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Abstract: Due to its efficiency, reliability and better channel and resource utilization,
cooperative transmission technologies have been attractive options in underwater as well as
terrestrial sensor networks. Their performance can be further improved if merged with
forward error correction (FEC) techniques. In this paper, we propose and analyze a
retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ)
for underwater acoustic sensor networks, which exploits both the reliability of cooperative
ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ)
using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo
simulations are performed to investigate the performance of the protocol, in terms of both
throughput and energy efficiency. The results clearly reveal the enhancement in
performance achieved by the C-HARQ protocol, which outperforms both CARQ and
conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations,
optimum values of various network parameters are estimated so as to extract the best
performance out of the C-HARQ protocol.

Keywords: automatic repeat request; cooperative transmission; underwater acoustic sensor
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1. Introduction

Underwater acoustic sensor networks (UASNS) are attracting huge interest due to their wide variety
of applications, such as environmental monitoring, resource investigation, detection of phenomena
related to natural disasters, etc. Naturally, all these mission-critical applications highly require reliable
data transmission techniques.

To design a feasible transmission scheme, it is important to take into account the harsh and limited
conditions of the underwater environment. Radio signals suffer from severe path losses in underwater
scenarios, thus acoustic signals are typically employed. However, underwater acoustic links also suffer
from path losses, time varying multi-path fading, motion-induced Doppler spread and aquatic noise.
As a result, the underwater acoustic link often offers a high bit error rate (BER). To establish reliable
communications under such poor channel conditions, an efficient retransmission scheme is needed. In
general, Automatic Repeat reQuest (ARQ) schemes have been used to achieve high reliability in data
transmission. Especially, in underwater acoustic sensor networks, the S&W ARQ protocol has been
employed as the only way of retransmission due to the half duplexing mode of underwater acoustic
modems [1,2], but high BER of the acoustic channel along with long propagation delays are making it
more challenging to achieve high throughput efficiency with the conventional S&W ARQ. In recent
years, several modifications in S&W ARQ have been used to improve its efficiency. Cooperation-based
ARQ is one of these alternatives which utilizes the communication channels of neighbor nodes to
achieve a form of cooperative diversity that can provide significant performance improvement.
Particularly for UASNs, CARQ has been studied to achieve throughput enhancements [3], among
other benefits [4-7].

For terrestrial wireless sensor networks (WSNSs) too, cooperation-based ARQ strategies have been
studied and proved very efficient [8,9]. As evident from the past literature, ARQ techniques have
always benefitted from the utilization of FEC codes for improving their performance; obviously, the
cooperation-based ARQ schemes are also eligible to employ them. For terrestrial wireless networks,
the expected enhancement in performance when a cooperation-based ARQ is combined with the error
correction technique of IR-HARQ, to form a cooperative hybrid ARQ, has also been verified [10-12].

Naturally, this concept of cooperative hybrid ARQ can be applied to UASNs as well, so as to
extract the best performance, at least from the link layer, under the constraints of the harsh underwater
environment. However, the performance results of cooperative hybrid ARQs obtained for terrestrial
sensor networks cannot be directly applied to underwater sensor networks, because of the significant
distinctions in BER and propagation delay (sound speed = 1,500 m/s, speed of radio signals = 3 <10° m/s).
Especially for underwater environments, the one-by-one transmission of the redundancies of
IR-HARQ might accumulate enough long delays to nullify any performance gains achieved by
error-correction coding. Thus, in order to fully extract the performance gains of C-HARQ), the protocol
needs to be designed and studied exclusively for underwater scenarios. To the best of our knowledge, a
cooperative hybrid ARQ (C-HARQ) protocol for UASNs has not yet been designed and investigated,;
hence this paper presents a C-HARQ protocol which employ RCPC codes to implement IR-HARQ
along with cooperation features.

Moreover, sensor networks have large numbers of nodes located in close proximity with each other,
which makes it important to consider the effect of multiple neighbor nodes on throughput and energy
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efficiency when designing any cooperative protocol for UASNs. However, the previous analysis
considers only single relay assisted cooperation [10-12]. In this paper, C-HARQ has been designed
keeping in mind the presence of multiple sensor nodes in the neighborhood, which could play a
significant role in improving the throughput performance.

Further, the underwater sensor nodes have limited energy sources (batteries) which cannot be easily
replenished; that makes energy consumption a major issue when designing any sensor network
protocol. Even high throughput protocols must be energy efficient in order to extend the network
lifetime for long lasting sensor applications. Thus, energy efficiency has been used as one of the
metrics for performance evaluation, along with throughput efficiency. Additionally, we compare the
energy consumption burden that is carried by the neighbor nodes in providing cooperation for CARQ
and C-HARQ protocols. It reveals that C-HARQ transfers less burden on the neighbor nodes compared
to CARQ, while still fully utilizing them for cooperation.

Some earlier work on combination of ARQ and FEC has been done for underwater scenarios [13,14].
A hop-by-hop and block-by-block technique of transferring encoded packets has been adopted [13],
but lacks the utilization of cooperative transmission. Relay-assisted HARQ has been studied [14],
which primarily focused on the implementation of Luby Transform (LT) codes in IR-HARQ, not on
the energy consumption analysis, or the effect of multiple relays on throughput and energy expenditure.

In this paper, we propose and study the C-HARQ protocol of error control for underwater scenarios
using RCPC codes to maximize throughput and energy efficiency. The main contributions of this paper
can be summarized as follows:

1. Achievement of better throughput performance by C-HARQ, compared to CARQ and S&W
ARQ under similar network conditions.

Optimum data packet size for C-HARQ.

Optimum number of FEC packets for C-HARQ.

Maximum achievable throughput performance of C-HARQ.

Performance comparison in terms of energy consumption.

Performance analysis of C-HARQ against varying BER.

o 0k~ wN

The rest of the paper is organized as follows: Section 2 presents the preliminaries to the C-HARQ
protocol. Section 3 presents C-HARQ protocol design in detail, including the network model and the
packet format. The performance metrics used to compare the various protocols are defined and
expressed in Section 4. Section 5 presents the simulation results and their discussions in detail. Finally,
the concluding remarks are presented in Section 6.

