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Abstract: Gait analysis using wearable sensors is an inexpensive, convenient, and efficient 

manner of providing useful information for multiple health-related applications. As a 

clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport 

activities, gait analysis using wearable sensors shows great prospects. The current paper 

reviews available wearable sensors and ambulatory gait analysis methods based on the 

various wearable sensors. After an introduction of the gait phases, the principles and 

features of wearable sensors used in gait analysis are provided. The gait analysis methods 

based on wearable sensors is divided into gait kinematics, gait kinetics, and 

electromyography. Studies on the current methods are reviewed, and applications in sports, 

rehabilitation, and clinical diagnosis are summarized separately. With the development of 

sensor technology and the analysis method, gait analysis using wearable sensors is 

expected to play an increasingly important role in clinical applications. 
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electromyography; clinical application 
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1. Introduction 

Gait analysis is the systematic study of human locomotion. This type of analysis involves the 

measurement, description, and assessment of quantities that characterize human locomotion [1]. 

Through gait analysis, the gait phase can be identified, the kinematic and kinetic parameters of human 

gait events can be determined, and musculoskeletal functions can be quantitatively evaluated. As a 

result, gait analysis has been employed in sports, rehabilitation, and health diagnostics. For instance, in 

some types of sports training, the method is applied to recognize the faults in athlete performances so 

that they can improve [2–6]. In orthopedics and rehabilitation, gait analysis is used to monitor the 

patient healing progress [7–9]. In health diagnostics, a method to discriminate between asymptomatic 

subjects and patients with medial knee osteoarthritis based on accelerometers and gyroscopes was  

investigated [10], and the ambulatory monitoring method for applications to Parkinson’s disease also 

has been developed [11,12]. In the field of biomedical engineering, gait analysis has been a 

fundamental method and assistive tool to characterize human locomotion. Gait analysis has attracted 

the interest of researchers and clinicians.  

Research on gait analysis has been conducted since the late 19th century, and its widespread 

application in biomedical engineering began with the availability of video camera systems [13–17].  

A standard gait analysis method based on the multi-camera motion capture system and force platform 

with the capability of measuring ground-reaction forces was successfully developed and applied in a 

number of gait laboratories [18,19]. However, this standard gait analysis requires specialized locomotion 

laboratories, expensive equipment, and lengthy set up and post-processing times. Moreover, limitations 

in terms of the moving area and gait cycles for the observed subject/patient have been observed. To 

mitigate these problems, an alternative gait analysis method based on wearable sensors, which are 

inexpensive and can be applied outside the laboratory environment, was studied and has shown great 

prospects in the recent two decades. 

In gait analysis using wearable sensors, motion sensors are worn or attached to various parts of the 

patient’s body, such as the foot and waist. These sensors, which may be accelerometers, gyrosensors, 

force sensors, strain gauges, inclinometers, goniometers, and so on, can measure various characteristics 

of the human gait [20,21]. The movement signal recorded by these sensors can be used to perform the 

gait analysis. For example, the temporal characteristics of gait are collected and estimated from  

body-worn accelerometers and pressure sensors inside footwear, as reported in several papers [22–26]. 

Ng and Chizeck used goniometric measurements at the hip, knee, and ankle joints to detect five 

different gait phases [27]. Slavelberg and Forner-Cordero reported on estimates of the three-dimensional 

(3D) ground reaction forces (GRFs) from the insole based on foot pressure data [28,29]. With the 

development of motion-sensing technology, an increasing number of wearable sensors will be 

developed for gait analysis in the future. Gait analysis using wearable sensors will thus be widely used in 

the clinical field. 

The primary purpose of the current paper is to review the current status of gait analysis technology 

based on wearable sensors. Section 2 introduces the gait phases of human walking and the working 

principles of wearable sensors, which are the basis of human gait analysis. Section 3 reviews the 

research method and primary results on gait analysis using wearable sensors. Section 4 provides a 
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comprehensive outlook for the various applications of gait analysis based on wearable sensors. The 

conclusions to this paper are presented in Section 5.  

2. Basis of Human Gait Analysis 

2.1. Introduction of the Gait Phases 

Generally, human walking is a periodic movement of the body segments and includes repetitive 

motions. To understand this periodic walking course better and easier, the gait phase must be used to 

describe an entire walking period. In the past, normal events were conventionally used as the critical 

actions of separated gait phases. However, this practice only proved to be appropriate for amputees and 

often failed to accommodate the gait deviations of patients impaired by paralysis or arthritis. For 

example, the onset of stance has customarily been called the heel strike [30,31]. However, the heel of a 

paralytic patient may never be in contact the ground or may do so significantly later in the gait cycle. 

Similarly, initial floor contact may be made by the entire foot (flat foot), rather than having forefoot 

contact, which occurs later, after a period of heel-only support. To avoid these difficulties and other 

areas of confusion, the Rancho Los Amigos gait analysis committee developed a generic terminology 

for the functional phases of gait [32]. 

Analysis of the human walking pattern by phases more directly identifies the functional significance 

of the different motions generated at the individual joints and segments. In the present paper, a normal 

walking gait cycle is divided into eight different gait phases, that is, initial contact, loading response, 

midstance, terminal stance, pre-swing, initial swing, mid-swing, and terminal swing (Figure 1). 

