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Abstract: In this paper, a PVDF film sensor was used to measure the transient responses of 

a cantilever beam subjected to an impact loading. The measurement capability of a PVDF 

sensor is affected by the area of the PVDF film sensor and the signal conditioner (charge 

amplifier). The influences of these effects on the experimental measurements were 

investigated. The transient responses for the dynamic strain of the beam were measured 

simultaneously by the PVDF sensor and a conventional strain gauge. The resonant 

frequencies of the beam were determined by applying the Fast Fourier Transform on 

transient results in the time domain of the PVDF sensor and the strain gauge. The 

experimentally measured resonant frequencies from the PVDF sensor and the strain gauge 

were compared with those predicted from theoretical and FEM numerical calculations. 

Based on the comparison of the results measured for these two sensors, the PVDF film 

sensor proved capable of measuring transient responses for dynamic strain, and its 

sensitivity is better than that of the strain gauge. Furthermore, almost all the resonant 

frequencies can be obtained from the results of transient responses for PVDF film. 

Keywords: PVDF film sensor; strain gage; cantilever beam; transient response; 

resonant frequency 
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1. Introduction  

The phenomenon of polymorphism of polyvinylidene fluoride (PVDF) has been investigated since the 

1960s [1,2]. Four structures of PVDF were observed, and the three common notations used for indicating 

these structures are {I, II, III, IV}, {β, α, γ, δ}, and {I, II, III, IIp} [3,4]. It was the β phase (phase I) of 

PVDF, found by Kawai in 1969 [5], that exhibited the strongest piezoelectric activity of any known 

polymer. A variety of methods like mechanical stretching [6], application of an electric field [7] or 

incorporation of additives [8,9] has been used in the literature to obtain this crystalline phase. PVDF 

materials are produced in the form of thin films with thicknesses ranging from 9 to 110 μm. In addition, 

0.5- and 1-mm thick films are commercially available. Recently, the spin-coating method [10,11] has 

been reported for obtaining thin films of β-PVDF. This technique allows the fabrication over large area 

on the substrates. High-quality films with controlled thicknesses from 300 nm to 4.5 μm can be obtained 

in a single deposition step using the spin-coating method [12]. 

The electrodes are produced by sputtering iron, cobalt, nickel, or aluminum particles on the surfaces 

of PVDF. Like other piezoelectric materials, PVDF has piezoelectric effects. When PVDF is pressed or 

stretched, electrons are charged on the electrodes. Therefore, electric signals are generated that are 

related to the pressure and stretch that is applied to PVDF. On the other hand, when PVDF is placed in 

an electrical field, it is deformed. This PVDF piezoelectric polymer has the most significant 

piezoelectricity among all piezoelectric polymers. In addition, piezoelectric polymers have higher 

flexibility and mechanical strength than other piezoelectric materials. The applications of PVDF 

sensors include the realms of underwater investigation, biomedical studies, nondestructive damage 

detection, robotics, and vibration control. 

PVDF has been investigated intensively since 1969. An enormous amount of research has investigated 

the characteristics of PVDF [13–19]. The acoustic impedance of PVDF (about 3.94 × 10
6
 rayl) is close to 

that of water (about 1.5 × 10
6
 rayl) [20], hence it can be used in the water environments without 

matching layers. This special characteristic makes PVDF suitable for underwater investigation, 

underwater acoustics, and biomedical transducers [21–24]. Due to its low weight, high flexibility and 

high mechanical strength, PVDF can be easily attached to surfaces of structures without influencing 

the resonant frequencies of those structures. PVDF was also utilized in the realm of nondestructive 

damage detection [25–30], and the first case was presented by the USA Naval Air Development Center. 

The Center used PVDF sensors to detect flaws and structural defects in aircrafts [21,31]. Furthermore, 

PVDF can be used as a pressure sensor, tactile sensor, glide sensor, and temperature sensor for 

mechatronics [32]. The responses of PVDF under static and cyclic loading conditions and the 

significance of cyclic frequency and mean stress have been studied in terms of time-dependent 

mechanical responses [33,34]. Based on these experimental results, a constitutive model of PVDF has 

been developed. 

