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Abstract: The feasibility of using a diffuse reflectance probe attached to a near infrared 
spectrometer to monitor the total ammonia nitrogen (TAN) content in an anaerobic digester 
run on cattle manure was investigated; as a previous study has indicated that this probe can 
be easily attached to an anaerobic digester. Multivariate modelling techniques such as partial 
least squares regression and interval partial least squares methods were used to build models. 
Various data pre-treatments were applied to improve the models. The TAN concentrations 
measured were in the range of 1.5 to 5.5 g/L. An R2 of 0.91 with an RMSEP of 0.32 was 
obtained implying that the probe could be used for monitoring and screening purposes. 

Keywords: NIRS; biogas; ammonia; inhibition; monitoring; manure; PLS; iPLS 
 

1. Introduction  

Intensive farming methods generate large amounts manure that need safe disposal. In Denmark, 
more than 33 million tonnes of manure are produced per annum [1]. Current manure management 
strategies involve spreading of manure on agricultural fields to recycle the nutrients, aerobic treatment, 
separation of the solid and liquid fractions, composting and anaerobic digestion among others [2]. 
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Denmark has many full-scale biogas plants that use livestock manure as substrate along with organic 
wastes from industries [3]. Livestock wastes contain ammonia, which is inhibitory to anaerobic 
digestion, and contain compounds like urea and proteins that will degrade into ammonia [4]. Ammonia 
is present in the form of the ammonium ion (NH4

+) and free ammonia (NH3), of which the free 
ammonia (FA) is suspected to be the main cause for inhibition [5]. The ammonium ion and free 
ammonia exist in equilibrium, and the equilibrium depends on the temperature and pH. A decrease in 
pH reduces the amount of free ammonia. When a process is inhibited by free ammonia, the 
methanogens are affected, and consequently the volatile fatty acids (VFA) accumulate reducing the 
pH, this in turn reduces the free ammonia concentration [4]. This leads to a stable condition but at a  
sub-optimal level called an inhibited steady state. Total ammonia nitrogen (TAN) levels of more than  
4 g N/L were found to cause inhibition; levels beyond this showed stable biogas production after an 
initial adaptation period but this biogas yield was lower than that of uninhibited reactors [4]. Livestock 
manure can often have more than 4 g N/L of ammonia, especially in the case of swine manure and 
poultry manure [4], the ammonia concentrations can also be high in anaerobic co-digestion plants that 
mix high protein wastes to their substrates. Thus, monitoring the ammonia content of the slurry in 
anaerobic digesters is an important aspect of process control and in managing the substrate feeding rate. 

Ammonia content is usually measured and monitored by laboratory analysis such as colorimetry. 
This procedure involves the use of reagents, is time consuming and is not practical for process control. 
Near infrared (NIR) spectroscopy has been used to monitor various process indicators in the anaerobic 
digestion process. Earlier experiments using Trans-flexive NIR Spectroscopy (TENIRS) has shown 
good results in predicting the ammonia contents in an anaerobic digester [6]. Another study that 
showed good results in applying NIR spectroscopy to predict ammonia, used the polyethylene bag 
method where a sample of cattle manure was filled into a polyethylene bag and then pressed on to the 
surface of the scanning window of the NIR spectrometer [7]. However, the TENIRS requires the use of 
a macerator to reduce the size of the slurry particles to below 3 mm before the sample can be sent 
through it. The polyethylene bag method requires the sample to be taken out of the reactor and then 
analysed elsewhere.  

A previous study used a reflectance probe to monitor the propionate contents of a small 
continuously stirred reactor successfully [8]. It has also been shown that the probe can be directly fitted 
on to a reactor without major changes to the reactor body [9]. The aim of this study was to investigate 
the feasibility of predicting the ammonia content of manure using a diffuse reflectance probe. The 
reflectance probe also offers easy maintenance and unlike transmission spectroscopy does not depend 
on the transmission path lengths. A drawback of the reflectance probe is that more scatter is expected, 
and therefore more noise will be added to the spectra. This study describes the first step which is to 
determine if the diffuse reflectance probe can actually be used to determine the total ammonia nitrogen 
(TAN) concentrations in a complex material such as slurry from an anaerobic digester and if feasible, 
future studies can be directed at fitting the probe onto a full scale anaerobic reactor and test its 
performance. The slurry samples were scanned offline, using the diffuse reflectance probe. The 
spectral data was analysed using multivariate analysis and models relating the spectral data to the TAN 
contents were developed. Manure or slurry samples are a matrix of particles of different sizes and as a 
consequence, measurements based on reflectance mode will have variation in light scattering (i.e., 
wavelength dependent path length variation) between samples which can negatively affect the 
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modelling process. The effects of scatter can be corrected mathematically using data pre-processing 
methods; such methods were used to improve the models. 