Detailed definitions of the gait phases are described in the following [33,34]. 

Figure 1. Gait phases in a normal gait cycle. (a) Gait phases of the stance period; (b) Gait 

phase of the swing period. 

 
(a)        (b) 

(1) Initial contact: This phase comprises the moment when the foot touches the floor. The joint 

postures presented at this time determine the limb’s loading response pattern. 

(2) Loading response: This phase is the initial double-stance period. The phase begins with initial 

floor contact and continues until the other foot is lifted for swing. Using the heel as a rocker, the knee 

is flexed for shock absorption. Ankle plantar flexion limits the heel rocker through forefoot contact 

with the floor. 
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(3) Midstance: This phase is the first half of the single-limb support interval. In this phase, the limb 

advances over the stationary foot through ankle dorsiflexion (ankle rocker), while the knee and hip 

extend. Midstance begins when the other foot is lifted and continues until body weight is aligned over 

the forefoot. 

(4) Terminal stance: This phase completes the single-limb support. The stance begins with the heel 

rising and continues until the other foot strikes the ground, in which the heel rises and the limb 

advances over the forefoot rocker. Throughout this phase, body weight moves ahead of the forefoot. 

(5) Pre-swing: This final phase of stance is the second double-stance interval in the gait cycle.  

Pre-swing begins with the initial contact of the opposite limb and ends with the ipsilateral toe-off. The 

objective of this phase is to position the limb for swing. 

(6) Initial swing: This phase is approximately one-third of the swing period, beginning with a lift of 

the foot from the floor and ending when the swinging foot is opposite the stance foot. In this phase, the 

foot is lifted, and the limb is advanced by hip flexion and increased knee flexion. 

(7) Mid-swing: This phase begins as the swinging limb is opposite the stance limb and ends when 

the swinging limb is forward and the tibia is vertical (i.e., hip and keen flexion postures are equal). The 

knee is allowed to extend in response to gravity, while the ankle continues dorsiflexion to neural. 

(8) Terminal swing: This final phase of swing begins with a vertical tibia and ends when the foot 

strikes the floor. Limb advancement is completed as the leg (shank) moves ahead of the thigh. In this 

phase, limb advancement is completed through knee extension. The hip maintains its earlier flexion 

and the ankle remains dorsiflexed to neural. 

Each gait phase has a functional objective and a critical pattern of selective synergistic motion to 

accomplish its goal. The sequential combination of the phases also enables the limb to accomplish 

three basic tasks, namely, weight acceptance, single-limb support, and limb advancement. Weight 

acceptance begins the stance period through initial contact and loading response. Single-limb support 

continues the stance through the midstance and terminal stance. Limb advancement begins in the  

pre-swing phase and continues through initial swing, mid-swing, and terminal swing. 

Based on the above analysis of the gait phases and basic tasks of limb movement, the gait phases 

may be detected effectively after orientations of the leg segments are accurately obtained. 

2.2. Wearable Sensors for Gait Analysis 

Gait analysis has used different types of motion sensors and systems, such as the accelerometer, 

gyroscope, magnetoresistive sensors, flexible goniometer, electromagnetic tracking system (ETS), 

sensing fabric, force sensor, and sensors for electromyography (EMG). Based on these sensors, a 

single type or a combined sensor system of multiple types of sensors may be used for various gait 

analysis applications. The basic principles and features of these motion sensors and systems are 

described in the following. 

2.2.1. Accelerometer, Gyroscope, and Magnetoresistive Sensors 

An accelerometer is a type of inertial sensor that can measure acceleration along its sensitive axis. 

The common operation principle of accelerometers is based on a mechanical sensing element that 
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comprises a proof mass attached to a mechanical suspension system, with respect to a reference frame. 

The mass proof can be forced to deflect by the inertial force because of acceleration or gravity 

according to Newton’s second Law (force = mass × acceleration). Based on this principle, the 

acceleration can be measured electrically using the physical changes in the displacement of the proof 

mass, with respect to the reference frame. 

Three common types of accelerometers are available, namely, piezoelectric, piezoresistive, and 

capacitive accelerometers [35]. Piezoresistive and capacitive accelerometers can provide dual 

acceleration components and have higher stability. Thus, these types of accelerometers are suitable for 

measuring the motion status in the human gait [36]. By attaching these accelerometers to the feet or 

legs, the acceleration/velocity of the feet or legs in the gait can be determined to perform the gait 

analysis [37]. 

A gyroscope is an angular velocity sensor. The micromachined gyroscope is based on the concept 

of measuring the Coriolis force, which is an apparent force proportional to the angular rate of rotation 

in a rotating reference frame. By detecting the linear motion from the Coriolis effort and performing an 

integration of the gyroscopic signal, the angular rate can be obtained. In addition, gyroscopes based on 

other operating principles also exist, such as the electronic, microchip-packaged MEMS gyroscope 

devices found in consumer electronic devices, solid-state ring lasers, fiber optic gyroscopes, and the 

extremely sensitive quantum gyroscope. A gyroscope can be applied for the measurement of the 

motion and posture of the human segment in gait analysis by measuring the angular rate [38–40]. For 

example, by attaching a gyroscope to human feet or legs, the angular velocity and angle of feet or legs 

during the gait can be determined to realize the reorganization of the various gait phases. In the gait 

analysis, a gyroscope is usually combined with an accelerometer to construct a complete initial  

sensing system. 

