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Abstract: An adaptive impedance control algorithm for tendon-driven dexterous hands is 

presented. The main idea of this algorithm is to compensate the output of the classical 

impedance control by an offset that is a proportion-integration-differentiation (PID) 

expression of force error. The adaptive impedance control can adjust the impedance 

parameters indirectly when the environment position and stiffness are uncertain. In 

addition, the position controller and inverse kinematics solver are specially designed for 

the tendon-driven hand. The performance of the proposed control algorithm is validated by 

using MATLAB and ADAMS software for joint simulation. ADAMS is a great software 

for virtual prototype analysis. A tendon-driven hand model is built and a control module is 

generated in ADAMS. Then the control system is built in MATLAB using the control 

module. The joint simulation results demonstrate fast response and robustness of the 

algorithm when the environment is not exactly known, so the algorithm is suitable for the 

control of tendon-driven dexterous hands. 

Keywords: adaptive impedance control; tendon-driven dexterous hand; joint simulation 

 

1. Introduction 

The control system of dexterous robot hands can control the robot fingers to reach the desired 

position, contact with the environment and track a specified desired force. Thereinto, stable force 

tracking is an important research topic, which can be solved by compliance control. Impedance force 
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control is very practical in the field of robotic compliance control and the main concept is based on the 

impedance equation which is the relationship between force and position/velocity error [1]. 

Many researchers have improved the performance of the impedance control and expanded the 

application range since it was primarily proposed by Hogan [2–5]. However, the classical impedance 

control is unsatisfying when the environment parameters are not exactly known. To overcome this 

problem, Lasky et al. [6] proposed a two-loop control system that the inner-loop is a classical 

impedance controller and the outer-loop is a trajectory modified for force-tracking. This algorithm uses 

the outer-loop to automatically modify the reference position by a simple force-feedback scheme when 

the environment is not exactly known. Jung et al. [1] proposed an adaptive impedance control. The 

main idea of this algorithm is to minimize the force error directly by using a simple adaptive gain 

when the environment is changed. Seraji [7] proposed an adaptive admittance control based on the 

concept of mechanical admittance, which relates the contact force to the resulting velocity 

perturbation. Two adaptive PID and PI force compensators are designed in Seraji’s paper. 

In this paper an adaptive impedance control is proposed that uses an adaptive PID force 

compensator as an offset to adjust the output of the impedance controller when the environment 

position or stiffness is changed. It is a way that adjusts the impedance parameters indirectly, which is 

different from Jung’s. In order to validate the algorithm, a joint simulation with MATLAB and 

ADAMS is presented. Firstly, the model of the tendon-driven dexterous hand is built in ADAMS 

referring to the robot hand of Robonaut-2, which is the first humanoid robot in space and has the 

typical tendon-driven dexterous hands [8]. A three-DOF finger of the robot hand is chosen as the 

research object. Then a control module of the robot finger is generated in ADAMS. Finally, the control 

system is built in MATLAB using the control module. The results of the joint simulation demonstrate 

that the proposed algorithm is robust. In addition, the position controller and inverse kinematics solver 

are designed for the tendon-driven finger. 

Figure 1. The model of the dexterous hand in ADAMS. 
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2. Features of the Robot Hand and Dynamic Model 

The model of the tendon-driven dexterous hand in ADAMS consists of four three-DOF fingers, a 

four-DOF thumb and a palm, as shown in Figure 1. For the three-DOF fingers, the fingertip’s motion 

depends on the coupled link, as shown in Figure 1. The actuation system of the robot hand is remotely 

packaged in the forearm, which makes the size of the robot hand as large as a man’s hand. Each unit of 

the actuation system consists of a brushless motor and a lead screw. The lead screw can convert rotary 

motion to linear motion. Each of the tendons connects the finger joint and the lead screw. The motors 

can drive the lead screws to control the finger motion through the tendons. Since the tendons can only 

transmit forces in tension, the number of tendons should be more than the DOFs. It turns out that only 

one tendon more than the number of DOF is needed [9], so a three-DOF finger needs four tendons. 

