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Abstract: The fabrication and characterization of a radio frequency (RF) micromachined 

switch with annealing were presented. The structure of the RF switch consists of a 

membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is 

manufactured using the complementary metal oxide semiconductor (CMOS) process. The 

switch requires a post-process to release the membrane and springs. The post-process uses 

a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended 

structures of the switch. In order to improve the residual stress of the switch, an annealing 

process is applied to the switch, and the membrane obtains an excellent flatness. The finite 

element method (FEM) software CoventorWare is utilized to simulate the stress and 

displacement of the RF switch. Experimental results show that the RF switch has an 

insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation 

voltage of the switch is 14 V. 
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1. Introduction  

Radio frequency switches are applied in wireless communication systems [1]. Compared with  

solid-state RF switches, the benefits of micromachined RF switches are low insertion loss, excellent 

isolation, and high linearity at microwave frequencies [2,3]. Recently, several micromachined switches 

have been fabricated using microelectromechanical system (MEMS) technology. For instance, 
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Czaplewski et al. [4] presented a RF MEMS switch design that improved lifetimes in cycled switches. 

The implementation of RuO2-Au contact metallurgy into the switch improved the lifetime of the 

switch, which was cycled to 10 billion cycles with a resistance of less than 4 Ω. The insertion loss  

and isolation of the RF switch were 0.4 dB and 28.0 dB at 10 GHz, respectively. Zhu et al. [5] 

employed the MetalMUMPs process to fabricate a lateral dc-contact RF MEMS switch for 

ultrabroadband applications. A bidirectional cascaded electrothermal actuator was designed to drive 

the switch. The RF switch had an insertion loss of 0.5 dB at 40 GHz and an isolation of 22.5 dB at  

40 GHz. Park et al. [6] used the sacrificial bulk micromachining process to manufacture a RF MEMS 

switch for 24 GHz radar applications. The switch was actuated by comb-drive actuators, and it was a 

capacitive shunt type. The actuation voltage of the RF switch was 25 V. The RF switch had an 

insertion loss of 0.29 dB at 24 GHz and an isolation of 30.1 dB at 24 GHz. Kügeler et al. [7] proposed 

a silicon based micromachined switch with piezo-electrically actuated elements. The switch consisted 

of two piezoelectric activated beams with a coplanar waveguide (CPW). The clamped-clamped beams 

were established by a thin PZT film between thin Pt electrodes on top of a SiO2 layer, and the CPW 

was made by the electroplated copper. The switch had an actuation voltage of 10 V and an isolation  

of 20 dB at 15 GHz. Chang et al. [8] utilized surface micromachining process to fabricate a 

micromachined microwave switch on a GaAs substrate. The process used the lift-off technique to 

pattern the CPW lines of Cr/Au, followed by defining the actuator structure layers of Al/Cr deposited 

by electron beam evaporation. The insertion loss of the switch was 0.2 dB at 10 GHz, and its isolation 

was 17 dB at 10 GHz. The actuation voltage of the switch was 26 V. Zheng et al. [9] developed an RF 

MEMS membrane switch on a GaAs substrate using surface micromachining process. The RF switch 

contained CPW lines of AuGeNi/Au, a dielectric layer of SiN and a membrane of Au. The switch had 

an isolation of 42 dB at 24.5 GHz and an insertion loss of 0.25 dB at 25.6 GHz. The actuation voltage 

of the switch was 17 V. In this work, we uses the commercial CMOS process to manufacture a 

micromechanical RF switch, and its fabrication is easier than Czaplewski et al. [5], Park et al. [6], 

Kügeler et al. [7], Chang et al. [8], and Zheng et al. [9].  

The commercial CMOS process has been employed to manufacture various microdevices [10–14]. 