2. Experimental Section 

2.1. Sample Collection 

Five bench scale continuous reactors were run on cattle manure that was collected from dairy cattle 
farms located in the Research Centre–Foulum (Denmark). The reactors had a working volume of  
7 L and were operated at a thermophilic temperature of 50 °C. Four of the reactors were used to test 
the effect of ammonia inhibition on the methane yield while the remaining one served as the control. 
Urea (crystallized Ph. Eur Cat. No. 2880.362) at concentrations of 0.175, 0.350, 0.525, 0.700% w/w 
were added to the four reactors to induce ammonia inhibition. The reactors had a retention time of 14 
days. About 200 g of digestate was collected from each of the reactors twice a week, and the total 
ammonia nitrogen (TAN) content of the samples in g/L was measured by colorimetry at 690 nm, using 
the Spectroquant ammonium test 1.600683(EPA 350.1) and a Merck® spectrophotometer After the 
TAN analysis the samples were frozen in 250 mL polyvinyl chloride (PVC) containers until the NIR 
scanning was performed. The TAN values were spread between 1.5 to 5.5 g/L and included many 
samples that had TAN levels more than the 4 g N/L above which process inhibition is said to occur [4]. 
These ranges were useful to see if the probe could detect ammonia at levels that are inhibitory and also 
at levels that are acceptable. Figure 1 is a histogram of the TAN values showing the spread of the 
reference data points. The effect of the ammonia inhibition on the methane yield of the manure will be 
published in a separate paper.  

Figure 1. Histogram depicting the spread of the TAN values. 
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2.2. NIR Scanning 

The NIR scanning was performed using a Bomem QFA Flex Fourier Transform spectrometer fitted 
with an InGaAs detector (Q-interline A/S, Copenhagen, Denmark). The diffuse reflectance probe that 
was used (QIA2050, also from Q-interline A/S) had a stainless steel body with a 5 mm sapphire window 
embedded into it and scanned in the range of 833.3 nm to 2,500 nm (12,000 cm−1 to 4,000 cm−1). The 
probe is specifically optimized for materials with high scatter like slurry from anaerobic digesters.  

The NIR scanning, as mentioned earlier, was performed offline. The frozen digestate samples were 
first brought to room temperature (19 to 20 °C) by thawing at room temperature overnight. The NIR 
probe was rinsed with de-ionized water, wiped clean with a tissue and then placed into the PVC 
container containing the digestate sample and clamped into position using a laboratory clamp stand 
such that there was at least 2 cm of sample beneath it, ensuring that the position was the same for every 
sample. An agitator was immersed parallel alongside the probe and the digestate sample was mixed at 
190 rotations per minute (rpm) to make sure that enough sample passed in front of the scanning 
window of the NIR probe. The speed of the agitator was optimized by trying different rpm settings to 
ensure that there was no bubble formation which would negatively impact the scan while ensuring the 
sample did not settle. For each sample, the measurement took about 80 s and consisted of 256 scans 
which were then averaged for that particular sample. A total of 119 manure samples were scanned in a 
time-span of two days. The background scan was measured against a white spectralon disk. 

2.3. Model Calibration and Validation 

NIR spectra are often noisy [10] due to various reasons, including instrument noise and high 
absorbing materials, and detector performance. The entire spectra, obtained from the NIR spectrometer 
amounted to 1,006 spectral variables. A lot of the variables were noisy due to high absorbance in 
wavelengths above 1,800 nm and due to low detector sensitivity to wavelengths below 900 nm. These 
areas were consequently cropped. There is often offset and slope variation between NIR spectra of 
samples that have equal analyte concentration but different light scattering properties. Light scattering 
differences in spectra can be minimized by data pre-processing.  

Data pre-processing is therefore a necessary step before modelling and can be classified into two 
main types. The first are scatter correcting methods such as multiplicative scatter correction (MSC), 
extended MSC (EMSC), standard normal variate (SNV), de-trending, baseline offset correction (BOC) 
and normalization. The second are spectral derivative pre-processing methods such as Norris-Gap 
(NG) and Savitzky-Golay (SG) polynomial derivatives. The data pre-processing methods available in 
the Unscrambler Version 9.8 software were applied to the spectral data and using the pre-processed 
data, models to predict the TAN content were developed. 