Magnetoresistive sensors are based on the magnetoresistive effect (Figure 2). If a magnetic flux 

(magnetic field) is not applied, the current flows straight through the InSb plate. However, if a 

magnetic flux is applied, a Lorentz force proportional to the magnetic flux density will deflect the 

current path.  

Figure 2. The model of magnetoresistive effect. (a) Current mode under non-magnetic 

field; (b) Current mode under magnetic field. 

 
(a)     (b) 

As the current path is deflected, the current flows through the plate for a longer distance, causing 

the resistance to be increased. That is, the magnetoresistive effect refers to the change in the resistivity 

of a current carrying ferromagnetic material resulting from a magnetic field, with the resistance change 

proportional to the tilt angle in relation to the magnetic field direction [41]. Based on this 

magnetoresistive effect, magnetoresistive sensors can estimate changes in the orientation of a body 
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segment in relation to the magnetic North or the vertical axis in the gait analysis [42–44]. Such  

sensors can provide information that cannot be determined by accelerometers or the integration of  

gyroscope signals. 

2.2.2. Flexible Goniometer 

Unlike the inertial sensor, the flexible goniometer is operated by measuring the change in the 

physical signal resulting from the angular change. A flexible goniometer can be used to measure the 

relative rotation between two human body segments. 

The flexible goniometers used in gait analysis can be divided into strain gauges, mechanical 

flexible, inductive, and optical fiber goniometers. A number of flexible electrogoniometers based on  

a strain gauge have been developed and used for angle measurement in gait analysis since  

the 1980s [45,46]. At present, numerous commercialized flexible electrogoniometers are available for 

the measurement of human posture and spinal motion [47–49]. A mechanical flexible goniometer is 

designed to obtain angular change by measuring the longitudinal displacement of two parallel wires 

bent in the plane of rotation, which is demonstrated by measuring the knee joint during human  

walking [50]. Laskoski et al. developed a goniometer with an inductive sensor for the measurement of 

human motion [51]. In addition, a type of optical fiber goniometer was developed recently and applied 

in human joint movement monitoring [52,53]. 

2.2.3. Electromagnetic Tracking System (ETS) 

The electromagnetic tracking system is a kind of 3D measurement device based on Faraday’s law of 

magnetic induction [54,55]. When an object carrying sensor coils performs a motion inside controlled 

magnetic fields, the induced voltages in the sensor coils will change, with respect to the change of the 

object’s position and orientation, relative to the source of controlled magnetic fields. In the ETS, the 

controlled magnetic fields are generated by a fixed transmitter and detected by the receivers fixed on 

the object in motion. Therefore, the positions and orientations of the object in relation to the 

transmitter can be calculated. Based on this working principle, some developed commercialized ETSs 

have been applied in bioengineering, including gait analysis [56,57] and the kinematic study of body 

segments [58–61]. 

2.2.4. Sensing Fabric 

The sensing fabric is a combination of sensing technology and fabric, which ranges from very 

superficially attached electronic components to a substitution of fibers and yarns with sensing 

properties inserted in normal fabrics, to electronic components made of fabric materials. Compared 

with other wearable sensors, the sensing fabric is more flexible and comfortable in measuring human 

posture and movement. 

Generally, the sensing properties of the sensing fabric can be achieved by applying piezoresistive [62], 

piezoelectric [63], or piezocapacitive [64] materials, usually in the form of polymers, for their elastic 

properties. Different polymeric materials for use as coatings can be selected based on the sensing 

property desired for a particular application. In gait analysis research, printing carbon-based polymers 
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onto stretchable fabrics, such as Lycra, can provide a perfect sensing fabric because of the compliant 

qualities and piezoresistive behavior of the polymer [65–67]. 

2.2.5. Force Sensors 

Force sensors can be embedded into footwear to realize ambulatory measurements of GRF during 

the gait. This GRF is a 3D vector, with the actual direction depending on the nature of the interface 

between the foot and the ground. 

In the development of wearable force sensors, various implementations of the force transducer, 

including piezoelectrics [68,69], strain gauged [70,71] and capacitive transducerd [72–74], are 

feasible. In addition, Hessert et al. designed a type of wearable force sensor based on a photoelastic 

triaxial force transducer to measure GRF in gait analysis [75]. Force sensors based on the optical fiber 

matrix were developed to detect the shear and compressive force during human walking [76,77]. 

2.2.6. Electromyography (EMG) 

To measure the action of the muscles in the lower extremity in a human gait, the EMG was 

developed to perform an indirect measurement of muscle activity using surface or wire electrodes. 

These electrodes are a kind of sensor for EMG and can detect voltage potentials to provide information 

on the timing and intensity of muscle contraction, which have been commercialized in combination 

with wireless technology as shown in Figure 3.  

Figure 3. Commercialized wireless EMG sensors. The wireless EMG sensors include the 

electrodes and wireless communication unit. 