Microdevices fabricated by this process usually need a post-process step to release suspended  

structures [15–17] and to add functional materials [18,19]. The CMOS microdevices have a potential 

for integration with circuitry on-a-chip [20]. In this work, we develop a micromechanical RF switch 

using the commercial CMOS process. The structure of the RF switch contains a membrane, eight 

springs, and CPW lines. The stress and displacement of the RF switch are simulated using the FEM 

software CoventorWare. The electrical properties of the switch are simulated using the Agilent 

Advanced Design System (ADS). A wet etching post-process step is used to etch the sacrificial  

silicon dioxide layer, and to release the suspended structures of the switch. The membrane of the 

switch occur a deformation due to the residual stress. To improve the residual stress of the switch, an 

annealing process is applied to the switch. The switch is a capacitive shunt type actuated by the 

electrostatic force. 
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2. Structure of the RF Switch 

Figure 1 shows the schematic structure of the micromachined RF switch. The RF switch is 

composed of a membrane, eight springs, CPW transmission lines, and anchors. The membrane is 

supported by eight springs. The dimensions of the membrane are shown in Figure 2a. Figure 2b shows 

the dimensions of a spring, and all springs have the same dimensions. The thickness of springs and 

membrane is 1 μm. The CPW transmission lines contained ground (G), signal (S) and ground (G) lines 

locate under the membrane. The width and thickness of the ground lines are 110 μm and 0.53 μm, 

respectively. The width and thickness of the signal line are 35 μm and 0.53 μm, respectively. The 

space between the signal and ground lines is 3.1 μm. The RF switch is a capacitive shunt type actuated 

by electrostatic force. When there is no applied voltage, the membrane stays in the up position. The 

switch is at the “on” state, and the RF signal propagates in the signal line of CPW. When applying an 

actuation voltage to the switch, the membrane actuated by the electrostatic force stays in the down 

position. The switch is at the “off” state, and the RF signal propagated in the signal line is coupled to 

the ground lines. 

Figure 1. Structure of RF micromachined switch. 

 

Figure 2. Dimensions of (a) membrane; and (b) springs. 

 

The insertion loss and isolation of the RF switch depend on the flatness of membrane. To obtain 

excellent membrane flatness, this study adopts an annealing process to improve the residual stress of 

the membrane. The insertion loss and isolation of this work exceed that of the previous works [10,21]. 

In addition, the membrane has many etching holes as shown in Figure 2a, in order to reduce the 
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etching time during the post-process. The actuation voltage of the RF switch depends on the stiffness 

of springs. To reduce the stiffness of springs and obtain a lower actuation voltage, the springs are 

designed as S-shape. 

The FEM software CoventorWare was used to simulate the stress and displacement of the RF 

switch. According to the structure as shown in Figure 1 and the dimensions as shown in Figure 2, the 

model of the RF switch is established. The triangular element is adopted to mesh the model of the 

switch. The material of the switch is aluminum. The material properties of aluminum are mass density, 

2,679 kg/m
3
; Young‟s modulus, 70 GPa; Poisson‟s ratio, 0.3 [22]. Figure 3 shows the relation between 

the membrane displacement and actuation voltage for the RF switch. The space between the membrane 

and the CPW lines is 4 μm. In this simulation, the actuation voltage changes from 0 to 14 V. The 

membrane displacement is 1.3 μm when applying an actuation voltage of 13 V and the displacement is 

4 μm when applying an actuation voltage of 14 V. Therefore, the pull-in of the RF switch is about 14 V. 

Figure 4 displays the stress distribution of the switch with an actuation voltage of 14 V. 

Figure 3. Relation between actuation voltage and membrane displacement. 

 

Figure 4. Stress distribution of the RF switch. 

 

The simulation results reveal that the maximum stress of the RF switch is 38 MPa that locates at the 

anchored end of the springs. The maximum stress of the switch is below the yield strength of 

aluminum (124 MPa). Thereby, the deformation of the switch operates in the elastic range. 
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The characteristic impedance of the CPW lines was evaluated using the Agilent CAD tool. Figure 5 

demonstrates the evaluated results of the characteristic impedance for the CPW lines. In this 

evaluation, the width and thickness of the signal line are 35 μm and 0.53 μm, respectively. The space 

between the signal and ground lines is 3.1 μm. The results reveal that the characteristic impedance of 

the CPW is 50.2 Ω, and the value matches the impedance of 50 Ωin the network analyzer. This 

represents that the incident electromagnetic wave on the switch has a small return loss. 

Figure 5. Simulation of characteristic impedance for the CPW. 