Two modelling methods: Partial least squares regression (PLS) and interval partial least squares 
(iPLS) were used to relate the spectral variables obtained from the NIR to the reference variable (the 
measured TAN values). 

The commercially available Unscrambler Version 9.8 software (CAMO Software A/S, Oslo, Norway) 
was used to develop the PLS models. The PLS is based on the regression method developed by Herman 
Wold [11]. Each model was validated by both full cross validation and test set validation. Full or  
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leave-one-out cross validation is a model validation method where one sample is left out iteratively and a 
calibration model is built, and then the sample that was left out is predicted using this model. The 
iteration is continued until all samples are left out of the calibration set once. For the test set validation 
the data set was divided into a calibration dataset and a validation dataset that both covered the range of 
ammonia levels: the data was listed according to the ammonia level, and every fourth sample was added 
to the test set (29 samples) and the rest of the samples were included into the calibration set (90 samples).  

The other method used for modelling was the iPLS which is a graphically oriented local modelling 
procedure [12]. The iPLS builds local models on sub-intervals of the whole spectrum and selects the 
optimum sub-intervals in the spectral data to give precision prediction models [12,13]. Each  
sub-interval contains a selected number of spectral variables. The iPLS models were built using the PLS 
toolbox Version 6.2.1 (Eigenvector Research Inc., Wenatchee, WA, USA) in Matlab Version 7.12 
(MathWorks, Natick, MA, USA). The iPLS was run using forward selection on raw and on SNV  
pre-processed spectra with a sub-interval size of 30 variables and a maximum of four PLS components 
(or latent variables) were allowed. To decide upon the number of components that could be used, the 
number of components was varied and looking at the RMSEP of the full model it was found that there 
was no advantage in using more than four components. For validation during iPLS optimization, full 
cross validation was used. When the optimum interval combination was found, the model was 
validated using the test set. 

The prediction performance of the models was evaluated based on their modelling parameters: the 
coefficient of determination (R2), the root mean square error of prediction (RMSEP) and by their residual 
prediction deviation (RPD) which is the ratio of the standard deviation to the RMSEP [14]. The number 
of principal components used to construct the model was also used as an indicator. High R2 and RPD 
values, minimum number of components possible and low RMSEP values indicated a good model. 

In general, eliminating redundant variables and basing models on the variables that are significant 
will give lower estimation errors [15]. The iPLS automatically provides the variables that correlate the 
most to the reference variable. In the case of PLS, once the best possible model was built, the number 
of spectral variables was reduced by using Marten’s uncertainty test function [16] to see if the model 
could be improved further by removing variables that are not important to the model. The uncertainty 
test function is available in the Unscrambler Version 9.8 software and uses the jack-knifing method to 
separate the unimportant variables from the useful ones hence simplifying the model. The reduced set 
of variables was used to build a new model and then the uncertainty test was once again used to reduce 
the variables further. This iterative approach was continued till the modelling parameters began to 
deteriorate. The uncertainty test was also applied on the entire spectral range to investigate if the 
results, after removing the unimportant variables, would be comparable to those of the best models 
obtained by other methods. 

3. Results and Discussion 

The validation statistics including the modelling parameters of selected models are listed in Table 1. 
Models 1 to 6 are the PLS models while models 7 and 8 are from iPLS. From the Figure 1 it can be 
seen that the frequency of the TAN values is not even. An even spread of values would give a more 
robust calibration model [17]. 
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Table 1. Validation statistics. 

Model  
number 

Method 
Data pre- 
processing 

Number of  
spectral variables 

Spectral range 
(nm) 

RMSECV
R2  

(CV *)
Number  
of PCs 

RMSEP 
R2  

(TS **)
RPD 

1 PLS  raw 400 847.2 to 1,770.8  0.66 0.63 6 0.56 0.72 1.93 
2 PLS  raw 280 967.3 to 1,657.6  0.36 0.89 11 0.34 0.90 3.17 
3 PLS  SNV 280 967.3 to 1,657.6 0.38 0.88 9 0.32 0.91 3.43 
4 PLS  SNV 73 - 0.36 0.89 6 0.37 0.88 2.91 