2. Preliminaries to the C-HARQ Protocol

The basic idea behind C-HARQ is to merge cooperative ARQ with a hybrid ARQ technique, so as
to utilize the benefits of both the schemes. While CARQ can provide a form of spatial diversity, hybrid
ARQ introduces error correction capabilities, thus presenting the possibility of achieving both high
throughput and efficient performance. Before going into the details of C-HARQ), a brief discussion of
hybrid ARQ and CARQ is presented in the following subsections.
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2.1. Incremental Redundancy-HARQ and RCPC Codes

For any wireless network, when a basic ARQ scheme is combined with forward error-correcting
coding, the resulting error-control scheme is called Hybrid ARQ (HARQ). In HARQ, the original data
is encoded with a FEC code, and the redundant FEC bits are either immediately transmitted along with
the data or on request from the destination when it detects errors. Based on these two different
techniques, two types of HARQ are defined: Type-1 and Type-II. In Type-1 HARQ, the source always
transmits/retransmits the entire code (consisting of data bits and redundant FEC bits) to the destination,
whereas in Type-Il HARQ (also known as Incremental Redundancy-HARQ), only part of the data is
transmitted at first, and the FEC part (which may be further divided into smaller FEC packets) is sent
later to the destination, when required. The destination then combines the erroneous data packets with
these transmitted redundancies to attempt forward error correction. Generally, Type-1 HARQ suffers
from capacity losses under good channel conditions because of the extra redundancy introduced, which
may be twice the size of data in some FEC codes, whereas, IR-HARQ does not suffer from such a loss,
as it expends channel capacity only when needed; it also performs with good sensitivity under poor
channel conditions because of the coding gain. Thus, in this paper, IR-HARQ is selected as the
HARQ technique, to be combined with CARQ, primarily because of its on-demand method of forward
error correction.

To implement IR-HARQ, the most commonly used error-correcting codes are the rate-compatible
punctured convolution (RCPC) codes [15]. They employ a convolution encoder equipped with
predefined puncturing patterns to generate redundancies of IR-HARQ. At first a suitable convolution
encoder is used to encode d-bit data into m-bit codewords called the Mother code (code rate = d/m).
Then, by using a suitable puncturing pattern, some bits in the Mother code are deleted, to be left with a
punctured codeword of higher code rate. The punctured mother code forms the message for original
transmission and the deleted bits are enclosed into multiple packets to form the FEC packets, which are
sent later. The probability of error correction increases when the erroneous message is decoded along
with the following FEC packets. The detailed description of the packet formation technique, using
convolution coding and puncturing, is presented in Section 3.

2.2. Cooperative ARQ

CARQ is basically a stop-and-wait mode of error control that exploits a form of spatial diversity
provided by the nodes in the neighborhood of the source and destination. This spatial diversity is
achieved by employing the neighbor nodes to work in cooperation with the source node during the
retransmission process. The possibility of cooperation arises from the fact that transmission over
wireless channels is a broadcast in nature and thus allows the neighbor nodes to overhear the data
transmitted by the source. This phenomenon enables the neighbor nodes to act as alternate sources for
the current data. In case of failure in data transmission from the main source node, the destination calls
for cooperation from these alternate sources to transmit their overheard data. The main advantage of
this method lies with the possibility of finding multiple, and relatively better, communication channels
of the neighbor nodes which significantly increases the chance of successful retransmission. Thus, this
cooperation based operation boosts the throughput performance of an ordinary S&W ARQ to a much
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higher level [3]. The performance of the simple CARQ can be further improved if the error-correcting
codes could come into play. To realize that, C-HARQ protocol is designed in the following section.

3. Proposed C-HARQ Protocol Design

The merger of CARQ and IR-HARQ can be achieved primarily in two ways: (1) using the neighbor
nodes to transmit data as well as error correction information; (2) using the neighbor nodes to transmit
only the error correction information. In case 1, the neighbor nodes simply act as an alternate source of
data as well as error correction bits; consuming the same amount of energy as the source, thus losing a
significant part of its own energy resource in delivering others’ data. Case 2, on other hand, tries to
transfer as less a burden as possible to the neighbor nodes while still fully utilizing their cooperation.
This is accomplished by asking the neighbor nodes to transmit only the error correction redundancies,
called the FEC packets, when needed, to the destination, while it remains the source responsible for the
data part. The smaller size of the FEC packets causes comparatively less energy consumption.
Moreover, an FEC packet from a neighbor node can still be utilized even if it gets corrupted in some
bits, whereas even a single error in data packet will result in wastage of the resources consumed in
transmitting that packet. Thus, for the C-HARQ protocol we prefer the second option, where the
neighbor nodes are burdened of transmitting only the smaller FEC packets that carry the information
for correcting errors, thus providing the opportunity of boosting throughput performance with better
energy efficiency. The system model used to implement the C-HARQ protocol along with the detailed
description of the cooperation mechanism employed to transfer the FEC information to the destination
is presented as follows.

3.1. Network Scenario

As this work primarily focuses on the ARQ aspect, not on medium access control (MAC) issues, we
have assumed that all the media access issues have been resolved so that the underwater sensor
network under consideration is only a single-hop case between a source and a destination with some
neighbour nodes in the surroundings. All the nodes remain static at their respective positions. The
network scenario is depicted in Figure 1.

Figure 1. Network Configuration.
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Pac = FEC Packet

Cooperative

Transn Region

_/.bata Broadcast

@ CNode
@ Available CNode

—<» Erroneous Tx

Source Node



Sensors 2013, 13 15390

The overlapped area between two circles having a same radius of the source-to-destination distance,
each centered at source and destination is called the cooperative region. Any neighbour node within
this region can overhear any transmission from the source and destination and, hence, has the potential
to provide cooperation; thus these nodes are hereafter referred to as cooperative nodes (CNodes).

3.2. The Cooperation Mechanism

The main cooperation mechanism of C-HARQ protocol is basically similar to that of CARQ. A
success in the original data transmission is acknowledged, by the destination, by sending a positive
acknowledgement (ACK) signal to the source; whereas on reception of erroneous data, destination opts
for a cooperation process instead of immediately sending a negative acknowledgement (NACK) signal.
Meanwhile, some (or all) of the CNodes becomes available for cooperation (holding either a data
packet, for CARQ, or FEC packets, for C-HARQ) depending on whether they succeeded or failed in
correctly overhearing the broadcasted data. When the destination calls for cooperation, these available
CNodes let the destination know about their availability by a proper signaling mechanism (described
later in Section 3.4). The destination, then, asks the available CNodes, one-by-one, to transmit the
packets they hold until the retransmission/recovery is successful. A successful recovery of original
data from the cooperation process is conveyed to the source and the CNodes by transmitting an ACK.
However, if the cooperation process fails too, a NACK is transmitted to ask the source to retransmit the
data, which starts the whole process from the beginning.

