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Abstract: Ciliates of the order Pleurostomatida play essential functions in microbial food webs from a
variety of habitats and have been thought to possess a high level of diversity. Due to undersampling
and often absent molecular data, the actual diversity and phylogenetic relationships within this group
remain unclarified. To help address this deficiency, a survey of freshwater pleurostomatid ciliates
was undertaken in Lake Weishan Wetland, northern China. Here, two new Amphileptus species,
Amphileptus sinicus sp. nov. and Amphileptus piscinarius sp. nov., were investigated using modern
morphological and molecular techniques. Amphileptus sinicus sp. nov. is characterized by possessing
a comparatively large cell size of 330–490 µm, contractile vacuoles on both ventral and dorsal margins,
and 8–10 left and 42–61 right kineties. Amphileptus piscinarius sp. nov. is characterized by possessing a
cell size of 140–210 µm, a large distinctly developed apical extrusome group, 3–4 contractile vacuoles
on the ventral margin, and 6–8 left and 24–28 right kineties. Phylogenetic results based on the 18S
rRNA gene data of these two species group them with other congeners, with these data suggesting
the genus Amphileptus is paraphyletic.

Keywords: Pleurostomatida; diversity; Amphileptus; taxonomy; 18S rRNA gene

1. Introduction

The ciliated protists are a highly differentiated group of single-celled eukaryotes which
exhibit a diversity of morphological features and play key roles in various ecosystems.
Found within aquatic habitats are several iconic ciliates, for example, freshwater Stentor spp.
are found free-swimming with frequent temporary attachment to substrates; the freshwater
Loxodes spp. are typically found within the upper layers of sediments or above this layer in
the water column as they are sensitive to oxygen gradients and light and move accordingly,
thus being well suited for exploiting depleted and anoxic environments; euplotids feed
on bacteria, microalgae and small protists and are commonly found in marine, freshwater
and terrestrial habitats; Amphileptus spp. are widely distributed in freshwater, marine and
brackish water habitats [1–12]. The order Pleurostomatida Schewiakoff, 1896 is a common
and diverse group of raptorial feeders with developed extrusomes that show a marked
preference for more sedentary prey, such as peritrichs and rotifers [13–17]. Pleurostomatida
can be distinctly separated from other groups as being a bilaterally compressed cell; with
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an oral slit located along the ventral margin, with dorsal bristles on the left side [16,18,19].
Although this group has a long history of study, the taxonomy of this group is hindered
due to limitations of earlier studies: (1) some features (e.g., contractile vacuoles, extru-
somes) being described only from live observation (potentially leading to many synonyms).
(2) There are no molecular datasets available for the former morphological descriptions.
(3) The abundance of pleurostomatids detected in samples is often low. Thus, detailed
morphology-based classification [18,20,21] and molecular data need to be explored and
re-investigated [22,23]. Moreover, in the past few years, many studies have revealed that
pleurostomatids exhibit high biodiversity in marine and brackish waters, and more species
may be yet to be discovered [24–31].

Recent molecular phylogenetic analyses have divided pleurostomatids into five fam-
ilies, the Amphileptidae Bütschli, 1889, the Litonotidae Kent, 1882, the Epiphyllidae
Vd’ačný et al., 2015, the Paralitonotidae Zhang et al., 2022 and the Protolitonotidae
Wu et al., 2017 [32–34]. According to previous studies, the amphileptids are represented
by five genera: Amphileptus Ehrenberg, 1830; Apoamphileptus Lin & Song, 2004; Amphilep-
tiscus Song & Bradbury, 1998; Pseudoamphileptus Foissner, 1983; Opisthodon Stein, 1859.
Amphileptus is the largest and oldest genus in the family Amphileptidae with a global
distribution in a wide variety of habitats, usually free-swimming and typically gliding
on the substrate [15,20,30,35–40]. The species in Amphileptus might prefer to live in the
vicinity of aquatic plants or eutrophic sites, and the abundance of these species recorded
from samples collected in open water bodies is usually lower than in aquaculture water
bodies. The distinctive characters of Amphileptus species are (1) having a right anterior
suture; (2) no postoral suture; (3) no perioral kinety running along both sides of the oral slit;
(4) absence of a “spoon” shaped apex at the anterior end; (5) absence of extrusomes along
the dorsal margins [41–45]. Despite recent interest in the family Amphileptidae, only two
of five genera (Amphileptus and Pseudoamphileptus) currently have molecular information,
resulting in the ambiguous phylogenetic positioning of the remaining three genera. To
date, the genus Amphileptus contains approximately 50 species, with only about a third
of these having corresponding molecular information. Previous studies based largely on
morphology suggested monophyly for this group, and indeed species in this genus display
a high degree of similarity, however, recent molecular work suggests a non-monophyly
for the genus Amphileptus [37], with the sequences presented here not disputing those
findings. Based on the recent molecular work and our present work [37,39], Amphileptus are
divided into six subclades in the phylogenetic tree, and A. qingdaoensis is grouped with two
Pseudoamphileptus species which causes Amphileptus to currently be labeled paraphyletic.
Due to the lack of molecular information in amphileptids, paraphyly of Amphileptus is
likely to be confirmed with the addition of further molecular data [46].