5 PLS  SNV 117 
1,010 to 1,100, 

1,390 to 1,440 and  
1,510 to 1,650  

0.45 0.83 16 0.50 0.77 2.17 

6 PLS  raw 43 - 0.54 0.76 6 0.46 0.81 2.34 

7 iPLS raw 119 
1,127.2–1,333.6 and

1,525.0–1,634.7 
0.55 0.74 7 0.46 0.81 2.33 

8 iPLS SNV 119 
1,127.2–1,333.6 and

1,525.0–1,634.7 
0.43 0.84 5 0.32 0.91 3.39 

* Cross validation; ** Test set validation; Model number 4 is obtained by reducing the number of variables used in 
model 3; The spectral ranges for models 4 and 6 are not mentioned as they consist of many discontinuous intervals. 

Figure 2 is a spectral plot of the absorbance vs. the wavelengths (in nanometers) for all scanned 
samples and gives an overview of the various spectral regions used for constructing models in this 
study. The raw data obtained from the NIRS included noise, and the noisy sections of the spectra were 
removed after visual inspection and reduced to 400 variables in the region of 847.2 nm to 1,770.8 nm. 
At the same time, the plot of the raw spectra showed one scan that seemed very different from the 
others, and this scan was removed as an outlier. Three other samples with high residuals and Hotelling 
T2 values were also excluded. An example of the results plot obtained from the PLS modelling done 
using the Unscrambler Version 9.8 software, is shown in the supplementary section. 

Figure 2. Spectral regions used for developing the models. A1, A2 and A3 represent the 
regions associated with the NH4

+ group. 
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Model 1 is based on the 400 variables, the relatively low R2 and high RMSEP showed that there was 
scope for improvement. Various continuous sections within this selected spectral region (with 400 
variables) were investigated and the region that gave the best correlation (model 2) was selected for 
further data pre-processing. The spectral region that gave the best correlation to TAN was between  
967.3 nm to 1,657.6 nm and included 280 variables. This region includes most of the regions associated 
with the NH4

+ group. The wavelengths in NIR spectroscopy associated with the NH4
+ group are: 1,010 to 

1,100 nm, 1,390 to 1,440 nm, 1,510 to 1,650 nm (represented as regions A1, A2 and A3 respectively in 
Figure 3) and 2,330 to 2,400 nm [18]. However, model 5 which was built by selecting only the specific 
spectral regions associated with the NH4

+ group (excluding the last range which was noisy) and 
correlating it to the reference variable did not perform better than model 2 or model 3. In NIRS, 
anharmonicity, interactions between the constituents [18] and overlapping absorption bands make it 
difficult to ascribe a particular component to a certain wavelength region. The use of chemometrics and 
especially multivariate variable selection methods such as jack-knifing and iPLS make it possible to 
overcome this by identifying the variables that are most relevant. A model based on all the 1006 spectral 
variables available, showed extremely low R2 and extremely high RMSEP which was expected as a lot 
of noisy variables had been used. But reducing the number of variables to 43 by using the uncertainty 
test iteratively, improved the prediction capabilities of the model based on the entire spectral range 
considerably (model 6) again emphasizing the importance of choosing the right variables. 

While using PLS modelling on the 400 variables dataset, pre-processing of the data improved the R2 
and RMSEP of the models only slightly. Pre-processing the spectral data (280 variables) by the SNV 
method (model 3) improved the model slightly more than other pre-processing methods. SNV is used 
to remove slope variation and to correct for scatter effects. This is a mathematical transformation 
method, where each spectrum is corrected individually by first centering the spectral values, and then 
the centered spectrum is scaled by the standard deviation calculated from the individual spectral  
values [10,19]. Although the improvement in the model was small, the number of components used for 
the modelling decreased by 2. Reduction of the number of components used in modelling increases the 
robustness of the model and makes the model less sensitive to noise [15]. Lowering of the number of 
components indicates reduction of noisy variables that are included in the calibration model. This was 
similar with the use of the uncertainty test to reduce the number of variables (model 4). Although 
model 4 did not change much in terms of R2 and RMSEP compared to model 3, the number of 
components was reduced by 3 and the number of variables used to build the model were reduced 
considerably.  

Figure 3 is a sample of the graphical output from the iPLS modelling, which is a plot of the 
RMSECV vs. the variable number (model 8). It visually presents the variables that were most relevant 
for the modelling process by selecting the intervals that have a low RMSECV and indicating them in 
green and the redundant ones in red. The dotted line at the top of the plot represents the RMSECV of a 
model built on the entire variable range. A plot of the mean spectra is also given as a black line which 
aids in identifying the regions of the spectra that are important. 
  