 

The electrical properties of the RF switch are simulated using the Ansoft Q3D extractor and the 

Agilent ADS. The electrical parameters of the switch in accordance with the dimensions as shown in 

Figure 2 are extracted using the Ansoft Q3D extractor [21]. The extracted results show that the 

capacitance between the membrane and the signal line is 0.04 pF; the inductance of the membrane and 

springs is 0.23 nH; the resistance of the membrane and springs is 1.8 Ω; the insulated capacitance 

under the CPW lines is 48 fP; the resistance of silicon substrate is 250 Ω; the capacitance of silicon 

substrate 30 fF. The electrical parameters are inputted into the Agilent ADS, and the insertion loss and 

the isolation of the RF switch can be obtained. Figure 6 displays the simulation results of insertion loss 

for the switch in the “on” state. The results reveal that the RF switch has an insertion loss of 1.1 dB at  

35 GHz. Figure 7 presents the simulation results of isolation for the switch in the “off” state. The 

results show that the isolation of the RF switch is 23 dB at 35 GHz. 

Figure 6. Insertion loss of the RF switch. 
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Figure 7. Isolation of the RF switch. 

 

3. Fabrication of RF Switch 

The 0.35 μm CMOS process of the Taiwan Semiconductor Manufacturing Company (TSMC, 

Taipei, Taiwan) was employed to fabricate the RF switch. The process flow of the RF switch was 

illustrated in Figure 8. Figure 8a shows the cross-sectional view of the RF switch after the CMOS process. 

The material of springs and membrane was aluminum. The anchors were the laminated structures of 

aluminum and stack-via layers. The material of via layers was tungsten. A sacrificial silicon dioxide 

layer was located under the membrane and springs. The switch needed a post-process to etch the 

sacrificial silicon dioxide layer and to release the membrane and springs [23–25]. Figure 8b shows the 

cross-sectional view of the RF switch after the post-process. A wet etching of BOE (buffer oxide etch) 

solution was used to remove the sacrificial silicon dioxide layer and to obtain the suspended membrane 

and springs. The etching rate is about 960 Å/min. Figure 9 demonstrates the optical image of the RF 

switch after the post-process. 

Figure 8. Fabrication flow of the RF switch: (a) after the CMOS process; and (b) after the 

post-process. 
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Figure 9. Optical image of the RF switch after the post-process. 

 

4. Results  

The membrane of the RF switch produced a deformation because of residual stress. To characterize 

the deformation of the membrane, a white light interferometer was used to measure the profile of the 

RF switch. Figure 10a displays the image of top view for the RF switch.  

Figure 10b presents the profile of the RF switch along AA cross-section (Figure 10a). The 

measurement results showed that the middle position of the membrane had a deformation of 4.5 μm. 

The residual stress influences the performance of the RF switch. To improve the residual stress, an 

annealing process was applied to the RF switch. The switch was set into a furnace with annealing at 

300 C for 30 min. The Figure 11a depicts the image of top view for the RF switch with the annealing. 

Figure 11b shows the profile of the RF switch with the annealing along AA cross-section (Figure 11a). 

The results showed that the membrane changed to flatness. Figure 12 depicts a SEM image of the 

membrane of the RF switch with the annealing, and the membrane has an excellent flatness. 

Figure 10. RF switch without annealing: (a) top view image; (b) profile along AA cross-section. 
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Figure 11. RF switch with annealing: (a) top view image; (b) profile along AA cross-section. 

 

Figure 12. SEM image of the membrane with annealing. 

 

The performances of the RF switch were measured using an Agilent 8510C network analyzer and a 

Cascade probe station. The S-parameters of the switch were obtained by a de-embedded procedure to 

remove the undesired pad parasitic [26]. The RF switch was in the unactuated state or “on” state when 

there was no applied voltage. The Agilent 8510C network analyzer measured the S-parameters of the 

switch in the range 0–50 GHz. Figure 6 shows the measurement results of insertion loss for the RF 

switch in the unactuated state. The results revealed that the switch had an insertion loss of 0.9 dB at  