 

Generally, surface electrodes are used when only general information on muscle activity is required, 

whereas wire electrodes must be inserted into the designated muscle using a hypodermic needle to 

measure specific information on a particular muscle [78]. As a result, EMG sensors can be used to 

realize the assessment of muscle activity in human gait and play an important role in evaluating the 

walking performance of individuals with problems in their lower extremities [79–81]. 

2.2.7. Commercialization of Wearable Sensors 

Along with the wide application of wearable sensors in gait analysis, some commercialized 

wearable sensors have begun to appear. For example, a combination sensor system provided by Xsens 

Motion Technologies (Enschede, The Netherlands) has been proposed, which includes six degrees of 

freedom force and moment sensors and miniature inertial sensors to estimate joint moments and 

powers of the ankle [82]. The 3D displacements of center of mass during gait were calculated using 
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measurements of the sensor system [83]. These two measurement systems were based on 

commercially available inertial measurement unite (IMU) or multi-axial force senor, and different 

algorithms were developed for the varied applications. A more compact system including all the 3D 

motion sensors and GRF sensors in shoes must be helpful for clinic gait analysis and the embedded 

control system of human assistant mechanism. The novel sensor system named M3D has been 

commercialized by TEC GIHAN Co. (Kyoto, Japan). In addition, A commercialized Motion Capture 

System named Polhemus Liberty ETS system (Polhemus Incorporated, Colchester, VT, USA) was also 

used to obtain the 3D gait kinematics by Mills et al. [57], and various commercialized EMG sensors 

were developed for the gait analysis, such as the Surface EMG Sensors of Delsys Incorporated (Boston, 

MA, USA) and the SX230 EMG Sensor of Biometrics Ltd. (Newport, UK). 

3. Gait Analysis Methods Based on Wearable Sensors 

In the past two decades, a great deal of attention has been given to gait analysis using wearable 

sensors, and significant progress has been achieved in this area. The achievements of human gait 

analysis can be divided into three areas, namely, kinematics, kinetics, and EMG. The kinematics of the 

human gait describes the movements of the major joints and components of the lower extremity in the 

human gait. Gait kinetics focuses on the study of forces and moments that result in the movement of 

human segments, in which the orientation of all the leg segments obtained from gait kinematics is 

often required. The EMG of the human gait is used to detect and analyze muscle activity during human 

walking. In this chapter, gait analysis methods based on wearable sensors are reviewed separately 

based on these three research areas. 

3.1. Gait Kinematics 

For gait analysis and its application in biomedical engineering, gait kinematics must be established 

on the basis of kinematic measurement and analysis. Kinematic measurement collects gait data using 

various sensors. Based on these collected gait data, a kinematic analysis can be performed to recognize 

the gait phases, as well as obtain the general gait parameters and movement information on the body 

segments. As a basis of gait kinematics, kinematic measurement is the essential principle that can 

significantly affect the selection of the kinematic analysis method. 

Two main techniques are employed in the kinematic measurement of the human gait. One earlier 

developed technique is based on camera systems, which are used in a large number of specialized 

laboratories. The other technique for kinematic measurement is the use of wearable sensors, which was 

first proposed by Morris in 1973 and has been substantially developed as an ambulatory gait analysis 

method in the last two decades [84]. Among the two techniques, the latter represents the direction of 

future development and is the emphasis of the discussion in the current section. 

The application of the accelerometer marked the beginning of gait analysis using wearable  

sensors and provides an effective method for analyzing human gait in ambulatory circumstances. 

Mathie et al. [85,86] reviewed the use of accelerometer-based systems in human movement, such as 

monitoring a range of different movements, measuring physical activity levels and identifying and 

classify movements performed by subjects, and discussed a real-time human movement classifier using 

a triaxial accelerometer for ambulatory monitoring. Godfrey et al. [87] gave a comprehensive 
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comparison of all the achieved result on using accelerometers for human movement and mobility 

analysis from 1991 to 2006, summarized the various interpretation methods of accelerometer data and 

commercially available monitors based on the accelerometers. Moreover, Preece et al. [88] reviewed 

of the techniques which have been used to classify the normal and identify falls from body-worn 

sensors including accelerometers, gyroscope and other sensors for gait analysis. In some studies, 

accelerometers were mounted on the thigh and shank to measure accelerations during walking [89,90]. 

By analyzing these obtained acceleration data, the stages of lower extremity movement were 

determined [91]. The gait cycle time and number of walking steps can be determined using several 

accelerometers affixed to the subject’s waist [92]. In addition, the suitability of the integrated 

accelerometer to measure dynamic acceleration for gait applications was assessed and validated 

through a comparison of the predicted pendulum acceleration (derived from a goniometer) with the 

acceleration measured by the integrated accelerometer [93]. Various feature extraction methods for the 

classification of dynamic activities from accelerometer data were compared based on two datasets of 

activities collected from 20 subjects [94]. 

Figure 4. Kinematic measurement based on accelerators and gyroscopes. By using three 

pairs of accelerators and gyroscopes attached on the foot, calf and thigh seperately, the 

angular displacements of the lower extremity were measured.  

 

To obtain more information on the human gait, other wearable sensors, such as gyroscopes  

and magnetoresistive sensors, are combined with accelerometers and applied in gait kinematics. 