Here, we provide data on Amphileptus sinicus sp. nov. and Amphileptus piscinarius sp.
nov. that were isolated from aquaculture ponds surrounding the freshwater Lake Weishan
in northern China. Their morphology and molecular sequences are provided to examine
the diversity and phylogeny of pleurostomatids.

2. Materials and Methods
2.1. Sample Collection (Figure 1)

Amphileptus sinicus sp. nov. was collected from a fish farming pond in Lake Weishan
Wetland, northern China (N 34◦46′19.85′′, E 117◦09′45.93′′) on 15 March 2021 with a water
temperature of 13 ◦C and salinity of 0‰ at the time of sampling. Amphileptus piscinarius sp.
nov. was collected from a separate fish farming pond in Lake Weishan Wetland, northern
China (N 34◦46′11.16′′, E 117◦09′59.04′′) on 4 April 2021 with a water temperature of 14 ◦C
and salinity of 0‰ at the time of sampling. The water temperature was measured with a
thermometer (Shuniu, China, B-016110) and salinity with a YSI (Professional Plus, Yellow
Springs, OH, USA).

Amphileptus sinicus sp. nov. was collected directly from the sampling sites using
pipettes (maximum volume ~50 mL); Amphileptus piscinarius sp. nov. was collected using a
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plankton net (mesh size 20 µm). Wide mouthed plastic sampling containers with a volume
of 500 mL were also used. After collection, samples were transferred into Petri dishes and
immediately investigated.
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with the help of a tablet device). Drawings of stained specimens were made with the aid 
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Figure 1. Sampling locations and images of sampling sites in Lake Weishan Wetland, China. (A) map
of a portion of China, Lake Weishan Wetland (red circle), and typical habitat in wetland, Lake Weishan
Wetland; (B) sampling site of Amphileptus sinicus sp. nov.; (C) sampling site of Amphileptus piscinarius
sp. nov. The map of this part of China was downloaded from: http://www.tianditu.gov.cn.

2.2. Observation and Identification

Live cells were observed by bright field and differential interference contrast mi-
croscopy at 100–1000× magnification [47] using Olympus equipment and software, i.e., a
BX53 microscope, a DP74 camera and cellSens software. The protargol staining method
of [48] was used to reveal the ciliary pattern and nuclear apparatus. Drawings of live
specimens were based on photomicrographs and direct observations (hand-drawn with
the help of a tablet device). Drawings of stained specimens were made with the aid of a
drawing device (hand-drawn with the help of a tablet device). The drawing program used
was “Huashijie Pro”. Terminology and systematics are mainly according to [16,34,41].

2.3. DNA Extraction, PCR Amplification and Gene Sequencing

For each species, a single cell was isolated from the raw samples and washed five times
with filtered habitat water (0.22 µm pore filters) to avoid contamination. Genomic DNA
was extracted using the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany) according
to the manufacturer’s instructions. PCR amplification was performed with the ApexHF
HS DNA Polymerase FS Master Mix (Accurate Biotechnology Hunan Co., Ltd, Changsha,
China). The universal eukaryotic primers: (1) EukA (5′-AAYCTGGTTGATYYTGCCAG-3′),
900R (5′-ACTAGGACGGTATCTGATCG-3′), 900F (5′-CGATAGATACCGTCCTAGT-3′) and
EukB (5′-CYGCAGGTTCACCTACRG-3′) for Amphileptus sinicus sp. nov. (2) 18S-11F-Karyo