35 GHz. A comparison to the simulation results as shown in Figure 6, the measurement results of 

insertion loss are in good agreement with the simulation results of insertion loss. When applying an 

actuation voltage of 14 V, the RF switch was in the actuated state or “off” state. Figure 7 presents the 

measurement results of isolation for the RF switch in the actuated state. The results showed that the RF 

switch had an isolation of 21 dB at 39 GHz. As shown in Figure 7, the simulation results of isolation is 

23 dB at 35 GHz. The difference between the simulation and measurement results of isolation was  

2 dB at resonance frequency. 
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The RF switch without annealing was also tested. As shown in Figure 6, the results revealed that the 

insertion loss of the RF switch without annealing was 1.2 dB at 35 GHz. Figure 7 presents the isolation 

of the RF switch without annealing. The results revealed that the isolation of the RF switch without 

annealing was 1.4 dB at 39 GHz. As shown in Figures 6 and 7, the difference between the insertion 

loss and isolation for the RF switch without annealing is very small, almost the same. This represents 

that the RF switch without annealing has not switching effect. The edges of the membrane contact with 

the ground lines of CPW because of residual stress, so that the RF switch was no switching effect. 

However, the residual stress of the membrane was significant improvement with annealing. As shown 

in Figures 6 and 7, the RF switch with annealing reveals an effective switching. 

Zhu et al. [5] proposed a RF MEMS switch with an electrothermal actuator. The switch was 

actuated by the electrothermal force, and it had an insertion loss of 0.5 dB at 40 GHz and an isolation 

of 22.5 dB at 40 GHz. A comparison to Zhu et al. [5], the RF switch of this work is actuated by the 

electrostatic force, and the response time of electrostatic switch is usually faster than that of 

electrothermal switch. Park et al. [6] presented a RF MEMS switch that was a capacitive shunt type. 

The switch was actuated by the comb-drive actuators, and its actuation voltage was 25 V. Comparing 

to Park et al. [6], the actuation voltage of this work is lower than that of Park et al. [6]. The reason is 

that the springs of the RF switch in this work is designed as S-shape, resulting in reducing the stiffness 

of springs and the actuation voltage. Kügeler et al. [7] developed a RF micromachined switch with 

piezoelectrically actuated elements. The isolation of the RF switch was 20 dB at 15 GHz, and its 

actuation voltage was 10 V. The piezoelectric material is not compatible with the commercial CMOS 

process, so it is difficult to integrate with circuitry on-a-chip. The isolation of this work exceeds that of 

Kügeler et al. [7] because the membrane of this work is increased, leading to enhance the capacitance 

variation of the switch during switching. Chang et al. [8] manufactured a micromachined switch on 

GaAs substrate. The actuation voltage of the switch was 26 V. The insertion loss and isolation of the 

switch was 0.2 dB at 10 GHz and 17 dB at 10 GHz, respectively. The micromachined switch revealed 

a large residual stress. In comparison to Chang et al. [8], the actuation voltage and isolation of this work 

exceed that of Chang et al. [8]. The reason is that the RF switch with annealing has a flat structure. The 

silicon substrate of this work is also lower cost than the GaAs substrate of Chang et al. [8]. 

The insertion loss and isolation are two important performances of RF switches. Several methods 

can enhance the performances of insertion loss and isolation, such as adopting GaAs substrate or high 

resistivity substrate to reduce substrate loss [9]; reducing the resistance of membrane and springs; 

increasing the capacitance between membrane and signal line of CPW; enhancing the inductance effect 

of membrane and springs [21]. 

5. Conclusions 

A RF micromachined switch has been fabricated using the commercial CMOS process. The switch 

needed only one wet etching post-process step to release the suspended membrane and springs. The 

advantages of the post-process were easy execution and low cost. In addition, the post-process was 

compatible with the commercial CMOS process, so the RF switch has the potential for mass-production. 

In order to reduce the influence of residual stress for the RF switch, an annealing process was adopted. 

The membrane of the switch obtained an excellent flatness after the annealing at 300 C for 30 min. 
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The simulation results showed that the pull-in voltage of the switch was about 14 V. Experiments 

showed that the actuation voltage of the switch was 14 V that the value was in good agreement with 

the simulation value. The measurement results showed that the RF switch had an insertion loss of  

0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz.  
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