Gyroscopes are usually applied in the measurement of angular rate and the angle of various joints on 

the lower extremities [95–97]. Such devices could be mounted on the foot, shank, or thigh to measure 
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the angular rate and obtain angular information on various joints [98,99]. As shown in Figure 4, a 

kinematic measurement based on accelerators and gyroscopes was performed. In this measurement, the 

foot angular displacement, calf angular displacement and thigh angle (represented by the red lines) of 

the right lower extremity in a walking cycle were measured and compared with the results (represented 

by the blue lines) based on multi-camera system. 

The magnetoresistive sensor can provide a reference measure for body orientation, in addition to the 

earth gravity field. Moreover, its sensor signal is unaffected by dynamic motions. Therefore, such a 

device is suitable for determining and estimating changes in the orientation of the lower extremity 

segment relative to the magnetic North or the vertical axis in the gait analysis. 

In addition, the flexible goniometer, ETS, and sensing fabric also can serve as wearable sensors in 

gait analysis. Direct measurements of joint angles can be conducted through flexible goniometers, 

which have been used in clinical research [100,101]. ETSs can directly measure the 3D position and 

orientation of body segments in the human gait [102,103]. The primary limitations of ETSs are their 

limited capture volume and susceptibility to magnetic interference from metal objects within and near 

their capture volume. When these limitations are addressed, the accuracy of position and orientation 

data acquired from ETSs is comparable with that from image-based systems [104,105]. The smart 

sensing fabric can be easily integrated into truly wearable, instrumented garments and can be used  

to record the movement of body segments in gait kinematics because of their flexibility and 

conformability [106]. In the paper of Preece et al. [107], an automatic identification of gait events 

using an instrumented sock with piezo-resistive strain sensors was investigated. 

Based on the measured data, detection of the gait phase and identification of the characteristics of 

human gait can be achieved through a variety of analysis techniques. In gait detection, various 

approaches have been applied to determine the gait events during the human walk, as reviewed by 

Rueterbories et al. [108]. Functional analysis, based on mathematical methods for curve sketching to 

extract features, is a common approach used to indicate certain gait phases or events [109,110]. 

Inductive machine learning, such as neural networks [91,111], mutual information classifiers [112], 

fuzzy computational algorithms [113,114], and support vector machines [115], have also been applied 

in gait detection using wearable sensors. In the identification of the characteristics of human gait, 

miniature accelerometers and gyroscopes have been used in estimating body segment postures and 

orientations based on a variety of algorithms. However, unknown initial joint angles and error 

accumulation in the integral value of the gyroscope is a significant problem.  

To mitigate this problem, several studies have proposed and applied a variety of algorithms. For 

example, Cikajlo et al. [116] applied a Kalman filter to correct the shank inclination measured by a 

gyroscope. To incorporate the excellent dynamics of a gyroscope and the stable, drift-free performance 

of an accelerometer, a Kalman-based fusion algorithm was applied to obtain dynamic orientations of 

body segments [117]. Takeda et al. proposed a new method to visualize 3D gait using a stick-chain 

model and segment orientations estimated from measurements of accelerometers and gyroscopes in a 

global coordinate system [118]. In addition, the extended Kalman filter [119] and Gaussian particle 

filter [120] were also used to evaluate the hip angle in a walking cycle from the measurements of the 

wearable sensors, thus improving accuracy. According to the results of the kinematic analysis, the 

information on segment acceleration and velocity, joint angle, and gait events, such as heel strike and 

toe-off, can be provided and used in clinical applications. 
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3.2. Gait Kinetics 

Gait kinetics is the study of forces and moments that result in the movement of body segments in a 

human gait, including the measurement of GRF and kinetic analysis. Kinetic measurement has largely 

focused on the forces between the foot and the ground, which depend on the application of adaptive 

force sensors. In kinetic analysis, proper and efficient calculation of the required joint moment of 

lower extremities during gait is the most basic and important task. Gait kinetics has been an important 

part of healthcare evaluation and the clinical diagnosis of body movement abilities in daily activities. 

A number of studies [121–124] have reported that numerous stationary systems, such as force plates 

and instrumented treadmill devices, that are available for the measurement of GRF. Earlier methods 

for measuring GRF were usually based on the application of a stationary force plate fixed with a 

number of force sensors. However, a stationary force plate cannot measure more than one stride. Thus, 

in studies of continuous walking, a complex system comprising a large number of force plates and a 

data fusion method must be constructed [121,122]. An instrumented treadmill, which is a 

dynamometric platform formed by laying two force plates under a treadmill, can overcome some 

limitations of the system using distributed multiple force plates in successive measurements of the 

GRF for gait evaluation [123,124]. However, constraints would still be present because subjects would 

have to walk along a straight line and cannot realize turning or direction changes. In conclusion, such 

constraints imposed by GRF measurement based on stationary systems do not make the method 

feasible for measurements in everyday situations. 