http://www.tianditu.gov.cn
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(5′-GCCAGTAGTSATATGCTTGTCT-3′) and EukB (see above) for Amphileptus piscinarius
sp. nov. [49]. PCR programs were performed as follows: 1 cycle of initial denaturation at
94 ◦C, followed by 30 cycles of amplification (98 ◦C, 10 s; 55 ◦C 10 s; 72 ◦C 5 s/kb). The PCR
products were sequenced bidirectionally using the Sanger method by Qingdao WeiLaibio
Technology Co., Ltd. (Qingdao, China). Sequencing fragments were assembled into contigs
using SeqMan ver. 7.1 (DNASTAR) and the final partial 18S rRNA gene sequences were
edited in BioEdit ver. 5.0.6 [50].

2.4. Phylogenetic Analyses

Along with the two newly obtained sequences, another 73 sequences were downloaded
from the GenBank database, including 64 pleurostomatid ciliates and 11 other free-living
litostomateans (outgroup) that were used for the phylogenetic analyses (for accession
numbers, see Figure 2).
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Figure 2. (A) Phylogenetic tree based on the 18S rRNA gene sequences, showing the systematic
positions of Amphileptus sinicus sp. nov. and Amphileptus piscinarius sp. nov., denoted in red. Bootstrap
values for maximum likelihood (ML) and posterior probabilities for Bayesian inference (BI) were
mapped onto the best-scoring ML tree. The scale bar denotes one substitution per one hundred
nucleotide positions. Clades with a different topology in the BI tree are indicated by an asterisk (*);
(B) sequence comparison among Amphileptus species. The upper right diagram shows the similarities
of species, with white to blue indicating the similarities from 0.86 to 1.00; the lower right diagram
indicates the sites of nucleotide differences.

The 75 total sequences were aligned by MAFFT ver. 7.450 [51]. Ambiguously aligned
regions were trimmed in Gblocks ver. 0.91b [52,53]. The final 18S rRNA gene sequence align-
ments comprising 1618 characters, including 438 variable and 344 parsimony-informative
sites, were used for constructing phylogenetic trees using maximum likelihood (ML) and
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Bayesian inference (BI) analyses. ML analyses were carried out with RAxML-HPC2 [54] on
XSEDE ver. 8.2.12 on the CIPRES Science Gateway [55] under the GTRGAMMA model and
with 1000 rapid bootstrap replicates. Bayesian inference analyses were conducted using
MrBayes ver. 3.2.7 [56] under Akaike information criterion (AIC). Bayesian analyses were
run for 10 million generations with a sampling frequency of 100. The first 10,000 trees were
discarded as burn-in. MEGA ver. 7 was used to display the tree topologies [57].

3. Results
3.1. Taxonomy

Amphileptus species usually exhibit a similar cell shape, with the detailed morpho-
logical descriptions as below.

Class Litostomatea Small & Lynn, 1981
Subclass Haptoria Corliss, 1974
Order Pleurostomatida Schewiakoff, 1896
Family Amphileptidae Bütschli, 1889
Genus Amphileptus Ehrenberg, 1830
Amphileptus sinicus sp. nov. (Figures 3 and 4; Table 1)
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Figure 3. Amphileptus sinicus sp. nov., drawings of a living cell (A–D) and after protargol staining
(E–G). (A) Left view of a representative individual, arrows indicate the extrusomes, arrowheads
denote the contractile vacuoles on the ventral and dorsal margins; (B) shape variants, arrows indicate
the extrusomes; (C) dot-like cortical granules (arrowheads); (D) narrowly cuneate extrusomes;
(E) details of the oral ciliary pattern, green-shaded area shows the oral slit; (F) ciliary pattern of the
dorsal side of the holotype specimen; (G) ciliary pattern of the ventro-lateral side of the holotype
specimen, dashed line marks the right anterior suture. Abbreviations: DB, dorsal brush; PK1, perioral
kinety 1; PK2, perioral kinety 2. Scale bars: 100 µm in (A,B,F,G), 5 µm in (D), 50 µm in (E).
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Figure 4. Amphileptus sinicus sp. nov. micrographs from a living cell (A–H) and after protargol staining
(I–L). (A,B) Left views of two typical individuals, arrowheads indicate the contractile vacuoles on
the ventral and dorsal margins, arrows indicate the ellipsoidal macronuclear nodules; (C–E) shape
variants, arrows indicate the ellipsoidal macronuclear nodules; (F) details of the nuclear apparatus
and the contractile vacuoles (arrowheads); (G) detail of the scattered narrowly cuneate-shaped
extrusomes (arrows); (H) detail of the dot-like cortical granules (arrows); (I) detail of the anterior of
right side, white dashed line marks the anterior suture, arrows mark the extrusomes; (J) detail of the
right and left ciliary pattern; (K) detail of the dorsal brush kinety; (L) detail of the oral ciliary pattern.
Abbreviations: DB, dorsal brush; LSK, left somatic kinety; Ma, macronuclear nodules; PK1, perioral
kinety 1; PK2, perioral kinety 2; RSK, right somatic kinety. Scale bars: 120 µm.