3.3. Packet Generation

The system consists of mainly three types of packets: data packets (main message packets), FEC
packets and signalling packets. The message packet and FEC packets are generated using a
convolution encoder with puncturing enabled. The punctured mother code at the output of the encoder
forms the main message packet while the punctured bits form the FEC packets. The convolution
encoder is configured in such a way that the punctured mother code produced is exactly the same as
the original data that was fed to the input of the encoder. Thus, the main message packet contains only
data bits and is, hereafter, referred to simply as the data packet. This allows the source to be exempted
from the burden of going through the encoding process to generate the main message packet which is
actually the data part only. The other punctured outputs of the encoder form the FEC packets.

The convolution encoder thus used is a systematic convolution encoder [16]; a code is systematic if
the input data bits are embedded in the output mother code. Figure 2 explains the coding and the
puncturing process with an example. At first a 10-bit data is encoded into a 20-bit mother code (code
rate = 1/2) with data bits (highlighted bits) and FEC bits occupying the odd and even positions,
respectively. Next, the mother code is punctured using some predefined puncturing patterns to get
multiple packets at the output. By using the pattern [1010101010], the redundant FEC bits are deleted
from mother code (positions with “-) to get the payload of the data packet i.e., Pac-0. Thus, Pac-0
contains only the data bits and therefore, from hereafter, refers to the original data packet in the system.
Similarly, utilising the other puncturing patterns, FEC bits are recovered from the mother code to be
the payload of the FEC packets; represented by Pac-1, Pac-2...Pac-Nnx. In the above example, Nny is
set to 2.
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Figure 2. Packet Generation.
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To these raw packets, a four byte header and a two byte trailer are added to form the final link layer
packets, shown in Figure 3. The header field consists of packet ID (1 Byte), source ID (1 Byte),
destination 1D (1 Byte), and packet sequence number (1 Byte). The trailer is composed of 16-bit Cyclic
Redundancy Check (CRC) to facilitate error detection.

Figure 3. Final Link Layer Packet Format.

DATA Packet: Pac-0

Header | Payload =Data | Trailer = CRC
(4 Bytes) | Bits (I, Bits) (2 Bytes)

FEC Packet: Pac-1, Pac-2...Pac-Nmy
Header Payload = FEC | Trailer = CRC
(4 Bytes) Bits (2 Bytes)

3.4. Scheme Description

We now proceed to describe the C-HARQ protocol of error-control for data transmission from a
particular source to a destination. The scheme works in the following subsequent phases:

1. Transmission of Pac-0 by Source.

2. Discovery of available Cooperative nodes.
3. Cooperation process.

4. Transmission of ACK/NACK by Destination.

Phases 2 and 3 come into play only when an error is detected at the destination. As mentioned
earlier, the source is not involved in any convolution encoding process. The source is only concerned
with sending/resending the current or the next data packet, from its packet buffer, depending on the
type of acknowledgement received from the destination. Encoding process is required only at the
CNodes to generate the FEC packets using the overheard Pac-O0.

The source starts Phasel by transmitting the Pac-0 that is present at the top of its packet buffer, to
the destination. This transmission, which is a broadcast in nature, is also overheard by the CNodes. The
CNodes individually compute CRC to check for errors in the overheard Pac-0. Those CNodes which
correctly receive Pac-0, encode it into Pac-1, Pac-2...Pac-Nny, and saves them at the top of their
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individual packet buffer, to become “available” for cooperation. Other CNodes discard the erroneous
overhearing and remain silent.
Meanwhile, at the destination end, error detection is applied to the received Pac-0 and steps are
taken accordingly:
No Error in received Pac-0:

Phase 2 and 3 are skipped and an ACK is immediately sent to the source by destination. Upon
overhearing ACK, the CNodes drops the current FEC packets from the top of their packet buffer:

Error detected in received Pac-0:

Destination saves the erroneous Pac-0 in its packet buffer as saved_Pac-0 and enters Phase 2 by
broadcasting a “Request for Cooperation” (Creg) Signal. Prior to the broadcast, the destination
initializes enough memory space in its packet buffer for the upcoming FEC packets meant for error
correction. On overhearing the Cgeq Signal, the source continues to remain in “idle” mode waiting for
an ACK or NACK signal to respond to. By doing so it temporarily leaves the responsibility of
recovering Pac-0 to the cooperation process. In our system model, we have assumed that a node
operates in idle-mode when it is involved in none of the following activities: transmitting, receiving or
convolution decoding.

Meanwhile, the available-CNodes respond to Creq by individually transmitting the “Availability for
Cooperation” (Cayv) signals to the destination. To make the collisions of Cay less likely, a proper
media access protocol (like a Random Back-Off algorithm) can be used here. However, for our
performance analysis, this probability of collision is neglected due to the very small size of Cay and
location of CNodes at a random distance from the destination. The destination, after transmitting Creq,
waits for a maximum of “Tc” amount of time to allow all the availability signals to reach the
destination before the commencement of the cooperation process. The value of “Tc” is set to twice the
source-to-destination propagation delay so that the Cay signals, even from the farthest CNodes (located
at a distance of source-to-destination distance from both the source and the destination), have enough
time to reach the destination. Upon expiration of this waiting time, the destination saves all the
received Cay signals in a list, called the “Look-Up” list. This list is mainly used to select or look for the
current or the next available-CNode during the cooperation process. Prior to the cooperation process,
the destination applies a predefined selection criterion to sort the list in a particular order. For this
purpose, the Cay signal can be designed to contain multiple fields for holding information related to the
available-CNodes, such as, distance from destination, remaining level of energy, channel conditions etc.

An empty Look-Up list indicates that none of the CNodes have successfully overheard Pac-0 and
the process goes into Phase 4, skipping the cooperation process (Phase 3), by transmitting a NACK.
The source then starts again from Phase 1 by retransmitting Pac-0 to the destination. Otherwise, if
even a single CNode is available, the cooperation process is deployed as follows:

Cooperation Process:

The first step of the process is to select a CNode from the Look-Up list, for the destination to contact
first. The simplest criteria would be to select them on the basis of their closeness to the destination,
which can be realized by allowing the Cay signal to contain certain timestamp information which the
destination can use to calculate the round-trip delay between itself and that CNode. The CNode with
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the least round-trip delay can be chosen to be the best one. However, if this option is not available, a
simple First-Come-First-Serve (FCFS) selection procedure can be used, where the CNodes are selected
in the order of their Cay arrival. The former is assumed to be the selection criteria for our analysis.