Figure 5. A wearable GRF sensor system constructed using five small triaxial force 

sensors. (a) Definition of sensors’ ordinate system and sensor mechanism; (b) Prototype of 

an instrumented shoe for right foot. 
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To overcome the limitations of stationary devices in GRF measurement, numerous studies have 

developed wearable sensors attached to shoes [125–128]. Pressure sensors have been widely used to 

measure gait and the distributed vertical component of GRF, as well as to analyze the loading pattern 

on the plantar soft tissue during the stance phase of gait [125,126]. However, in these systems, the 

transverse components of GRF (friction forces), which are some of the primary factors resulting in 

falling, have been neglected. By fixing two externally mounted sensors beneath the front and rear 

boards of a special shoe, an instrumented shoe for ambulatory measurements of center of pressure 

(CoP) and triaxial GRF in successive walking trials has been developed [127,128]. Our current 

research also developed a new wearable GRF sensor system, which has a thin and light sole and can be 

fixed on a pair of shoes to measure GRF [24]. As shown in Figure 5, the proposed wearable GRF 

sensor system was constructed using five small triaxial force sensors (USL06-H5-500N-C,  

weight: 15 g, size: 20 mm × 20 mm × 5 mm) made by TEC GIHAN CO., Japan. 

By mounting the five triaxial sensors on an aluminum plate beneath the shoe, all five local 

coordinate systems defined for each triaxial sensor could be aligned accurately with the global 

coordinates. Here, (i = 1, 2, 3, 4, and 5) indicate the triaxial forces measured by the distributed five 

triaxial sensors, and (xi, yi) is defined as the position of each triaxial sensor. The three components of 

GRF measured by the developed sensor system were obtained and compared with the measurement 

result using the reference sensor system in a representative walking trial, as shown in Figure 6. GRF 

and CoP can be easily calculated using the measured triaxial forces, Fxi, Fyi, and Fzi, from the five 

small triaxial force sensors.  

Figure 6. Triaxial GRF measured by the wearable sensor system (solid line) and 

referenced system (dashed line) during walking trial. (a) Comparison results of x-axial 

force (anterior-posterior direction); (b) Comparison results of y-axial force (medio-lateral 

direction); (c) Comparison results of z-axial force (vertical direction). 
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Based on the orientations of all the leg segments obtained from the gait kinematics, the measured 

triaxial GRF, and CoP, the kinetic analysis can be performed to obtain additional kinetic information in 

the form of joint moments and joint powers of the lower extremities. In the course of kinetic analysis, 

the inverse dynamics method has been widely used for moment calculation because of its simplicity 

and ease of application [129,130]. As input parameters, kinematic information on the foot, combined 

with GRF, determines the necessary moments and forces from the ankle. Kinetic information obtained 

from the ankle is used for kinetic calculations in the shank. The procedure is repeated from shank to 

thigh and from thigh to hip. Mechanical power can be calculated from the obtained joint moment 

producing angular velocity, and the mechanical energy consumption during the human gait can be 

estimated [131]. 

In informed research on gait analysis, wearable sensors have been adopted to calculate the joint 

kinetic analysis. In a study by Schepers et al., an ambulatory wearable sensor system was used to 

assess foot and ankle dynamics, considering only the GRF factor and neglecting body inertial 

parameters [132]. In our research, a wearable sensor system with a GRF sensor and motion sensors of 

segments were used to analyze the kinetics of the ankle, knee, and hip joints [133,134]. The achieved 

joint kinetics can be used for clinical decisions and assist in medical diagnosis. For instance, joint 

kinetics, specifically joint moments and joint powers, is available as an additional tool in the assessment 

of normal and pathological gait [135]. Further research is necessary to standardize the methods for 

defining kinetic variables to develop a more reliable process of analyzing gait in the clinical setting. 

3.3. EMG and Muscle Force  

Muscles provide power for human locomotion, and EMG is therefore used to detect and measure 

the small electric current produced by muscles during contraction. Wearable sensors can be placed on 

the skin to perform these measurements, as shown in Figure 7. EMG was developed during the first 

half of the 20th century, and the earliest major studies on EMG during walking were performed in  

the 1940s and 1950s [136]. Subsequently, considerable improvements in procedures and equipment 

have been achieved. The measurement of EMG in human walking is now an important method in 

clinical gait analysis. With the development of wireless technology and its application on sensors, 

EMG has become a very reliable and wearable tool for gait analysis. 

Numerous studies have investigated the electrical activity responsible for the phasic contribution of 

muscles in a gait cycle [137]. The phasic EMG activity of individual muscles depend on not only 

walking speed, age, and body size, but also on a number of technical issues involved in EMG 

collection. The magnitude of EMG signals may not be directly proportional to the tension created in a 

muscle with the changing phasic EMG. Thus, a number of studies illustrate EMG activity as simple 

“on-off” diagrams, as shown in Figure 8 [138]. Other studies attempt to provide more information 

through the normalization of the EMG linear envelope and the timing of functional muscle activity 

with peak activity, usually to the standard of EMG activity during maximal isometric contraction [139]. 

Estimates of phasic muscle activity and 3D motions of the limbs have been combined pictorially to 

provide an overall view of gait and muscle action [138]. Significant variability in the reported data is 

attributable to the sensitivity of muscle phasic contractile patterns to walking velocity, but evidence 

also show that normal physiologic walking strategies include some variation in stride to stride muscle 
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timing. Depending on the presence or absence of neuromuscular disease, and on the specific muscle, 

EMG data from five to ten gait cycles may have to be averaged to obtain a representative sample. 