In this paper, the principles behind the PVDF sensing system and the vibration of a cantilever beam 

are briefly presented in Sections 2 and 3, respectively. Then, in Section 4, dynamic strain measured by 

the PVDF sensor and the strain gauge is presented. In addition, the influence of the size of the PVDF 

film and the presence of a charge amplifier on sensing ability is presented. All of the results obtained 

with a PVDF sensor were compared to those obtained with a strain gauge, as well as theoretical 

predictions and FEM results.  
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The sensitivity and accuracy of PVDF sensors presented in this study demonstrate their excellent 

characteristics in measuring dynamic strain in transient situations. The PVDF sensors are capable to 

obtain the transient responses of structures due to small impact loadings. The high signal to noise ration 

of PVDF sensors make them much more attractive in situations of low strain or high noise level. It is 

demonstrated in this study that the resonant frequencies can be easily and accurately determined from the 

measured transient responses. Almost all the resonant frequencies, which includes bending and torsional 

modes, can be obtained from larger size of the PVDF sensors. Furthermore, the influence of the locations 

of the sensors and impact loadings on the frequency spectrum is also discussed in detail. 

2. PVDF Sensing System 

2.1. PVDF Sensing Principle 

PVDF film sensors comprise one type of capacitive sensors. The electrical model of a PVDF film 

sensor is shown in Figure 1, in which 
0C  indicates the equivalent capacitance of the PVDF film, 

oV  is 

open-circuit voltage of the PVDF film, and 
sV  can be considered to be an ideal voltage generator.  

Figure 1. The electrical model of the PVDF film sensor. 

 

 

The equivalent capacitance  is expressed as [35]: 

 (1)  

where  is the area of the PVDF film covered by electrodes,  is the thickness of the PVDF film, and 

 is the permittivity of the PVDF film. A PVDF sensor connected to an oscilloscope is shown in 

Figure 2, where  is the input resistance of the oscilloscope,  is the equivalent source impedance 

of the PVDF film, and  is the output voltage measured by the oscilloscope. The source impedance 

combined with the input resistance produces a voltage divider; hence,  is expressed as: 

 (2)  
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(3)  

where  and  is the angular frequency or angular speed (measured in radians per second). 

The input resistance affects low-frequency measurement capability and signal amplitude. This is called 

the “loading effect”. As the ratio of input resistance to source impedance decreases, the overall output 

voltage is reduced.  

Figure 2. A PVDF sensor connected to an oscilloscope. 

 

The magnitude of the voltage, | |LV , is expressed as: 

 (4)  

where  is the piezoelectric coefficient in  direction of the PVDF film and  is the stress in  

direction. The phase of the voltage,   is indicated as: 

 (5)  

The relationship between normalized | |LV  and frequency (Hz) is shown in Figure 3, where t = 28 µm, 

A = 300 mm
2
, ε = 107  10

−12
 (F/m)

 
and RL = 1 M. 

Figure 3. Amplitude spectrum of a PVDF sensor. 
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The relationship between  and frequency (Hz) is shown in Figure 4. These two figures indicate 

that a capacitive sensor has a similar characteristic to a high-pass filter. The phase and the magnitude 

of the voltage are related to the frequency at low frequencies. The cut-off frequency is expressed as: 

 (6)  

Figure 4. Phase spectrum of a PVDF sensor.  

 

Below the cut-off frequency, the measured signals are proportional to the variation of strain; above 

the cut-off frequency, the measured signals are proportional to strain. Equation (6) indicates that the 

cut-off frequency is related to the properties of the PVDF sensor and the input resistance. Choosing a 

proper input resistance for the electronic interface is important in minimizing the loading effect. We 

used a signal conditioner as the intermediary between the PVDF film sensor and the oscilloscope. 

The signal conditioner plays a crucial role in the measurement, and it can affect the performance 

and precision of the measuring system. Signal conditioners are bridges between sensors and other 

instruments. All moderate processes of obtaining the measured signal including amplifying, filtering, 

linearizing, and normalizing processes are called signal-conditioning processes. To make the measured 

signal appropriate to the post processes, these processes are performed properly to moderate measured 

signals. The signal conditioner used in this study is the 2775AM4 signal conditioner manufactured 

by Endevco. 

A PVDF film sensor is a self-generated sensor, which means that it does not need to be linked with 

any power generator. The signal conditioner for a PVDF film sensor is a charge amplifier that can 

transfer charge signals that accumulate on electrodes of a PVDF sensor into voltage signals. A system 

consisting of a PVDF sensor and a charge amplifier is shown in Figure 5.  
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Figure 5. Equivalent-electric model of a PVDF sensor and charge amplifier. 