Next, the process of contacting a CNode basically involves transmission of a NACK; to the i th
available-CNode (CNode-i), asking for the FEC packet Pac-j. Following this mechanism the
destination sends a NACK-1 to the closest CNode, which can be referred to as CNode-1. Upon
receiving NACK-1, CNode-1 transmits Pac-1 to the destination. Destination saves the received Pac-1
as saved_Pac-1 then checks for errors in it by computing its own CRC. Here, the destination needs to
maintain a special “status” vector so as to keep track of the status of the saved FEC packets; where,
status=1 means the received FEC packet is error-free and doesn’t require any retransmission, while
status=0 means the saved_Pac-1 has some errors, and thus may require retransmission. Then, the
destination tries to recover the original data by combining the saved_Pac-0 and saved_Pac-1 and then
feeding it to the Viterbi decoder [17]. If the recovery is successful, an ACK is sent to the source and the
cooperation process terminates, otherwise, NACK-2 is sent to CNode-1 for the next FEC packet, Pac-2.
On receiving Pac-2, destination saves it as saved_Pac-2 with its status set accordingly, and then
utilizes it in the next Viterbi decoding attempt along with the previously saved packets. This process of
FEC packet reception and Viterbi decoding continues in association with CNode-1 till the original data
gets recovered or the transmission of the last FEC packet (Pac-Nnx) from CNode-1 gets completed. In
case the later happens and the error still persists, it is because of the either of the two possible cases:
(1) none or only few of the total required correct FEC packets (error-free versions) are available, thus
unable to fully utilize the error correction capability or (2) all the saved-FEC packets are correct but
the count of errors in saved_Pac-0 is beyond the error correction capability of the convolution code. In
the first case, the destination approaches the next closest available-CNode, CNode-2, for further
cooperation, where, before sending a NACK, destination first checks the status vector to identify all the
incorrect FEC packets and sets the value of the NACK accordingly. For example, if retransmission of
Pac-j is required, the value of NACK is set to “j”. On reception of NACK;, CNode-2 finds the Pac-j
from its buffer and transmits it to the destination. Destination overwrites the saved Pac-j with the
freshly received Pac-j; performs error detection and accordingly updates its status. As usual, a Viterbi
decoding is carried out using all the packets saved in the buffer including the new one. A successful
recovery results in termination of the cooperation by sending an ACK to the source, otherwise, the
attempts of error correction continues for other FEC packets and with other available-CNodes.

The second case, where all the FEC packets have been correctly saved (i.e., status = 1 for all FEC
packets), implies that no more cooperation is required. Thus to terminate the current cooperation
process, and to ask the source for a new copy of Pac-0 (so as to replace the saved_Pac-0), a NACK is
sent to the source. Upon receiving the NACK, the source comes out of the idle mode and transmits a
fresh copy of Pac-0, which is then utilized by the destination in the following error correction attempt.
If the error correction fails again, a NACK is sent to the source again. Here, the destination requests for
no further cooperation as all the FEC packets are already available. Now, the destination and the
source continue to work in this S&W ARQ manner, with the error correction information available at
the destination, until the data is successfully recovered.

In another special case where the last available-CNode has been contacted but some of the saved
FEC packets still require retransmission, a NACK is sent to the source, so as to eventually start the next
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cooperation process for acquiring the remaining FEC packets. On hearing the NACK, source simply
retransmits Pac-0, with which the destination first attempts Viterbi decoding utilizing the previously
saved FEC packets; if the data is recovered successfully an ACK is sent, otherwise the next cooperation
process is initialized from the stage of Cgeq transmission so as to obtain the remaining FEC packets.

4. Performance Analysis

In this section we define the expressions of the performance metrics, i.e., throughput efficiency and
energy efficiency, which is used to analyse the performance of the C-HARQ protocol against the
CARQ and S&W ARQ protocols.

4.1. Throughput Efficiency

The throughput efficiency of an error control scheme is defined as the ratio of the transmission time
of the data packet to the total time taken in successfully delivering the packet. The throughput
efficiency of our system is thus expressed as:

Tt i DATA

0+ 2T +T, 1)

co-op

&

tpt —
T

t Pac—

where T; is the transmission time of a single bit, T, is the source-to-destination propagation delay and
Ipata is the data payload length of Pac-0. Time duration 2T, accounts for the round trip delay caused
by the very first original transmission of the data packet and the final reception of the ACK at source.
In between these two events, if the cooperation process comes into play the extra delay incurred is
accounted by Tco-op.

4.2. Energy Efficiency

Before defining the energy efficiency metric for the cooperative protocols, we consider the simple
case of single hop S&W ARQ communication between the source and the destination. The total energy
consumed in the network for a single attempt of data packet delivery by source (that results in an ACK
or NACK response from the destination) is given by:

Eao = Ef\RQ + EADRQ + EEFTQ )

where Ejro, Efro and ESg), are the energies consumed at the sender, the destination and the neighbour
nodes (i.e., cooperative nodes for the cooperative protocols) respectively, and are further expressed as:

EiRQ:E_II_?(ATA_'_EF\/;\XCK/NACK_i_E%Ie (3a)
D DATA ACK / NACK D
Emo =Er  +Ex + Ege (3b)
N nCN
Esrg = Z E e (3¢)
=)

where, for any network packet “Pac”, Pac € {DATA, FEC, ACK, NACK, Creq, Cau} and length lp,,
EX3¢ and EF2¢ are the energies consumed in transmitting and receiving that packet, respectively. Ejge
is the energy consumed by a node when operating in the idle mode. nCN denotes the number of
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CNodes that are present in the neighborhood of the source and destination (i.e., in the cooperative
region). For S&W ARQ the CNodes, obviously, do not interfere, and hence only their idle mode energy
consumption is considered. The above mentioned energy consumptions can be further expressed as:

E1|'::<ac = I:)TleacTt (43-)
ERP;c = PRleacTt (4b)
Eigie = Pateliie (4c)

where, Py, Prx and Pige are the transmission power, reception power and idle mode operating
power, respectively. tig is the total amount of time for which a node operates in idle mode, during the
entire process.

Using the same methodology as S&W ARQ, the energy consumption for both CARQ and C-HARQ
are obtained next; where, we present the energy consumption model, employed during the computer
simulation of the cooperative protocols, by expressing the energy efficiency equations for a very
simple example case that considers a major assumption. It is to be noted that the computer simulations
are fully fair, without any of the assumptions; whereas the example case is considered, in the following
part, only to give an insight into the energy consumption model.

4.2.1. Cooperative ARQ

The cooperative ARQ protocol considered in this paper, for comparison with C-HARQ, is basically
the same as the previous one [3], but with the addition of CNode discovery process using Cay and Creq
signals; whereas previously it was assumed that the destination has a prior knowledge of all the
CNodes. Rest of the process of one-by-one cooperation of CNodes starting from the closest CNode
first, is same.