The dynamic model of the three-DOF finger can be expressed as follows: 

f ext( ) ( , ) ( ) - +  M q q C q q q g q τ τ τ  (1) 

where M(q), C(q) and g(q) represent the inertia matrix, centrifugal term, and gravity term respectively; 

q represents the joint angle vector; τ, τf and τext represent the joint torque vector, friction torque vector 

and external torque vector respectively. τext is given by [10]: 

T

ext tτ J F  (2) 

where J represents the Jacobian matrix, Ft = [Ftx Fty Ftz]
T
 represents the fingertip force. τm is defined 

as the motor torque vector. Then there should be a certain relationship between τ and τm, which is 

shown as follow. 

Firstly, for the three-DOF finger, the transformation from four tensions to three joint torques is 

given by [9,10]: 

11 12 13 14

21 22 23 24

33 34

, 

0 0

r r r r

r r r r

r r

  
 

   
 
  

 Rf R  (3) 

where f is a column vector consisting of four tendon tensions; R represents the mapping from tensions 

(f) to joint torques (τ) and rij is the radius of the circular surface where the j-tendon envelops itself on 

the i-joint (The tendons are numbered from t1 to t4, as shown in Figure 2), i = 1 ~ 3, j = 1 ~ 4. For the 

three-DOF finger, r11 = r12 = r13 = r14 = 5.5 mm, r21 = r22 = r23 = r24 = 5.2 mm, r33 = r34 = 5.0 mm. 

Secondly, the relationship between the tendon tensions and motor torques is expressed as: 

m

2

d


f = τ  (4) 

where d represents the screw pitch of the lead screws. 

According to Equations (3) and (4), the Equation (1) can be rewritten as: 

m f ext

2
( ) ( , ) ( ) -

d


   M q q C q q q g q Rτ τ τ  (5) 

The above indicates that the tendons have an impact on the control of the tendon-driven robot hand. 

In order to simulate the performance of the tendons in ADAMS, the tendon model is built by adding 
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bushing force between small stiffness cylinders. The force analysis between a two small cylinders is 

shown in Figure 2. 

Figure 2. Force analysis between a two small cylinders of the tendon model. 
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The dynamic equation of the tendon model can be expressed as [11]: 

0

0

      
         

       

FF R V
K C

TT ω
 (6) 

where F and T represent the force and torque between the cylinders respectively; K and C represent the 

stiffness diagonal matrix and damping diagonal matrix respectively; R, θ, V and ω represent the 

relative displacement, angle, velocity and angular velocity between the two cylinders respectively;  

F0 and T0 are respectively the initial values of the force and torque. In order to get a reasonable tendon 

model, K and C should be set to appropriate values. In the control of the robot hand, the tendons that 

are not flexible enough will affect the finger motion but the very flexible tendons will diminish the 

control accuracy. Considering that, the satisfying tendon models are built by adjusting the parameters 

of K and C in ADAMS [12], as shown in Figure 3. 

Figure 3. The tendon model in the three-DOF finger. 
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3. The Control System of Tendon-Driven Dexterous Finger 

3.1. The Components of the Control System 

The control system is built for the three-DOF finger. It consists of a control module, adaptive 

impedance controller, trajectory generator, inverse kinematics solver, position controller and other 

modules as shown in Figure 4. 

Figure 4. The components of the control system. 
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Figure 5. The control module of the three-DOF finger in MATLAB. 
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The trajectory generator provides the desired angular displacement θd, which need to be converted 

to the desired displacement Xd in Cartesian-space by forward kinematics because the output of the 

adaptive impedance controller is in Cartesian-space. The adaptive impedance controller consists of an 

impedance control part and an adaptive adjustment part. The input of the impedance control part is the 

difference between the desired contact force Fd and the actual contact force Fe and the output is a 

displacement offset Xf. And ΔX is defined as the output of the adaptive adjustment part.  

Xr = Xd + Xf + ΔX represents the displacement that has been adjusted in Cartesian-space. Xr can be 

converted to the angular displacement θr in joint-space by inverse kinematics. Δθ represents the 

difference between θr and the actual angular displacement θe. The position controller can convert Δθ to 

the tendon displacement offset Δl. The control module is generated in ADAMS. It is the interface 

between ADAMS and MATLAB and contacts the robot model in ADAMS with the control system in 

MATLAB. So it can be seen as a MATLAB module that has the same effect with the model in 

ADAMS. The control module of the three-DOF finger is shown in Figure 5 (by the way, θd, θe, θr, Δθ 

and Δl are four-dimensional column matrices; Xd, Xf, Xr, ΔX, Fd and Fe are three-dimensional  

column matrices.) 