Table 1. Morphometric characteristics of Amphileptus sinicus sp. nov. (first line), Amphileptus piscinarius
sp. nov. (second line) based on protargol-stained specimens a.

Character Min Max Mean Median SD CV n

Cell length (µm) 255 612 413.5 409 89.25 21.6 24
121 251 182.9 183 35.8 19.6 29

Cell width (µm) 83 175 129.1 128 26.49 20.5 24
21 60 34.3 33 8.25 24.0 29

Number of right somatic kineties b 42 61 49.9 50 4.97 10.0 23
24 28 25.1 25 1.06 4.2 29

Number of left somatic kineties c 8 10 8.9 9 0.74 8.3 24
6 8 7.0 7 0.80 11.4 23

Number of dorsal brush dikinetids
67 156 112.2 116 23.32 20.8 18
23 68 38.0 35 12.07 31.8 11

Number of macronuclear nodules
2 2 2.0 2 0 0 23
1 2 1.9 2 0.26 13.4 29

Length of macronuclear nodule (µm) 48 106 73.0 74 16.56 22.7 23
18 36 26.5 26 5.08 19.1 29

Width of macronuclear nodule (µm) 30 82 50.5 50 13.25 26.2 23
14 31 26.4 26 5.15 19.5 29

Diameter of micronucleus (µm) 4 4 4.0 4 0 0 1
- - - - - - -

a Abbreviations: CV, coefficient of variation (%). Max, maximum. Min, minimum. n, number of specimens
investigated. SD, standard deviation. -, data not available. b Perioral kinety 2 included. c Perioral kinety 1 and
dorsal brush kinety included.
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ZooBank registration number: urn:lsid:zoobank.org:act:BEFD85A1-83F6-4F04-B967-
9D8746F41870.

Amphileptus piscinarius sp. nov. (Figures 5 and 6; Table 1)
ZooBank registration number: urn:lsid:zoobank.org.act:1339C450-B9DD-4320-BEAD-

47F6045185B8.
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Figure 5. Amphileptus piscinarius sp. nov., drawings of a living cell (A–E), and after protargol staining
(F,G). (A) Left view of a representative individual, arrows indicate the contractile vacuoles on the
ventral margin, arrowhead denotes the apical extrusome group; (B) shape variants, arrows denote
the contractile vacuoles on the ventral margins, arrowheads indicate the apical extrusome group;
(C) dot-like cortical granules (arrowheads); (D) nuclear apparatus, arrow indicates the micronucleus;
(E) narrowly ovate extrusomes; (F) ciliary pattern of the dorsal side and portion of right side, arrow
indicates the apical extrusome group; (G) ciliary pattern of the right side, arrow indicates the apical
extrusome group. Abbreviations: DB, dorsal brush; PK1, perioral kinety 1; PK2, perioral kinety 2.
Scale bars: 40 µm in (A,B); 30 µm in (D); 13 µm in (E); 40 µm in (F,G).
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Figure 6. Amphileptus piscinarius sp. nov., micrographs of a living cell (A–L) and after protargol
staining (M–O). (A,C) Left view of two typical individuals, arrowheads point to the contractile
vacuoles on the ventral margins, arrows indicate the apical extrusomes groups; (B) ellipsoidal
macronuclear nodules, arrow indicates the micronucleus; (D,E,G,I) shaped variants; (F) detail of
the apical extrusome group (arrow); (H) detail of the contractile vacuoles on the ventral margin
(arrowheads); (J) dot-like cortical granules; (K) detail of the cytoplasm, arrowheads indicate the
granules; (L) detail of the narrowly ovate extrusomes; (M) nuclear apparatus, arrowhead indicates
the micronucleus; (N) detail of the anterior of right side; (O) ciliary pattern of the right side. Scale
bars: 60 µm in (A,C–E,G,I,O); 13 µm in (L).