For the example case, let the source transmit a data packet sTx times in total, invoking a total of sTx
cooperation processes, until the data packet is successfully delivered to the destination; during the
final, sTx-th, cooperation process, f numbers of CNodes are contacted before the success. The
cooperative region contains a maximum nCN number of potential CNodes, and the main assumption
here is that all of them become available in the very first cooperation process. Then, the total energy
consumption of the entire CARQ process can be calculated as the sum of the energies consumed at
every node, which can be expressed as:

E +E%,. . +ESN

=Eg CARQ CARQ (5)

CARQ CARQ

where ECuro. Ecarg and E¢jr, are the energies consumed respectively at source, destination and all
the CNodes combined. The total energy consumption of the destination node can be given by:

E° ={r+(r—)nCN, + pP}EL™ + EAZX + (r —1EN"

CARQ ‘ sTx=r

f=p
(6)
+{(r —)nCN , + p}ENK 4 rET™ 4+ nCN,ES™ + ED,

X

where, NCNa denotes the number of CNodes that are available for cooperation, and considering that all
CNodes become available , NCNa = nCN. Next, we define Pr(f = p | sTx = r) to be the probability that
for a successful delivery it takes r data packet transmissions from the source, and the final delivery
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coming only after p CNodes have been contacted during the r-th cooperation attempt, with
re€{1,23..o}andp € {0,1,2...nCN,}, such that:

o NCNp

Edwo = Z Z {E;\RQsT” xPr(f = p|sTx= r)} ©)
r=1 p=0 f=p

In the illustration of Equation (6), the destination receives the data packet r times from the source,
(r — 1) nCNa and p times from the CNodes, through first r — 1 cooperation processes and the final
cooperation process respectively. Destination transmits r — 1 number of NACKs (NACK-to-Source) in
response to the first r — 1 unsuccessful attempts and an ACK for the successful, r-th, one. Further,
(r — 1) nCNa + p numbers of NACKcy (NACK-to-CNodes) are sent by the destination to CNodes,
during the entire cooperation process, to ask for data packet retransmission. Here, NACKs and NACKcy
are basically the same negative acknowledgement signal, but used only to differentiate between a
NACK sent to ask the source to transmit and a NACK sent to ask a CNode to transmit, respectively.
Next, considering the fact that destination lacks prior knowledge of the total number of potential
CNodes in the cooperative region, it initiates every cooperation attempt with the CNode discovery
process (through the broadcast of Creq Signal), even when in actual all the CNodes have become
available; hence, a total of r Cgreq signals are transmitted by the destination. Further, during the
computer simulation, the Cay signal has been considered immune to errors thus making it sufficient for
an available CNode to send the Cay signal only once to the destination, even if it keeps hearing Creq
signals thereafter; hence the destination receives a total of nCNa number of Cay signals during the
entire process. To reduce the time overhead caused due to this repetitive CNode discovery process
even when not required, we present in the result section a maximum limit that can be set to the number
of discovery attempts, particularly for the C-HARQ protocol, after which the destination directly goes
into the cooperation, skipping the CNode discovery process. Next, the energy consumption at the
source node can be similarly expressed as:

E o =TEm +(F —DEA + Ep +{(r—)nCN , + p}ER
f=p

i ®)
+TEg™ +NCNLEg + e
s oo NCNp s
ECARQ = z Z {ECARQsTx—r x Pl’(f = p‘STXZ r)} (9)
r=1 p=0 f=p

The source node not only receives NACKs and ACK signals meant for it but also overhears the
NACKGcn, Creq and Cau signals that are exchanged between the destination and the CNodes; hence the
energy consumption resulting from them is also included in Equation (8). The overhearing of these
signals keeps the source informed about the ongoing cooperation activity. The data packet transmitted
by a CNode to the destination can also be overheard by the source and rest of the CNodes, however it
has been assumed that a node can know whether a packet is meant for it or not by processing only the
initial few bits (i.e., header part), and hence can immediately stop or continue receiving the rest of the
packet. Especially for larger packets (i.e., data and FEC packets), decoding of the packet header can be
completed much before the antenna receives the rest part of the packet, as the processing takes very
less time compared to the reception time. Employing this mechanism the overhearing of a CNode’s
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data packet (for CARQ) and FEC packet (for C-HARQ), by source and other CNodes, has been
avoided during the computer simulations.

The total energy consumption of the cooperative nodes is calculated as the sum of the energies
consumed by the individual cooperative nodes, which can be expressed as:

o {E;;ATA L (r-DER™ + (- DENSS +EX* }

eraf 25T S| {(r —)NCN , + PYENACKer 4 rECPe 4 B 4 ECNoted (10
+iE-|I-:))(ATA
1
o NCNp
ZH ) {EngstTxpr <Pr(f = plsTx = r)} )
r=1 p= =

The CNodes overhear the NACKs and ACK signals transmitted by the destination, so as to keep
track of the current status of the protocol, and decide whether to retain or drop the source’s overheard
data packet from its packet buffer. Additionally, it can also overhear the NACKcy signals transmitted to
other CNodes, along with the NACKcy signals meant for it. However, as mentioned earlier, a CNode
avoids the overhearing of any other CNode’s data packet as it already has a copy of it.

Finally, we define the energy efficiency as the ratio of the useful energy consumed in transmitting
the data packet to the total energy consumed in successfully delivering that packet. Hence, the energy
efficiency of CARQ can be expressed as:

EATA B PrloaraT

Tx"DATA 't

n= CN (12)

=) S
ECARQ ECARQ + ECARQ + ECARQ

4.2.2. Cooperative-HARQ

Again considering the same case of sTx times data packet (here Pac-0) transmissions from source,
invoking a total of sTx cooperation processes, for the successful recovery of data at the destination, the
total energy consumption of the C-HARQ protocol is given by:

s c
ECHARQ = EgHARQ + ECHARQ + ECHNARQ (13)

At the destination, the total energy consumption can be expressed as:

EgHARQ\sTx:r = rEqe " +(r =D Eyeclpura + (r =1 ETBLACKS +EL + rETCxReq
. NCN, Ny . (14)
i D NACK- | Pac-j
+NCN Bt +Ejg + Z znij (En 7+ B + Egeclpara)
)
E(IZDHARQ = z {ECDHARQ\sTx:r x Pr(sTx = I’)} (15)

r=1

Since the basic cooperation mechanism is same for C-HARQ, the NACKSs, ACK, Creq and Cay terms
in Equation (12) are same as that in Equation (6). But, with data packets coming only from the source,
the destination receives the copies only r times and every time a Viterbi decoding is attempted using
the previously saved FEC packets, except the very first transmission; thus resulting in the second term
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in Equation (12), where, lpata is the data payload size of Pac-0 and Ege represents the energy
consumed per useful bit (data bit) in a Viterbi decoding attempt. Ny is the total number of FEC
packets generated by RCPC encoding and nj; represents the number of times the destination had to ask
the i-th CNode to transmit Pac-j before successfully receiving and storing it. In other words, nj;
represents the total number of transmissions of Pac-j from the i-th CNode during the entire process;
and every FEC packet reception is accompanied by a Viterbi decoding attempt.