In Figure 5, Δl1, Δl2, Δl3 and Δl4 are the input variables of the control module and represent the 

displacement offset of the four tendons; θ1, θ2, θ3, θ4, Fx, Fy and Fz are the output variables, where θ1, 

θ2, θ3 and θ4 represent the angular displacements of joints and Fx, Fy and Fz represent the components 

of the contact force. 

3.2. Adaptive Impedance Controller 

The impedance control is based on the concept that it is neither position nor force that should be 

controlled, but rather the dynamic relation between the two [13]. The relation is an impedance 

equation, which is given by: 

d r d d r d d r d( ) ( ) ( )     M X X B X X K X X E  (7) 

where E = Fd − Fe; Md, Bd and Kd are respectively 3 × 3 constant-positive-diagonal matrices of the 

desired inertial, damping and stiffness. The impedance parameters Md, Bd and Kd should keep the 

system in the critical damping state or overdamping state at least. And increasing Md will result in 

large impact to environment. A large Bd can increase the response time and have no vibration. For 

position accurate tracking, a large Kd should be selected [14]. According to these, the suitable 

impedance parameters for specified control system can be got. 

For a classical impedance control, ΔX = 0 and Xf = Xr − Xd. So, Equation (7) can be expressed in 

the Laplace domain as follows: 

f 2

d d d

( )
( )

s
s

s s


 

E
X

M B K
 (8) 

According to Equation (8), the structure diagram of the impedance control compensator is shown in 

Figure 6. However, the impedance control compensator is only suitable for a specific environment and 

the impedance parameters can’t be changed in the whole control process. If the environmental 

parameters changed or weren’t exact, the performance of the controller would be unsatisfactory. Hence 

app:ds:input%20variable
app:ds:input%20variable


Sensors 2014, 14 1729 

 

 

an adaptive adjustment is needed to change the impedance parameters indirectly according to the 

environment changes. 

Figure 6. The structure diagram of the impedance control compensator. 
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The key of the adaptive adjustment is to get an adaptive offset ΔX to compensate the output of the 

impedance control. Let Δxk, fdk, fek, xek and xdk respectively represent the k-th element of ΔX, Fd, Fe, Xe, 

Xd (k = 1–3, Xe represents the actual position of the fingertip in Cartesian-space). Then Δxk can be 

expressed as follows [7]: 

( ) ( ) ( ) ( ) ( )k p dx g t k t e t k t e t     (9) 

where g(t) is an auxiliary signal which contains the integral term; kp(t) and kd(t) are respectively the 

adaptive proportional and derivative force feedback gain; e(t) = fdk − fek. Equation (9) is a PID 

expression of force error in nature, so this adaptive adjustment compensator can respond quickly to the 

change of the force error, that is to say, to the change of the environment. It is the reason why this 

expression is used as the compensator of impedance control. g(t), kp(t) and kd(t) are given by: 

( ) ( ) ( )p dq t e t e t    

0 1 2
0

( ) ( ) ( )
t

g t g q t dt q t     

0 1 2
0

( ) ( ) ( ) ( ) ( )
t

p pk t k q t e t dt q t e t     

0 1 2
0

( ) ( ) ( ) ( ) ( )
t

d dk t k q t e t dt q t e t     

(10) 

where ωp and ωd are the positive position and velocity weighting factors respectively; α1, β1 and γ1 are 

the positive integral adaptation gains respectively; α2, β2 and γ2 are the positive or zero proportional 

adaptation gains. Let α2, β2 and γ2 equal to zero to simplify the expressions. And kd0, kp0 and g0 are the 

initial values and equal to zero. Since the actual contact force is measured by the force sensor, there is 

often a noisy signal. Therefore the derivative of the force error is unsatisfying. To solve this problem, 

( )e t is replaced by ( )ek x t  in Equations (9) and (10), where x(t) = xdk − xek and ke is a positive 

constant. In addition, σ-modification terms are used to modify the adaptive compensator to ensure the 

robustness of the control system [7,15]. Finally the modified expressions of the compensator are given by: 
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( ) ( ) ( ) ( )k p vx g t k t e t k x t     

( ) ( ) ( )p vq t e t x t    

0 1 1
0 0

( ) ( ) ( )
t t

g t g q t dt g t dt      

0 1 2
0 0

( ) ( ) ( ) ( )
t t

p p pk t k q t e t dt k t dt      

0 1 3
0 0

( ) ( ) ( ) ( )
t t

v v vk t k q t x t dt k t dt      

(11) 

where λ1 = γ1ke, ωv = ωdke; σ1, σ2 and σ3 are small positive constants. 

