithm deployed in the proposed indoor positioning system is more 

capable of extracting the features of RSS with low dimensionality in an office environment, its 

robustness and generalization ability may provide higher positioning accuracy when dealing with 

asymmetric matching problem. The reduced dimension of the radio map may relieve the burden of the 

final online matching process, but it is undeniable that the computational complexity of the proposed 

method has increased in the previous feature extraction step. Specifically, the online computational 

complexity of the OG-SVM is O(Cnsv), where C is the number of classes and nsv is the number of 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Deployed APs

C
on

fi
de

nc
e 

Pr
ob

ab
ili

ty

 

 

KPCA    Accuracy within 2m
WKNN  Accuracy within 2m
LDE      Accuracy within 2m

0.5 1 1.5 2

0.2

0.25

0.3

0.35

0.4

Sampling Interval (m)

C
om

fi
de

nc
e 

P
ro

ba
bi

li
ty

 

 

WKNN Accuracy within 1m
KPCA  Accuracy within 1m
LDE     Accuracy within 1m



Sensors 2014, 14 1873 

 

 

support vectors. The counterpart of KPCA is O(dMN), where d is the number of the (reduced) low 

dimensionality, M is the number of features (APs) and N is the number of reference points. Both of the 

LDE and LDA are O(dM). Besides, the computational complexity of WKNN method is O(MN). 

Therefore the computational complexity of the proposed positioning system is O(dMN) plus O(dN) and 

O(Cnsv), so the other two systems share the same computational complexity, which is O(dM) plus 

O(dN). Compared with the two linear feature extraction methods (LDE and LDA), the proposed 

system underperforms others in terms of computational complexity due to the deployed kernel 

techniques. However, considering the contribution of dealing with unexpected AP outages and outstanding 

system robustness and stability, implementing the Kernel-PCA algorithm in the positioning system is 

still practical and effective. 

5. Conclusion 

In this paper, firstly we propose the SDC method for clustering the radio map based on both RSS in 

signal space and coordinates in physical space. Compared with traditional clustering algorithms, the 

proposed method is more flexible and without outlier problems and constraints. Experimental results 

show that the fingerprinting method based on the sub-radio maps clustered by SDC outperforms  

its counterparts based on the FCM and K-Means clustering algorithms. After being integrated with  

OG-SVM, the coarse positioning accuracy of the proposed method is also better than that of the  

other algorithms. 

Then we deploy the Kernel PCA method for reducing the dimensionality of the radio map, thereby 

enhancing the robustness and solving the asymmetric matching problem when AP outages occur. It 

turns out that the proposed Kernel PCA performs better than the LDA and manifold LDE methods in 

terms of extracting the features of an indoor radio map. 

In addition, the structure of the proposed indoor positioning system is well modularized and mainly 

designed for mobile computing. It consists of the offline phase and online phase, respectively. The  

off-line phase is in charge of the main data computing process with a powerful PC server. All the 

computed data and trained functions derived from the offline stage would be stored and applied in the 

online module for the real time positioning procedure. We have validated the feasibility and 

effectiveness of the proposed indoor positioning system, and implemented it based on the Android OS 

as shown in Figure 17. Besides APs selection, inertial navigation and other approaches for indoor 

positioning are also under further development. The section of performance analysis might not be 

described in great detail, but a lot of experimental and implemental works on localization have been 

done in this study. Our future works will also keenly focus on WLAN- and WSN-based indoor 

positioning systems, information from sensors such as gyroscopes, accelerometers, thermometers  

and barometers available within mobile terminals will be further researched and deployed in our 

positioning system. 
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Figure 17. The proposed indoor positioning system running on Google Nexus 4. 
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