3.1.1. Amphileptus sinicus sp. nov.

Diagnosis. Cell lanceolate, 330–490 × 65–90 µm in vivo; two macronuclear nodules;
contractile vacuoles distributed along the ventral and dorsal margins; extrusomes very
narrowly cuneate, arranged in an apical group and scattered in the cytoplasm; cortical
granules dot-like and colorless; 8–10 left and 42–61 right kineties; right anterior suture;
freshwater habitat.

Type material. A protargol slide with the holotype specimen circled by black ink and
one further protargol slide with paratype specimens have been deposited in the Laboratory
of Protozoology, Ocean University of China, with registration numbers ZGAT20210315-1,
ZGAT2021031501-2, respectively.

Type locality. A fish farming pond in Lake Weishan Wetland, China (N 34◦46′19.85′′,
E 117◦09′45.93′′).

Etymology. The species name sinicus (Latin adjective, Chinese) refers to the fact that
this species was first discovered in China.

Description. Cell about 330–490 × 65–90 µm in vivo, slightly contractile, elongate–
lanceolate in lateral view, cell laterally compressed, with anterior end rounded (Figures 3A,B
and 4A–E). Nuclear apparatus in cell half to posterior cell half. Invariably two macronuclear
nodules, individual nodules ellipsoidal, about 35–50 × 50–70 µm in vivo (Figures 3A,B and
4A–F). Micronucleus not observed in vivo but recorded after protargol staining as 4 µm
in diameter. About 10–12 contractile vacuoles arranged in two rows along ventral and



Diversity 2024, 16, 294 9 of 17

dorsal margins, 6 µm in diameter, pulsating every 30 s (Figures 3A and 4A,F). Extrusomes
very narrowly cuneate, sometimes slightly curved, about 9–12 µm in vivo, some attached
to anterior end of cell forming an apical group, others scattered throughout cytoplasm
(Figures 3A,B,D and 4G). Cortex very flexible; cortical granules dot-like, colorless, about
1 µm across, densely spaced on the right side (Figures 3C and 4H). Cytoplasm contains
numerous small granules which render cell opaque (Figures 3A and 4A–F). Locomotion by
gliding on substrate or occasionally by swimming while rotating about long axis.

Right somatic cilia about 9–11 µm long, very densely arranged on right side (Figures 3A
and 4A,B,H), whereas left ones short and sparsely distributed, difficult to detect in vivo.
Ciliary pattern as shown in Figures 3F,G and 4I–L. About 42–61 right kineties including
perioral kinety 2, intermediate kineties progressively shortened anteriorly forming a su-
ture (Figures 3G and 4I); 8–10 left kineties including perioral kinety 1 and dorsal brush
(Figures 3F and 4K,J). Dorsal brush kinety composed of 67–156 densely spaced dikinetids
in anterior cell third and of monokinetids in posterior two thirds (Figure 3F).

Two perioral kineties. Perioral kinety 1, on the left of oral slit, consists of densely
spaced dikinetids in anterior half of cell and continues as densely spaced monokinetids.
Perioral kinety 2, on the right of oral slit, consists of densely spaced dikinetids in an-
terior two thirds and continues as densely spaced monokinetids (Figures 3E,G and 4L).
Nematodesmata not observed in vivo or after protargol staining.

3.1.2. Amphileptus piscinarius sp. nov.

Diagnosis. Cell elongate–lanceolate, about 140–210 × 20–30 µm in vivo; two globular
to ellipsoidal macronuclear nodules; three to four contractile vacuoles distributed along
the ventral margin; extrusomes very narrowly ovate, only arranged in an apical group;
cortical granules dot-like and colorless (1 µm); 6–8 left and 24–28 right kineties; two perioral
kineties; freshwater habitat.

Type material. A protargol slide with the holotype specimen circled by black ink and
one further protargol slide with paratype specimens have been deposited in the Laboratory
of Protozoology, Ocean University of China, with registration numbers ZGAT20210404-1,
ZGAT2021040401-2, respectively.

Type locality. A fish farming pond in Lake Weishan Wetland, China (N 34◦46′11.16′′,
E 117◦09′59.04′′).