3.3. Inverse Kinematics Solver 

The Cartesian and joint coordinate systems are built, as show in Figure 7, where O0 is the Cartesian 

coordinate system; O1, O2, O3 and O4 are respectively the coordinate system of each joint. 

Figure 7. The coordinate systems buit in the finger model. 
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The Denavit-Hartenberg(D-H) parameters of the robot finger are listed in Table 1. 

Table 1. The D-H parameters of the robot finger. 

i ηi−1/(°) Li−1/mm di/mm θi/rad 

1 90.0 21 0 θ1 

2 −90.0 9 0 θ2 

3 0 45 0 θ3 

4 0 30 0 θ4 

where ηi−1 represents the rotation angle round Yi−1 axis; Li−1 is defined as the distance from Zi−1 to Zi; 

di is defined as the distance from Yi-1 to Yi. 

According to Figure 7 and Table 1, the kinematics equation of the three-DOF finger is expressed as: 

1 2 3 4 5A A A A A A  (12) 

where: 
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1 1 0
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4

5
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where x, y and z are the coordinate values of the fingertip in Cartesian coordinate system respectively. 

The following equations can be obtained from Equation (12): 

1 1 0 1sin cos sin 0y z L       (13) 

2 2 2 2

1 2 2 3 1 3 2 2 3 3 4( ) 2 ( sin ( )cos )w w L L w w L L L          (14) 

2 2 2 2 2

2 1 1 2 1 2 1 2 2 2 4 3 4 3 4( ) 2(( )cos sin ) 2 cosq L q q L q L L L L L L            (15) 

1 4 2 4 3 4cos sin sin 0m m L      (16) 

where: 

1q x , 2 1 1 1 1cos sin cosq y z L       

1 1 2 2 2 1 2cos sin sinw q q L       

2 1 2 2 2 1 2sin cos cosw q q L        

1 1 3 2 3 2 3cos sin sinm w w L       

2 1 3 2 3 2 3sin cos cosm w w L        

In addition, there is relationship between θ3 and θ4 due to the coupled structure, as shown in Figure 8. 

Figure 8. The coupled structure of the three-DOF finger. 
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The relational expressions between θ3 and θ4 are given by: 

2 2

p 3 p 3 32 cosL r L r L     

2 2 2

t g

t

cos( )
2

r L L
ar

r L


 
  

2 2 2

3 p

3

cos( )
2

L L r
ar

LL
 

 
   

4       

(17) 

where ρ, rp, Lg and rt are constant, ρ = 1.52 rad, rp = 4 mm, Lg = 27 mm, rt = 6.2 mm. 

It is easy to get the solution of θ1 from Equation (13). However, Equations (14–17) are nonlinear 

and the computation cost is high, which is a limitation of inverse kinematics [16]. Therefore it is not 

easy to get the solutions of θ2, θ3 and θ4. Since the control system is built in MATLAB, the fsovle 

function in MATLAB can be used to solve the nonlinear equations. The fsovle function solves the 

equations by the iterative method and hence the initial values of the iteration have a great influence on 

the simulation speed. Since the angular displacements are continuous, the current solutions can be used 

as the initial values of the next iteration. 

3.4. The Position Controller 

In order to control the position of the robot finger accurately, it is necessary to get the relationship 

between the joint angular displacements and the tendon displacements. Due to the particular design 

and neglecting the tendon elasticity, the relationship can be expressed as [9,10]: 

T  l R   (18) 

where R is defined in Equation (3); Δl and Δθ are defined in Section 3.1. 

4. Simulation and Analysis 

4.1. Simulation Setups 

The control system is built in MATLAB using the control module, as shown in Figure 9. The 

sample time of the simulation is 0.001 s. The simulation is mainly to validate the performance of the 

adaptive impedance control in uncertain environment and the reasonableness of the robot finger model. 