 

The left side of the figure shows an equivalent-circuit model of a PVDF sensor, whereas the right 

side shows an equivalent-circuit model of a charge amplifier [17]. In this system, 
sV  is the voltage 

generated by the PVDF sensor; 
aR  is the output impedance of the PVDF sensor; 

aC  is the equivalent 

capacitance of the PVDF sensor; 
cC  is the equivalent capacitance of electric wire; 

iV  is the input 

voltage of the charge amplifier; fC  and fR  are the feedback capacitance and impedance of the charge 

amplifier, respectively; A  is the gain of the charge amplifier; and 
oV  is the output voltage of the charge 

amplifier. The output voltage is expressed as: 

 

(7)  

If the gain of the charge amplifier is large enough, Equation (7) can be simplified as: 

 
(8)  

In the high frequency region, the term 
1

fR
 can be neglected. Therefore, the output voltage of the 

charge amplifier in the high frequency region is simplified as: 

 (9)  
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 (11)  

Equation (11) indicates that when the gain of the charge amplifier is large enough, the output 

voltage of the charge amplifier is not related to the gain of the charge amplifier but related to the 

charges accumulated on the PVDF sensor and the feedback capacitance of the charge amplifier. 

However, in the low-frequency region, the term 
1

fR
 cannot be neglected. Therefore, the amplitude 

of output voltage of charge amplifier is expressed as: 

 

(12)  

If 
1

f

f

C
R

  , the amplitude becomes: 

 (13)  

From Equation (12) and Equation (13), the frequency   represents the cut-off frequency. The  

cut-off frequency in hertz is expressed as: 

 (14)  

The phase of the output voltage in the low frequency region is expressed as: 

 (15)  
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3
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sensors with different sizes were used to measure transient responses. The first one was a 15-mm long 

PVDF sensor, which was bonded on the upper surface of the beam near the fixed end, while a strain 

gauge was bonded on the lower surface of the beam at the central point of the 15-mm PVDF sensor. 

The second one was a 7-mm long PVDF sensor, which was bonded on the upper surface at the center 

of the beam, while a strain gauge was bonded on the opposite surface of the central point of the 7-mm 

PVDF sensor. An illustration of the cantilever beam, the sensors, and impact locations is shown  

in Figure 6.  

Figure 6. The locations of PVDF sensors and impact points on the upper surface, and the 

locations of strain gauges on the lower surface of the beam. 

 

 

Figure 7. Experimental setup for two sensors to measure the transient response simultaneously. 
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Figure 7 shows the experimental setup of the measurement system. The steel ball was initially stuck 

by an electromagnet, and then it dropped freely from a height of 26 mm to the cantilever beam surface. 

The transient responses were measured by PVDF and strain gauge sensors simultaneously. Moreover, 

to study the influence of the charge amplifier, all measurements of the PVDF sensors were repeated 

twice. One was measured with the charge amplifier, while the other was not. 

3. Theoretical Results of the Vibration Analysis for a Cantilever Beam 

3.1. Resonant Frequencies of Bending and Lateral Modes of the Cantilever Beam 

From the dimensions of the cantilever beam, we can see that the length is ten-fold larger than the 

width, and the width is ten-fold larger than the thickness. Hence, the theory of Bernoulli-Euler beam 

can be applied to analyze the resonant frequency of the cantilever beam [36]. The governing equation 

of motion of the Bernoulli-Euler beam is expressed as: 

 (16)  

where y  represents the transverse displacement of the beam, and: 

 (17)  

in which E  is Young’s modulus,   is the density, A is the cross-sectional area of the cantilever beam, 

and I is the moment of inertia. The frequency equation of the cantilever beam is expressed as follows: 

 (18)  

where  is the length of the beam. The first six roots of Equation (18) are:  
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the cantilever beam [37]. The exact analytical solution of a cantilevered piezoelectrical energy 

harvester with Bernoulli-Euler beam theory was presented [38]. 

3.2. Resonant Frequencies of Torsional Modes of the Cantilever Beam 

The equation of motion of a cantilever beam for torsional modes is [39]: 

 (19)  
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where c  is the width of the beam and b  is the thickness of the beam. The torsional stiffness, 
TC , is 

expressed as: 

 (21)  

where G  is the shear modulus of the cantilever beam. The resonant frequency can be explicitly 

expressed as: 

 (22)  

4. Experimental Results  

Figure 6 shows the geometrical dimension and locations of PVDF films and strain gauges. Figure 7 
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levels, the signal to noise ratio of strain gauges was poor. The superior signal to noise ratio of PVDF 

sensors makes them much more attractive in situations of low strain or high noise level.  