Etymology. The species name “piscinarius” (Latin adjective for belonging to a fish
pond) refers to the sampling location of this species.

Description. Cell about 140–210 × 20–30 µm in vivo; non-contractile; cell elongate–
lanceolate; anterior end rounded, neck region inconspicuous; posterior end slightly pointed;
no distinct tail region (Figures 5A,B and 6A,C–E,G,I). Nuclear apparatus centrally located.
Invariably two macronuclear nodules; nodules globular to ellipsoidal, about 13–30 ×
17–37 µm in vivo. Single micronucleus, about 5 × 3 µm in vivo (Figures 5A,D and 6B,M).
Three to four contractile vacuoles along the posterior half of ventral margin, about 5–7 µm
in diameter, pulsating every 20 s (Figures 5A,B and 6A,C,H). Extrusomes very narrowly
ovate, sometimes slightly curved, about 11–19 µm in vivo, solely attached to anterior
end of cell forming an apical group, no scattered extrusomes detected in the cytoplasm
(Figures 5A,B,E–G and 6A,C,D,G,I,L). Cortex very flexible; cortical granules dot-like, col-
orless, about 0.5–1.0 µm in vivo (Figures 5C and 6J). Cytoplasm contains numerous small
granules rendering cell opaque (Figures 5A and 6K). Swims fast while rotating about
longitudinal axis, never observed gliding on substrate.

Right somatic cilia about 6–7 µm long, very densely arranged on right side (Figure 5A);
whereas left somatic cilia sparsely distributed on the left side and therefore usually un-
detectable in vivo. Ciliary pattern as shown in Figures 5F,G and 6N,O. About 24–28 right
kineties including perioral kinety 2 (Figure 5F,G); 6–8 left kineties including perioral kinety
1 and dorsal brush (Figure 5F,G). Dorsal brush kinety composed of 23–68 densely spaced
dikinetids in anterior cell third and of monokinetids in posterior two thirds (Figure 5F).
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Two perioral kineties, perioral kinety 1 and perioral kinety 2, located on the left and
right of oral slit, respectively (Figure 5G). Perioral kinety 1 is composed of densely spaced
dikinetids in upper third of cell length and of monokinetids in posterior part. Perioral
kinety 2, on the right of oral slit, consists of densely spaced dikinetids in anterior half of
cell and continues as densely spaced monokinetids. Nematodesmata not observed in vivo
or after protargol staining.

3.2. 18S rRNA Gene Sequences

In the present study, novel 18S rRNA gene sequences were obtained from each of the
two new species.

The 18S rRNA gene sequences of Amphileptus sinicus sp. nov. are deposited in GenBank
with the following information: length 1591 bp, GC content 42.36%, accession number
PP768119.

The 18S rRNA gene sequences of Amphileptus piscinarius sp. nov. are deposited in
GenBank with the following information: length 1542 bp, GC content 42.09%, accession
number PP768120.

The sequence similarities among other Amphileptus species range from 87.3% to 100%,
as shown in Figures 2B and 7.
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3.3. Phylogenetic Positions of Two Species

The ML and BI trees based on 18S rRNA gene data have mostly consistent topologies,
therefore only the ML tree is presented (Figure 2). The family Amphileptidae is separated
into six clades. In Clade 1, two Pseudoamphileptus species form a fully supported subclade
and then clustered with Amphileptus qingdaoensis (FJ870086) with the strongest support.
Clade 2 comprises five Amphileptus including Amphileptus sinicus sp. nov., with strong
statistical support (98% ML, 1.00 BI), which form a sister group with Clade 1 with low
variable support (39% ML, 0.68 BI). Clade 3 only consists of Amphileptus dragescoi, whose
position is ambiguous (41% ML, *). Amphileptus bellus and two populations of A. orientalis
from Clade 4 show the strongest support, and then together group with A. pilosus with
variable support (63% ML, 0.99 BI). Clade 5 comprises six Amphileptus species, which is
sister to Clade 4 with low support (24% ML, *). Amphileptus piscinarius sp. nov. forms Clade
6, located outside of the assemblage of Clade 4 and Clade 5 with low support (50% ML,
0.81 BI).