Figure 7. Diagram of EMG application in human gait. By using the EMG sensors, the 

electrical activity of muscles of lower extremity can be measured and the muscle force can 

be calculated. 

 

Figure 8. “On-off” diagrams of normal EMG activities during gait modification. 
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EMG of the active muscle can yield information on muscle physiology and motor control beyond 

issues of timing during gait. Modern diagnostic EMG can identify neural injury or compression, 

denervated muscles, or primary pathological processes [140,141]. In particular, the ability to use EMG 

analysis to quantitative localized muscle fatigue has significant importance in the study of exercise 

physiology, athletic training, ergonomics, physical therapy, and physical medicines [142]. 

On the other hand, the EMG-to-force processing approach has also become a reliable technique for 

the estimation of muscle force [143–145], which belongs to the field of muscle kinetics. In this field, 

several studies proposed the static optimization method to calculate muscle force, which could obtain 

more accurate muscle force results than the EMG-to-force processing approach [146]. This research 

topic results in another important development for gait analysis, which is the biomechanics of muscles 

based on the musculoskeletal modeling method. In human gait, muscles of the lower extremity 

produce movement of the joint by generating linear force at a distance from the center of the joint. The 

farther the tendon of a muscle lies from the joint center, the greater the moment to produce movement 

will be [147]. The static and dynamic optimization solution is a converse method to estimate muscle 

force for gait analysis [148]. Visualization of a muscular skeletal system of the lower extremity in  

gait analysis becomes possible using two excellent software packages, namely, OpenSim and Anybody,  

separately [149,150]. 

4. Application of Gait Analysis Using Wearable Sensors 

With the development of sensor technology and gait data analyzing techniques, gait analysis using 

wearable sensors has become a widespread and useful tool for both clinical practice and biomechanical 

research. Using small, low-power, and low cost wearable sensors, ambulatory gait analysis can be used 

conveniently in sports, rehabilitation, and clinical diagnostics, as summarized in the following. 

4.1. Sports 

In sports, gait analysis based on wearable sensors can be used for sport training and analysis and for 

the improvement of athlete performance. An athlete’s faulty performance can be recognized and 

further corrected by the ambulatory gait analysis, which can promote performance improvement.  

A number of studies have applied the ambulatory gait analysis technique to analyze the movement of 

body segments in various sporting events, including golf [151], running [152], and baseball  

training [153]. The gait analysis technique based on wearable wireless sensors has also been used in 

exercise coaching [154] and mobile interactive entertainment driven by exercise [155]. The prevention 

of sport injury is an alternative application of gait analysis using wearable sensors. Combining gait 

analysis with sport training can effectively prevent many injuries from overuse or incorrect posture and 

motion, thus maintaining the athletes’ high level of running and jumping [152]. 

4.2. Rehabilitation 

The application of gait analysis in rehabilitation has been widely studied and realized in numerous 

hospitals and healthcare centers with subjects of different ages. Gait analysis based on wearable 
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sensors is an effective clinical tool for treatment planning, outcome assessment, and longitudinal 

studies on maintenance and progress. 

As a clinical tool, motion analysis of the lower extremities during gait is applied in pre-operative 

planning for patients with cerebral palsy [156–158] and can alter surgical decision making. After the 

application of gait analysis, the cost of care can be reduced by decreasing the number of pre- and  

post-operative clinic visits and subsequent surgical or other interventions. Ambulatory gait analysis 

can also provide a quantitative description of the gait cycle, which complements and augments the 

standard observational analysis. The ambulatory gait analysis results can also assist in interventions to 

determine whether or not a particular course of treatment is appropriate for a patient. For example, in 

such surgical procedures as the rectus femoris transfer, analyzing the swing phase of a patient’s gait 

can indicate the necessity of undergoing the procedure [159]. 

For people with neurological conditions, such as Parkinson’s disease and stroke, the ambulatory 

gait analysis is an important step in their recovery process and can provide low-cost and convenient 

rehabilitation monitoring. Parkinson’s disease is commonly characterized by motor dysfunctions, such 

as resting tremors, slowing of movement, gait difficulty, and limb rigidity. Hence, gait has been 

verified as one of the most reliable diagnostic signs of this disease. Accordingly, studies on the use of 

gait analysis as an alternative measure of the severity of Parkinson’s disease have been increasing. 

Salarian et al. [160] performed gait measurement in patients with Parkinson’s disease using a 

developed wearable sensor device and concluded that stride length is highly correlated with the 

severity of the disease. Furthermore, gait phase discrimination [161] and gait monitoring methods [162] 

based on the wearable sensor system have been developed for patients with Parkinson’s disease. The 

assessment of the freezing-of-gait symptom and the gait-unfreezing method [163,164] has also been 

established using the wearable assistant. In the rehabilitation of stroke patients, gait analysis using 

wearable sensors also play an important role. Many stroke patients who regained their walking ability 

do not have sufficient locomotion capacity for independent mobility in their community and need to 

undergo gait rehabilitation for the recovery of their independent mobility. Therefore, ambulatory gait 

analysis is applied in the automatic identification of temporal gait parameters of post-stroke individuals 

to provide an assessment of the functional utilization of the affected lower extremity as part of the 

behavior enhancing feedback [165,166]. In recent years, the application of gait analysis based on 

wearable sensors has made significant progress and achieved great success in the rehabilitation of post-

stroke individuals [167,168]. 