Sensors 2012, 12 2347 
 

 

Figure 3. The output of iPLS; RMSECV with intervals vs. the selected variables 
(represented as variable numbers, not wavelengths). The selected variables are in green and 
the omitted variables are in red. The number of latent variables (LV) used are shown as well. 

 

The iPLS procedure was used as another method for selecting the optimum variables regardless of 
knowledge of the assignment of the NH4

+ group in the NIR region. The iPLS models used the 400 
variables region to iteratively search for variables that gave the least RMSECV. The iPLS models 
improved in terms of R2, RMSEP, and the number of components when data pre-processed by SNV 
(model 8) was used compared to the iPLS model using data that was not pre-processed (model 7). 
Interestingly the noise reduction due to the pre-processing step had a more pronounced effect on the 
model statistics in iPLS than in the PLS models that were based on the larger spectral range. 

The iPLS model was based on a combination of the spectral intervals 1,127.2 to 1,333.6 nm, and 
1,525 to 1,634.7 nm. The first range of optimal selected spectra does not correspond to the 
wavelengths normally associated with ammonia, but the selected spectral variable range 1,525 to 
1,634.7 nm lies within the range of 1,510 to 1,650 nm which is associated with ammonia [18]. 
Comparing the modelling parameters obtained from PLS models and the iPLS models it can be seen 
that except for the number of components which are much lower in the iPLS model, the R2 and the 
RMSEP are quite close to each other.  

Thus, based on all the models seen in Table 1, it is indicative that the spectra provided by the 
diffuse reflectance probe can be correlated to the TAN content. The iPLS model based on the data  
pre-processed by SNV gave an R2 of 0.91 and an RPD of 3.39, which is considered a successful  
model [20,21]. Future research is needed to test the probe in-line in the reactor and with an independent 
test set. Comparing this with other reported results; the TENIRS system uses trans-flexion, a 
combination of transmission and reflectance and requires the use of a transmission vial for the 
scanning process [22]. Transmission is usually used for spectral analysis of liquids while solids are 
scanned by reflectance [22]. Since manures and slurries are a combination of both liquids and solids, 
the inclusion of both transmission and reflectance could be an important factor for the R2 of 0.98 in the 
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TENIRS experiment. One disadvantage of using a transmission vial for the measurements is that it is 
susceptible to clogging and to the formation of deposits. These lead to inaccuracies, due to a change in 
the transmission path length which is vital to the calculations involving the received signal. The diffuse 
reflectance probe does not have this problem.  

High VFA concentrations cause inhibition, as the methanogens are sensitive to pH changes. 
Changes in VFA concentration is also indicative of process imbalances, as any inhibition of 
methanogens will lead to VFA accumulation. Previous studies using the diffuse reflectance probe in an 
anaerobic digester have shown that it can also be used to predict the VFA concentrations [8,9] and can 
thus be used to monitor VFA along with TAN. Apart from a monitoring system that could indicate 
inhibitory levels of TAN content, the NIR probe could also be used to screen manure based substrates 
for their TAN contents prior to loading into the reactor thus preventing the risk of inhibition. It can be 
used to maintain an optimum C/N ratio, between 20/1 and 30/1, which is another way of preventing 
ammonia accumulation and improving digester performance [23]. The use of NIR in predicting the 
amount of TAN will also aid in feed input management especially while dealing with feedstock that is 
high in protein and TAN content. In a previous study, NIR spectroscopy has been used to predict the 
biochemical methane potential (BMP) of meadow grass based substrates [24]. If further studies 
indicate that the diffuse reflectance probe can be calibrated to predict the BMP of manure based 
substrates, the probe could serve multiple purposes in the process control of anaerobic digesters.  

4. Conclusions  

The models obtained were successful and thus the diffuse reflectance probe is promising as an 
online ammonia monitoring tool for materials such as manure and digestates from anaerobic digesters. 
Based on the spectra obtained from the probe, PLS and iPLS gave similar models, except iPLS used 
lesser number of components indicating a more robust model. Pre-processing of the data also reduced 
the number of components in the models when compared to models that were based on raw data. 
Selecting the correct range of spectra that would be used in the model, however, proved to be very 
important in this process.  
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