4. Discussion
4.1. Comparison of Amphileptus sinicus sp. nov. with Similar Species

Amphileptus Ehrenberg, 1830, the oldest genus within Pleurostomatida, was charac-
terized by a distinct right anterior suture [20]. Besides the right anterior suture, other
amphileptids (except Amphileptus) possess more distinctive features, such as: Apoamphilep-
tus has a postoral suture; Amphileptiscus has a “spoon”-shaped apex at the anterior end.
Previous studies suggest that the number and distribution of the contractile vacuoles are
useful live features for species identification within the genus Amphileptus (Ehrenberg, 1830)
with variations including: (1) single contractile vacuole in different locations: subterminally
located; terminally located; located in ventral margin or in dorsal margin, etc.; (2) multiple
contractile vacuoles: located on the dorsal margin; located on the ventral margin; located
on the both dorsal and ventral margins; scattered, etc. Concerning multiple contractile
vacuoles arranged along both the dorsal margin and the ventral margin, nine species should
be compared with Amphileptus sinicus sp. nov.: A. parapleurosigma Zhang et al., 2022; A.
pleurosigma (Stokes, 1884) Foissner, 1984; A. polymicronuclei Li, 1990; A. proceroformis Song &
Wilbert, 1989; A. procerus (Penard, 1922) Song & Wilbert, 1989; A. quadrinucleatus (Dragesco
& Njiné, 1971) Dragesco & Dragesco-Kernéis, 1986; A. salignus Chen et al., 2011; A. fusiformis
Song & Wilbert, 1989; A. weishanensis Zhang et al., 2022 (Table 2).

Amphileptus sinicus sp. nov. can be distinguished from A. fusiformis, A. polymicronuclei
and A. salignus by having a distinct apical extrusome group (vs. absent in others). Moreover,
the new species has more somatic kineties (8–10 left and 42–61 right kineties in Amphileptus
sinicus sp. nov. vs. 6 left and 10–14 right kineties in A. fusiformis; 23–25 right kineties
in A. polymicronuclei; 4 left and 24–29 right kineties in A. salignus) and a larger cell size
(330–490 µm in Amphileptus sinicus sp. nov. vs. 45–60 µm in A. fusiformis; 230 µm in A.
polymicronuclei; 180–360 µm in A. salignus) [58–60].

Amphileptus quadrinucleatus and A. weishanensis have a large cell size as well. However,
Amphileptus sinicus sp. nov. can be distinguished from them by having more left kineties
(8–10 vs. 5), and the narrowly cuneate extrusomes, (vs. filiform extrusomes in A. quadrinu-
cleatus and A. weishanensis). Moreover, A. sinicus sp. nov. has two macronuclear nodules
whereas A. quadrinucleatus and A. weishanensis have multiple macronuclear nodules [38,61].

Amphileptus sinicus sp. nov. closely resembles A. parapleurosigma, A. pleurosigma, A.
proceroformis and A. procerus by having an apical extrusome group, scattered extrusomes and
living in freshwater habitats. However, Amphileptus sinicus sp. nov. can be distinguished
from them by having more right kineties (42–61 right kineties in Amphileptus sinicus sp. nov.
vs. 19–24 right kineties in A. parapleurosigma; 25–35 right kineties in A. pleurosigma; 14–26
right kineties in A. proceroformis; 25–40 in A. procerus) [15,38,58].
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Table 2. Comparison of Amphileptus sinicus sp. nov. with similar congeners (two rows of CVs) a.

Species Cell Length
In Vivo

No. of
LK/RK

No. of
Ma Shape of Ex Distribution of Ex Apical

Group Habitat Reference

Amphileptus sinicus
sp. nov. 330–490 8–10/42–

61 2 Narrowly
cuneate

Anterior end;
scattered Present FW Present work

A. parapleurosigma 180–370 4–6/19–24 2 Clavate Anterior end;
scattered Present FW [38]

A. pleurosigma 150–450 4–6/25–35 2 Thorn-shaped Anterior end;
scattered Present FW [15]

A. polymicronuclei 230 -/23–25 2 - Oral slit Absent FW [59]

A. proceroformis 120–350 5–6/14–26 2 Rod-shaped Anterior end;
scattered Present FW [58]

A. procerus 200–800 7–13/25–
40 2 Rod-shaped Anterior end;

scattered Present FW [15]

A. quadrinucleatus 200–370 5/30–34 4 Filiform b Oral slit; scattered Absent SW [61]

A. salignus 180–360 4/24–29 2 Bar-shaped;
short-bar-like Oral slit; scattered Absent BW [60]

A. fusiformis 45–60 6/10–14 2 Rod-shaped Scattered Absent FW [58]

A. weishanensis 560–780 5/56–61 3–9 Filiform Anterior end; oral
slit; scattered Present FW [38]

a Abbreviations: CV, contractile vacuole; Ex, extrusomes; FW, freshwater; LK, left kineties; RK, right kineties; SW,
seawater. b Data from illustrations.