The source in C-HARQ is not involved in any FEC encoding or decoding process hence the
working of the source is the same as that in CARQ); the only difference is the number of NACK to
CNodes overheard. Again, the overhearing of a CNode’s FEC packet has been avoided for source as
well as other CNodes. Thus, the energy consumption at the source node is given by:

ECSHARQ\sTx:r = rETI'::(aC_O + (r _1)E|;\IXACKS + EII:;(CK + rE'g;eq
NCNx Npy B (16)
+NCN L Eg + EQe + D D N ERN!
i=1 j=1
S c S
ECHARQ = Z {ECHARQ\sTx:r X Pr(STX = r)} (17)

r=1
Similarly at the cooperative nodes, the total energy consumption is given by:

_ C
EXC0 4 (r—DEN s + ELK +rE™ + ES™

nCN,
ECN = ) NCN Ny i Niny . 18
CHARQ|sTx=r ; n EEII\::Ode_I + z anj EF’:(ACK_] +Znij ETanC_J ( )
k=1 j=1 =1
CN - CN
ECHARQ = Z {ECHARQ\sszr xPr(sTx= r)} (19)

r=1
A CNode listens to all the NACK signals but responds only to the ones meant for it. Finally, from
Equations (4a) and (13), the energy efficiency of C-HARQ can be written as:

DATA
_ ETX _ PTX I DATATt

77_

= 20
ECHARQ EgHARQ + ECDHARQ + EgHNARQ ( )

Theoretical calculation of n;;, Pr(f =p | sTx =r), Pr(sTx = r) and Tco-op are beyond the scope of
this paper, hence computer simulations are used instead.

5. Simulation Model and Results

In this section we present the numerical results obtained from computer simulations of C-HARQ
protocol for the underwater sensor network depicted in Figure 1. The entire system is modelled in a
Matlab environment, where extensive Monte Carlo simulations are performed to numerically measure
the performance of a protocol. The averaged values of the performance metrics obtained for
C-HARQ are compared with those of CARQ and standard S&W ARQ under common network
conditions. Further, the performance metrics are used to find the optimum values of the network
parameters so as to optimize the overall performance.



Sensors 2013, 13 15399

For convolution encoding, the constraint length (K) of the systematic encoder is set to 5. The
generator polynomial pair {37 33} is used, “37” (octal representation) being the feedback polynomial,
which delivers a code rate of 1/2. At the destination a hard decision Viterbi decoder, operating in
‘trunc’ mode, with a trace-back length set equal to 5K, is used for decoding the convolution codewords
along with their punctured derivatives. Out of the three operating modes of Viterbi decoder in Matlab,
I.e., “cont”, “term” and “trunc”, trunc mode is used because it incurs no delay before the appearance of
first symbol at the output [16]. In general, the energy requirement of convolution encoding process is
considered negligible [18,19], however the process of Viterbi decoding is quite energy-intensive.
Assuming a StrongARM microprocessor (SA-1110) to be the on-board processing unit, the
average energy required per useful bit (Eg) to decode a punctured convolution code
(code rate = 1/2, K = 5) using a Viterbi decoder, has been experimentally found to be approximately
0.02 mJ [19]. The encoding and decoding energies of CRC are neglected.

The underwater acoustic channel for data transmission is basically modelled in Matlab by a binary
symmetric channel (BSC), whose bit error probability value is taken from the “average BER vs.
inter-nodal distance” graph obtained in previous woks on CARQ in UASNSs [3]. The average BER is
obtained for binary phase shift keying (BPSK) modulation under Rayleigh channel fading, where the
signal-to-noise ratio (SNR) is primarily affected by frequency and distance dependence attenuation, and
ambient noise modelled by turbulence, shipping, waves and thermal noise. For the source-to-destination
link of length 1,000 m the average BER is found to be around 2.5 < 10°°; for the cooperative links
varying from 100 m to 1,000 m the BER is found to vary in the range of 2 <107 to 2.5 <10 °. For the
sensor nodes, the on-board acoustic modem is considered to be the LinkQuest UWMZ2000 acoustic
modem [2]. The relevant specifications of the modem, along with some network parameter values, are
given in Table 1.

Table 1. Simulation Parameters and Acoustic Modem Specifications.

PARAMETER VALUE
Source-Destination distance 1,000 m
Sound Speed 1,500 m/s
ACK/NACK packet size 7 Bytes
Creq/Cau packet size 7 Bytes
Data rate 20 kbps
Operating frequency 25 kHz
Transmission power (P+y) 8W
Reception power (Pry) 0.8W
Idle mode power (P)qie) 8 mw

Decoding energy per useful bit (Ege)  0.02 mJ

The main assumptions or relaxations taken into account for the simulation purpose are:

Control signals and Header/Trailer part of a packet are immune from errors.
Collision-free transmission of Cay signals.

No limit to source’s retransmission attempts.

100% error detection capability of CRC.

Negligible processing time compared to the long propagation delays.

SARE I o
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To be able to apply the performance results of this protocol to any general network configuration,
and not to any fixed network topology, the location of the CNodes are changed at the beginning of
every simulation run, by randomly redistributing them in the cooperative region; the source and destination
remain fixed at their positions. Further, to obtain averaged and confident values, the simulations are
executed over enough number of runs (100-150), with each run delivering 1,000-1,500 data packets
from source to destination, so that the final performance metrics plots are definite and smooth.
Moreover, to validate the accuracy and precision of the obtained results 95% confidence interval is
also shown, but only in one plot (Figure 5) due to lack of space in other figures. Nonetheless, the
confidence level of the 95% confidence interval applies to each and every plot. Finally, the obtained
results and their discussions are as follows.