The impedance parameters and the adaptive parameters are given by: 

d

200 0 0

0 200 0 kg

0 0 200

 
 


 
  

M ,    d

100 0 0

0 100 0 N / m

0 0 100

 
 


 
  

K ,   d

3000 0 0

0 3000 0 N / (m / s)

0 0 3000

 
 


 
  

B  

σ2 = 0.001, σ1 = σ3 = 0.09, α1 = β1 = λ1 = 0.1, ωp = 0.27, ωv = 0.25. 
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Figure 9. The Control system built in MATLAB. 

 

4.2. The Position Control 

In the free space, the finger motion is controlled by the position controller. The simulation time is 

set to 0.5 s. The final-desired angular displacements of the joints are [0, −0.17, −1.25]
T
 rad. Then the 

position controller controls the finger motion according to the desired trajectories. The results are 

shown in Figures 10–12. 

From Figures 10–12, we may conclude that the actual angular displacements lag behind the desired 

one at the beginning. The reason is that the finger is driven by tendons which have elasticity and it 

takes some time for the tendons to go from slack to tight in the simulation. So, on the whole, the 

results are satisfactory. 

Figure 10. The desired and actual angular displacements of the 1-joint. 
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Figure 11. The desired and actual angular displacements of the 2-joint. 
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Figure 12. The desired and actual angular displacements of the 3-joint. 
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4.3. Uncertainties in Environment Stiffness 

Firstly, the robot finger is required to track on the environment which is a cylinder and has the 

stiffness of 10,000 N/m. The desired contact force is [−3, 6, 0]
T
 N. The fingertip makes contact with 

the environment at about 0.48 s, as shown in Figure 13. The force tracking results are shown in  

Figure 14. 

Figure 13. The finger makes contact with the environment in ADAMS. 
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Figure 14. The force tracking results when environment stiffness is 10,000 N/m. 
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In the next simulation, the environment stiffness is modified as 80,000 N/m and other conditions 

remain unchanged. After rerunning, the force tracking results are shown in Figure 15. 

Figure 15. The force tracking results when environment stiffness is 80,000 N/m. 
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Figures 14 and 15 show that the average error of the force tracking is both less than 0.5 N in 

different stiffness although the actual force is oscillating due to the tendons, so on the whole, the force 

tracking results are satisfying when the environment stiffness is different, that is to say, without 

knowing the environment stiffness information, the force control algorithm performs well. 

4.4. Uncertainties in Environment Position 

In order to validate the robustness without knowing the environment position, let the environment 

position suddenly change at 0.65 s in the simulation. The change takes 0.005 s and the direction is 

shown in Figure 16. The displacement of the environment is 0.5 mm. The environment stiffness is 

10,000 N/m and other conditions remain unchanged. The force tracking results are shown in Figure 17. 
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Figure 16. The direction of the row is the direction of the change. 

 

Figure 17. The force tracking results when environment position changed at 0.65 s. 
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Comparing the force plot of Figure 17 with that of Figure 14 shows that the contact force changes at 

0.65 s in Figure 17 due to the sudden change of environment position and the force overshoots are 

about 70% on x-direction and 65% on y-direction and the settling time is about 0.02 s. These 

demonstrate that without knowing the environment position information, the force control algorithm  

is robust. 

Another simulation is carried out for the moving environment, as shown in Figure 18. The velocity 

of the environment movement is 0.025 m/s. There is dynamic friction between fingertip and 

environment due to the relative sliding. Hence, the desired force is set to [−3, 6, −1.88]
T
 N, where  

the force on z-direction is decided by friction coefficient. And the environment stiffness is also  

10,000 N/m. The force tracking results are shown in Figure 19. Figure 19 shows that the environment 

movement has little impact on the force tracking results. This simulation demonstrates that the 

algorithm can perform diverse tasks. 
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Figure 18. The finger makes contact with moving environment. 

 

Figure 19. The force tracking results while the environment is moving. 
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5. Conclusions 

In the joint simulation with ADAMS and MATLAB, the results of the position tracking and force 

tracking are satisfactory on the whole. In particular, the control system can keep the contact force near 

to expected value when the position or stiffness of the environment is uncertain, so the proposed 

adaptive impedance control algorithm is robust and the control system is suitable for a tendon-driven 

hand and the dexterous hand model built in ADAMS is reasonable. However, the tendon friction and 

joint friction are not considered in the robot hand model built in ADAMS. The friction can affect the 

control performance in practice, so the following research should build the friction model for the 

tendons and joints. 
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