Figure 8. The transient responses within 450 ms of the first pair of sensors for impact 

location A (with the charge amplifier). 

 

Figure 9. The transient responses within 20 ms of the first pair of sensors for impact location A. 
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9635 Hz were too small for the strain gauge to measure. However, the PVDF sensor was sensitive 

enough to measure all bending modes and two torsional modes.  

Table 1. The mode shapes, the locations of sensors, and impact points.  

Mode 1: 59.2Hz (Bending Mode) 

 

Mode 2: 370Hz (Bending Mode) 
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Table 1. Cont. 

Mode 9: 7007Hz (Bending Mode) 

 

Mode 10: 9321Hz (Bending Mode) 

 

Mode 11: 9533Hz (Torsional Mode) 

 

Figure 10. The frequency spectrum of the first pair of sensors for impact location A (with 

the charge amplifier). 
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as shown in Figure13. Because of the high-pass filter characteristics of the PVDF sensor, the energy of 

the first bending mode measured by the PVDF sensor was lower than expected. The  

high-pass filter characteristics influence the first bending mode most strongly because the cut-off 

frequency, 115 Hz, is between the first resonant frequency and the second resonant frequency. 

Although there was a discrepancy between the transient responses measured by the PVDF sensor and 

the strain gauge, the data in Figure 13 indicate that the resonant frequencies were accurately 

determined by the PVDF sensor without the charge amplifier. 

Figure 11. The transient responses within 450 ms of the first pair of sensors for impact 

location A (without the charge amplifier). 

 

Figure 12. The transient responses within 20 ms of the first pair of sensors for impact location A.  
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Figure 13. The frequency spectrum of the first pair of sensors for impact location A.  
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Figure 14. The transient responses within 450 ms of the first pair of sensors for impact 

location B (with the charge amplifier). 
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Figure 15. The transient responses within 20 ms of the first pair of sensors for impact 

location B. 

 

Figure 16. The frequency spectrum of the first pair of sensors for impact location B. 
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Figure 17. The transient responses within 450 ms of the first pair of sensors for impact 

location B (without the charge amplifier). 

 

Figure 18. The transient responses within 20 ms of the first pair of sensors for impact location B. 
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Figure 19. The frequency spectrum of the first pair of sensors for impact location B. 
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Figure 20. The transient responses within 450 ms of the first pair of sensors for impact 
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Figure 21. The transient responses within 20 ms of the first pair of sensors for impact location C. 

 

Figure 22. The frequency spectrum of the first pair of sensors for impact location C. 

 

The measured results of the PVDF sensor without the charge amplifier and the strain gauge within 

450 ms and 20 ms are shown in Figures 23 and 24, and these transient results in the frequency domain 

within 10 kHz are presented in Figure 25. Without the compensation of the charge amplifier, the 

energy of the first bending mode, when measured by the PVDF sensor, was much lower than expected. 

Therefore, the measured results of the dynamic strain in the time domain from the PVDF sensor and 

the strain gauge did not agree. However, the resonant frequencies determined with the PVDF sensor 

without the charge amplifier (i.e., Figure 25) are the same as those obtained with the PVDF sensor 

with the charge amplifier (i.e., Figure 22). 

-8.5

-7.5

-6.5

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5
P

V
D

F
 (

V
)

-0.002 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

Time (s)

-0.25

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75
S

train
 G

au
g
e (V

)
PVDF 

Strain Gauge

0
1
2
3
4
5
6
7
8
9

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

P
o
w

er
 S

p
ec

tr
u
m

 (
a.

 u
.)

PVDF 

Strain Gauge

58.65

58.65

364.3

1025

2024
3351

5012 7003 9285

364.3

1026

2023 3355
9287

4066
9633



Sensors 2012, 12              

 

 

2107 

Figure 23. The transient responses within 450 ms of the first pair of sensors for impact 

location C (without the charge amplifier). 

 

Figure 24. The transient responses within 20 ms of the first pair of sensors for impact 

location C. 
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Figure 25. The frequency spectrum of the first pair of sensors for impact location C. 
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At impact location A, the measured results of the PVDF sensor with the charge amplifier and the 

strain gauge within 450 ms and 20 ms in time domain were obtained, as shown in Figures 26 and 27, 

respectively. Good agreement was found between the results of the PVDF sensor and the strain gauge. 

Although the size of the second PVDF sensor was half that of the first one, the ability to measure the 

transient response was the same for two PVDF sensors when the charge amplifier was used.  