5.1. Optimum Data Payload Size

Figure 4a presents the throughput efficiency as a function of data payload size for the C-HARQ,
CARQ, and standard S&W ARQ protocols. It clearly shows that the error correction capabilities of
C-HARQ boost the throughput efficiency of CARQ to a much higher level, thus outperforming both
CARQ and S&W ARQ by a big margin. Further, considering a wide range of applications of the
sensor networks resulting in variation in the number of neighbour nodes, and to estimate an overall
average value of the optimum data payload size, the throughput efficiency of C-HARQ is plotted for
nCN = 2, 5 and 8. The payload size which achieves the maximum throughput efficiency is found to be
in the range of 5,000-7,000 bits for nCN = 2 to 8. Thus, for further analysis of C-HARQ we set the
optimum payload size to 6,000 bits, which is far greater than that of CARQ (1,000 bits) and S&W
ARQ (600 bits); this allows more amounts of data transfer on a single successful attempt.

Figure 4. (a) Throughput efficiency vs. data payload length; (b) Energy efficiency vs. data
payload length.
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From the point of view of energy, the three protocols are first tested with the number of neighbour
nodes set to 5; their energy efficiency is plotted in Figure 4b. Additionally, the energy efficiency of
C-HARQ for nCN = 2 and 8 is also presented. The plot reveals that C-HARQ outperforms the simple
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CARQ protocol over the entire range of payload length. When compared to S&W ARQ, C-HARQ
delivers more energy efficiency especially for larger data payloads (= 600 bits), but for smaller
payloads (<500 bits) S&W ARQ is found to be more energy conserving than the cooperative protocols,
the reason being the additional energy consumption of the CNodes due to their inherent property of
listening to the original data transmission even when not required, which is the case with smaller
payloads where the packet error rate (PER) is low. In case of conventional S&W ARQ, it has been
assumed that the CNodes know about the on-going communication and hence remain in idle mode for
the entire duration, adding only the idle mode energy expenditure to the total consumption.

Further, C-HARQ with nCN = 2 proves to have better energy efficiency than nCN = 5 and 8, for
payload of smaller size but for larger payload size nCN = 5 and 8 have the better efficiency. This is
again because of the additional energy consumption of the CNodes in overhearing the original
transmission when their cooperation is not required. Whereas, for larger payload size the PER is high
and CNodes are required to play their role in improving the performance, thus overshadowing their
overhearing energy expenditure. From the aspect of energy efficiency, it is difficult to assign a
common optimum payload size for C-HARQ for all types of network configurations, as the optimum
size is found to vary in the range of 600 bits (nCN = 2) to 4,000 bits (nCN = 8). Thus we use the
optimum payload setting obtained from throughput efficiency analysis.

5.2. Optimum Number of FEC Packets, Nmx

The effect of splitting the FEC part, into multiple FEC packets, on throughput efficiency and energy
efficiency is shown in Figure 5a,b, respectively. For this analysis, the above achieved optimum
payload size is used in a region with 5 CNodes distributed randomly at each run.

Figure 5. (a) Throughput efficiency vs. number of FEC packets (Nmy); (b) Energy efficiency vs. Np.
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From Figure 5a, it is clear that throughput efficiency decreases as Ny is increased above 2. This is
mainly because with more FEC fragments the total amount of time taken to transfer the required
amount of FEC information to the destination increases; due to the accumulation of long propagation
delays associated with each NACK and FEC packet transmission. The best throughputs are achieved at
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the values of Ny = 1 and 2, with Ny = 1 providing slightly better value. Thus it is clear that in the
presence of long propagation delays it is better to transmit the FEC information in only one or two
FEC packets than dividing it into many.

On the other hand, in terms of energy efficiency, the transmission of many smaller FEC packets
does not rapidly degrade the performance (from Figure 5b). Transmission of smaller FEC packets,
one-by-one, allow only up to the required amount of FEC information being sent to the destination,
thus preventing the energy consumption from transmission of extra FEC bits. However, more number
of FEC packets increases the total number of Viterbi decoding attempts, which take place every time a
new packet is received, thus adding to the overall energy consumption. Because of these two opposing
factors the energy efficiency does not show much deviation with an increase in Nyx. However at Ny = 3
and Ny = 4, slight irregularities are, most probably, because of the puncturing patterns used during the
simulations, but they are irrelevant to this analysis. The puncturing patterns used for generating FEC
packets are shown in Table 2. The convolution code with the patterns used at Ny, = 4 seems to perform
equally better as that at N« = 3, especially in terms of energy efficiency.

Table 2. Puncturing Patterns.

No. of FEC Puncturing Pattern Used for Generating
Packets FEC Packet the Related FEC Packet
\\ ) Pac-0 10101010101010101010
Npx =1 Pac-1 01010101010101010101
N, =2 Pac-1 01000100010001000100

Pac-2 00010001000100010001
Pac-1 01000001000001000001
Npx =3 Pac-2 00010000010000010000
Pac-3 00000100000100000100
Pac-1 01000000010000000100
Ny = 4 Pac-2 00010000000100000001
Pac-3 00000100000001000000
Pac-4 00000001000000010000
Pac-1 01000000000100000000
Pac-2 00010000000001000000
Nmx =5 Pac-3 00000100000000010000
Pac-4 00000001000000000100
Pac-5 00000000010000000001

The 95% confidence interval shown at any point in Figure 5, let’s say Nmx = 1, is obtained over a
total of 100 runs each delivering 1,000 packets. The average value of the throughput efficiency,
obtained over 100 = 1,000 values, is found to be 0.0415 with a standard deviation of 0.0268. Then
using the general principle of 95% confidence interval calculation, the one-sided interval can be
approximated to 0.0002, thus resulting in the lower and upper 95% confidence levels of 0.0413 and
0.0417, respectively. Though not shown in other plots, the same confidence level applies for all other
figures with number of runs varying from 100 to 150, and number of data packets varying from 1,000
to 1,500. Finally, utilising the results in Figure 5a and 5b simultaneously, we choose Ny = 2 to be the
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optimum value for number of FEC packets, whose energy efficiency is better than that of Ny, = 1, with
negligible difference in their throughput efficiencies.

5.3. Maximum Achievable Throughput Efficiency

The improvement in throughput efficiency and energy efficiency due to an increase in the number
of CNodes is shown in Figure 6a,b, respectively. More number of CNodes increases the probability
of successfully delivering all the FEC packets to the destination, thus improving the performance.
Figure 6a gives an idea of the minimum number of CNodes required to achieve the maximum
achievable throughput efficiency, i.e., nCN = 9. For nCN > 9, the extra CNodes are unable to enhance
the throughput efficiency further. Rather, they decrease the energy efficiency by adding to the overall
energy consumption of the network, as clearly depicted in Figure 6b. For very dense networks, these
results can be utilised to set the limit for the Look-Up list length, defined earlier, so that once the
optimum number of CNodes become available the CNode discovery process is skipped to directly go
into cooperation, thus avoiding time and energy wastage.