In the field of joint arthroplasty, clinical and instrumental data can be obtained through gait analysis 

based on wearable sensors. Such data can be used to evaluate the patient’s progress before and after 

hip or knee arthroplasty. Aminian and Najafi [169] tested and validated the application of gait analysis 

based on body-fixed sensors in hip osteoarthritic patients as a progress assessment method before and 

after surgery. Accurate assessment of the progressive improvement in gait following knee arthroplasty 

based on the ambulatory gait analysis was proposed, and the effectiveness of this method was also 

validated [170]. In addition, the EMG technique can be used to determine the intensity of muscle 

contraction and evaluate the walking performance of individuals with neurological injuries during 

rehabilitation [171]. 
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4.3. Clinical Diagnosis and Healthcare Monitoring 

In the clinical diagnosis of patients with Parkinson’s or knee osteoarthritis disease, the ambulatory 

estimation of lower extremity movement in the gait is usually necessary [172]. Based on the estimation 

results of the lower extremities, the disease and its severity can be determined, and clinicians can 

establish a proper treatment scheme for the patients. In healthcare monitoring, gait analysis based on 

wearable sensors can also be applied in various occasions, such as in the detection of gait abnormalities, 

the assessment of recovery, fall risk estimation, and so on. In the healthcare environment, gait 

information is used to detect walking behavior abnormalities that may indicate the onset of adverse 

health problems or the progression of neurodegenerative diseases [173]. The presence of gait abnormalities 

in elderly persons is often a significant predictor of the risk of the development of dementia, especially 

non-Alzheimer’s dementia [174]. 

Fall risk estimation is also an important application of gait analysis using wearable sensors. As the 

most common type of home accident among elderly people, fall is a major threat to health and 

independence. The importance of this threat facilitated studies on fall risk estimation to provide 

adaptive assistance and preventive measures to subjects deemed at risk. Nyberg et al. analyzed and 

reported the reasons for falling and the phase in which fall occurs based on gait analysis using 

wearable sensors [175,176]. Moreover, a number of studies developed different algorithms to judge the 

existence of an emergency fall [177–182]. Bourke et al. developed a threshold-based fall-detection 

algorithm using bi-an axial gyroscope sensor, and investigated the fall-detection algorithms using a 

waist-worn tri-axial accelerometer or a custom vest embedded with a tri-axial accelerometer [177–179]. 

Kanges et al. determined the acceleration thresholds for fall detection using tri-axial accelerometers 

attached at the waist and head, analyzed the sensitivity and specificity of fall detection in people  

aged 40 years and over, and gave an overall comparison of different fall-detection algorithms [180–182]. 

These research results showed that the wearable sensors for gait analysis can be applied to the  

fall-detection and fall risk estimation in daily life. As a result, this technique can be combined with 

wireless network and play an important role in smart home technology, which aims to support the 

ability of older adults and people with disabilities to remain living independently in their own homes 

and provide appropriate life assistance and health monitoring in their daily life. 

5. Conclusions 

A useful tool both in clinical practice and biomechanical research, gait analysis has attracted an 

increasing amount of attention from the researchers and clinicians since the 1970s. With the utilization 

of video cameras, gait analysis based on highly accurate computer-based force plates was established 

in the 1980s and was applied in specialized motion laboratories. Subsequently, gait analysis using 

wearable sensors provided quantitative and repeatable results over extended time periods with low cost 

and good portability, showing better prospects and making great progress in recent years. At present, 

commercialized wearable sensors have been adopted in various applications of gait analysis. 

The current paper provides a systemic review of gait analysis using wearable sensors. After the 

introduction of the human gait phase, a number of wearable sensors used in gait analysis were 

described, and their basic principles and application features were identified, providing the basis for 
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ambulatory gait analysis. Studies on gait analysis methods based on wearable sensors, which are 

divided into gait kinematics, gait kinetics and EMG, was reviewed according to the detailed research 

aim. Furthermore, the applications of these methods in sports, rehabilitation, and clinical diagnosis 

were covered individually. Significant application prospects of the proposed methods can be expected 

and exploited. 

Until now, gait analysis using wearable sensors has made great progress and shown good 

application prospects. In order to realize the wide application of this technology in our life, some 

detailed technical matters still need to be improved, such as the stability of sensor signals, the 

reliability of analytical algorithms for kinematics and kinetics in gait analysis, development of low cost 

and small volume integrated wearable sensor systems, and so on. In the future, the intelligent gait 

analysis system, which can perform the gait kinematics, kinetics and EMG simultaneously by the 

integration of multiple wearable sensors with small volumes, low power, and wireless data transfer, 

will be an important development trend. Another important trend is the fusion of gait analysis 

technology and remote medical systems, whereby gait analysis results can be transmitted to a 

centralized medical location and processed by trained medical personnel. Once these two 

developments are achieved, gait analysis using wearable sensors will be widely performed in daily 

environments, various clinical occasions, and other possible applications to monitor physical activity. 

In the prospective smart home, gait analysis technology based on wearable sensors also can play an 

important role as a medical assistance tool. 
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