Figure 27. The transient responses within 20 ms of the second pair of sensors for impact 

location A.  
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Figure 28. The transient responses within 450 ms of the second pair of sensors for impact 

location A (without the charge amplifier). 

 

Figure 29. The frequency spectrum of the second PVDF sensor with and without the 

charge amplifier for impact location A. 
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Figure 30. The transient responses within 450 ms of the second pair of sensors for impact 

location B (with the charge amplifier). 

 

Figure 31. The transient responses within 20 ms of the second pair of sensors for impact location B. 
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Figure 32. The transient responses within 450 ms of the second pair of sensors for impact 

location B (without the charge amplifier). 
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Figure 33. The transient responses within 450 ms of the second pair of sensors for impact 

location C (with the charge amplifier). 
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Figure 34. The transient responses within 20 ms of the second pair of sensors for impact 

location C.  

 
 

Figure 35. The transient responses within 450 ms of the second pair of sensors for impact 

location C (without the charge amplifier). 
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Table 2. The comparison of the resonant frequencies for the first pair of sensors, the 

ABAQUS, and the theory. 

Mode  Theory (Hz) FEM (Error %) PVDF (Error %) Strain Gauge (Error %) 

1  58.84 59.2 (0.63) 58.01 (−1.4) 58.01 (−1.4) 

2  368.8 370.8 (0.55) 367.3 (−0.4) 366.6 (−0.5) 

3  1,032.8 1,038.2 (0.50) 1,028.3 (−0.4) 1,028.3 (−0.4) 

4  2,023.8 2,033.5 (0.48) 2,028 (0.2) 2,026.6 (0.1) 

5  3,345.2 3,361.1 (0.47) 3,352.3 (0.2) 3,355.3 (0.3) 

6 Torsional 4,121.3 4,017(−2.5) 4,064.5(−1.3)  

7  4,997.4 5,019.3 (0.44) 5,018 (0.4) 5,010 (0.2) 

8 Torsional 6,868.8 6,714 (−2.2) 6,814 (−0.8)  

9  6,979.6 7,007.2 (0.39) 7,007.3 (0.4) 7,018 (0.6) 

10  9,292.3 9,321.5 (0.31) 9,297.3 (0.05) 9,295.3 (0.03) 

11 Torsional 9,616.3 9,533 (−0.8) 9,631.3 (0.15)  

 

Table 3. The comparison of the resonant frequencies for the second pair of sensors, the 

ABAQUS, and the theory. 

Mode  Theory (Hz) FEM (Error %) PVDF (Error %) Strain Gauge (Error %) 

1  58.84 59.2 (0.63) 56.52 (−2.5) 56.52 (−2.5) 

2  368.8 3,70.8 (0.55) 361.1 (−2.0) 361.1 (−2.0) 

3  1,032.8 1,038.2 (0.50) 1030 (−0.2)  

4  2,023.8 2,033.5 (0.48) 2,010.3 (−0.6) 2,009 (−0.7) 

5  3,345.2 3,361.1 (0.47) 3,336.3 (−0.2)  

6 Torsional 4,121.3 4,017(−2.5) 4,045.5 (−1.8)  

7  4,997.4 5,019.3 (0.44) 4,949.3 (−0.9) 4,949.6 (−0.9) 

8 Torsional 6,868.8 6,714 (−2.2)   

9  6,979.6 7,007.2 (0.39) 6,942 (−0.5)  

10  9,292.3 9,321.5 (0.31) 9,205.3 (−0.9) 9,206.6 (−0.9) 

11 Torsional 9,616.3 9,533 (−0.8)   

5. Conclusions 

In this article, we studied the influence of the size of the PVDF film, nodal lines of the cantilever 

beam, and the use of the charge amplifier on sensing ability. All of the results, which were measured 

by a PVDF sensor, were compared with those obtained with a strain gauge in addition to theoretical 

calculations and FEM results. The accuracies of measuring the dynamic strain in a transient situation 

from two pairs of sensors were confirmed. Referring to the measured results of these two pairs of 

sensors, we can conclude that a charge amplifier is indispensable for a PVDF sensor, especially a small 

one, to improve the low-frequency responses of the measured results of the PVDF sensor. Moreover, 

referring to the measured results of the first pair of sensors, the strain gauge could not measure some 

bending modes and torsional modes. However, the PVDF sensor could measure almost all modes 

under the same conditions. Therefore, based on these results, it was concluded that the sensitivity of 

the PVDF sensor was superior to that of the strain gauge. 
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