Figure 6. (a) Throughput efficiency vs. the number of nodes in the cooperative region
(nCN); (b) Energy efficiency vs. nCN.
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5.4. Energy Consumption at Various Nodes

In case of conventional S&W ARQ, it is obvious that most of the energy is consumed by the source
node, compared to destination and CNodes (as Prx > Pr« >> Piqie). In a long run, this method can
quickly discharge a sensor node which is active most of the time, collecting and transferring data to a
base station. In this regard, the cooperative protocols have the inherent advantage of distributing the
energy consumption across the network by temporarily transferring the source’s burden to the CNodes,
thus allowing the source to conserve energy for future use. However, this approach of temporarily
transferring the burden to CNodes by asking them to share their energy resources may cause a CNode
to lose a significant amount of energy, thus affecting its own applications. The C-HARQ proves to be
very efficient in this aspect as it asks the CNodes to carry the burden of delivering only the smaller
FEC fragments while maintaining the source responsible for transmission of larger data packets. To
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illustrate this better, Figure 7 presents the energy consumption distribution in the network for CARQ
and C-HARQ protocols, operating at their optimum settings. It gives an estimate of the average energy
consumed per data bit by different nodes in successfully delivering the data from source to destination.
The percentage value shown for a node denotes its percentage contribution to the total energy
consumption. For the case of CNodes, the combined total energy consumption of all the CNodes is
plotted (NCN =5 in this case).

Figure 7. Average Energy consumption per bit (in mJ) at various nodes for CARQ and
C-HARQ protocols, with nCN = 5.
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For the CARQ protocol, operating at its optimum throughput setting (i.e., at payload length of
1,000 bits), the total energy consumed per data bit by all the CNodes is found to be greater than twice
the energy consumed by the source; indicating that an individual CNode lose quite a significant
amount of energy in providing cooperation or delivering other’s data. On the other hand, C-HARQ (at
1,000 bits) not only consumes less energy but also reduces the burden of the CNodes by transferring
some of the burden back to the source. When operating at its optimum payload length (6,000 bits),
C-HARQ not only delivers a throughput efficiency of approximately four times the optimum
throughput efficiency of CARQ (Figure 4a), at the expense of same or rather slightly less energy per
bit, but also maintains the source responsible for major part of the energy consumption (by further
transferring back the burden of CNodes to source). Thus, it can be said that C-HARQ provides an
optimum performance between S&W ARQ and CARQ in terms of energy distribution. In other words,
the use of error correction codes in C-HARQ helps a cooperative protocol to enhance its throughput
while using the CNodes to deliver only the smaller FEC packets decreases the energy sharing burden
of CNodes.

5.5. Performance at Varying Bit Error Rate (BER)

We first select a random network configuration by randomly distributing five cooperative nodes in
the cooperative region, whose topography is shown in Figure 8.
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Figure 8. Network settings for BER analysis.
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The same as earlier, the BER of all the links in the network are obtained from the “average BER vs.
the inter-nodal distance” graph [3]. Let’s denote these obtained BER values of Source-to-Destination
(S-D) link, CNode-to-Destination (CN-D) link and Source-to-CNode (S-CN) link with ber_S-D,
ber_CN(i)-D and ber_S-CN(i), respectively, where i € {1,2,...nCN}. These BER values are found to
be of the order of 107. Now, to see the effect of BER variation of a particular link on the performance
of C-HARQ, while the other links maintain their original BER values, we use a multiplication factor o
such that it is multiplied to the original BER value of that particular link and varied over the required
range. For example, the BER of the Source-to-Destination link can be varied, by varying the value of a
in the relation: BER_S-D = a x ber_S-D.

5.5.1. C-HARQ versus BER of Individual Links

Figure 9 shows the impact of BER variations of individual links on the throughput efficiency and
energy efficiency. The BER of a link is individually varied by varying the value of o over the range
shown in figure, while the others are kept constant at their original BER values. Additionally, the impact of
an overall BER variation in the network is also obtained by multiplying o to all the links simultaneously.

Figure 9. (a) Throughput efficiency and (b) Energy efficiency dependence on BER of
different links, for C-HARQ, for data payload size = 6,000 bits, Nmx = 2 and nCN = 5.
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The results reveal that the performance of C-HARQ depends mainly on the link conditions of S-D
and S-CN channels. A decrease in BER_S-D causes a rapid performance improvement, however an
increase in BER does not degrade the performance rapidly because of the error correction gains
provided by convolution coding. The degradation in performance is mainly caused by the increase in
BER_S-CN as these channels determine the availability of CNodes which can provide the required
error correction information. Lastly, the CN-D link does not have any major impact because it is
involved in only transferring the smaller FEC packets. Hence, it can be easily inferred that the
performance of C-HARQ mainly depends on the links that are involved in transferring the data packet.

5.5.2. C-HARQ, CARQ and S&W ARQ against BER of All Links

Figure 10a,b presents the throughput efficiency and energy efficiency comparison, respectively,
against the BER variations of all the links at the same time.

Figure 10. (a) Throughput efficiency; (b) Energy efficiency vs. BER of all links.
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Figure 10a clearly shows that C-HARQ outperforms CARQ and S&W, over the entire range of
BER. However Figure 10b reveals that C-HARQ provides the best energy efficiency performance only
at high BER, but at lower BER, S&W ARQ proves to be more energy efficient than the cooperative
protocols. This is quite understandable, as under good channel conditions the cooperation process is
not required so much and the cooperative protocols basically starts operating in S&W mode, but with
the additional energy expenditure from CNodes due to overhearing of the original transmission. With
five CNodes and ten times larger optimum payload size (compared to that of SW ARQ), these energy
consumption becomes non negligible for C-HARQ and hence contributes to the degradation of the
energy efficiency level.

6. Conclusions

Exploiting the efficiency of cooperative communication and the incremental error correction
capabilities of the RCPC codes, an enhanced version of cooperative ARQ protocol is proposed in this
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paper for underwater acoustic sensor networks. This protocol efficiently merges the two ARQ schemes:
Type-11 HARQ and CARQ, so as to utilise the benefits of both the techniques. Computer simulations
were done to show the enhanced performance of this hybrid cooperation technique by comparing its
performance against the present Cooperative ARQ and standard S&W ARQ. The results show that not
only is the throughput efficiency boosted to a much higher value, but the energy efficiency is also
improved. Further, the optimum values of various network parameters were also estimated to extract
the best performance from the proposed protocol. Using this basic framework of the C-HARQ protocol,
more powerful rate compatible codes (e.g., rate compatible punctured turbo (RCPT) codes) can be
employed to further improve the performance.
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