4.2. Comments on Amphileptus piscinarius sp. nov.

Amphileptus piscinarius sp. nov., a planktonic species, is characterized by having a
distinct large apical extrusome group and ventrally positioned contractile vacuoles. In
terms of these two characteristics, five species can be compared with it, namely A. carchesii
Stein, 1867, A. ensiformis Song & Wilbert, 1989, A. gui Lin et al., 2005, A. inquieta (Biernacka,
1963) Carey, 1992; A. paracarchesii Zhang et al., 2022 (Table 3).

Table 3. Comparison of Amphileptus piscinarius sp. nov. with similar congeners a.

Species Cell Length
In Vivo

No. of
LK/RK

No. of
Ma

No. of
CV Shape of Ex Distribution of

Ex Habitat Reference

A. piscinarius sp. nov. 140–210 6–8/24–28 2 3–4 Narrowly ovate Anterior end FW Present work

A. carchesii 200–360 5/45 4 10 Thorn-shaped Anterior end;
scattered FW [15]

A. ensiformis 100–120 5–6/18–22 2 4 b Rod-shaped b Anterior end FW [58]

A. gui 150–300 7–11/37–50 2 3–7 Bar-shaped Anterior end;
scattered SW [40]

A. inquieta 170–200 - 2 4 - - SW [62]

A. paracarchesii 185–380 4–6/44–50 4 10 Narrowly ovate Anterior end;
scattered FW [39]

a Abbreviations: CV, contractile vacuole; Ex, extrusomes; FW, freshwater; LK, left kineties; RK, right kineties; SW,
seawater. b Data from illustrations.

Amphileptus piscinarius sp. nov. can be separated from A. carchesii and A. paracarchesii by
consistently having two macronuclear nodules (vs. four in A. carchesii and A. paracarchesii).
Furthermore, Amphileptus piscinarius sp. nov. has fewer right kineties (24–28 vs. 45 in
A. carchesii, 44–50 in A. paracarchesii) [15,39].

Amphileptus piscinarius sp. nov. can be separated from A. ensiformis by having more
left and right kineties (6–8 left and 24–28 right kineties in Amphileptus piscinarius sp. nov.
vs. 5–6 left and 18–22 right kineties in A. ensiformis) [58].

Amphileptus piscinarius sp. nov. can be distinguished from A. gui by having fewer
kineties (6–8 left and 24–28 right kineties in Amphileptus piscinarius sp. nov. vs. 7–11 left
and 37–50 right kineties in A. gui). Furthermore, Amphileptus piscinarius sp. nov. does not
have scattered extrusomes in its cytoplasm but A. gui does [40].

Amphileptus inquieta is very similar to A. piscinarius sp. nov. in cell size and number of
contractile vacuoles. Though the infraciliature details of A. inquieta are as yet unknown, it
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can be distinguished from A. piscinarius sp. nov. by its rounded posterior end (vs. pointed
end in A. piscinarius sp. nov.) and seawater habitat (vs. freshwater habitat) [62].

4.3. Phylogenetic Analyses

Based on the phylogenetic analyses presented here, the family Amphileptidae is
consistently monophyletic, but the genus Amphileptus is non-monophyletic with A. qing-
daoensis clustering with two Pseudoamphileptus species, which is consistent with previous
studies [26,28,34,37–39,46,63–65].

In the 18S rRNA gene tree presented here, Amphileptus sinicus sp. nov., A. parapleu-
rosigma, A. procerus and A. weishanensis cluster together with strong statistical support
(98% ML, 1.00 BI), which is supported by their morphometric features: the distribution of
extrusomes forming an apical group; multiple contractile vacuoles. It is noteworthy that
the partial 18S rRNA gene sequences of Amphileptus sinicus sp. nov., A. parapleurosigma and
A. paracarchesii share a 100% similarity match of their reported 18S rRNA gene. Amphileptus
sinicus sp. nov. and A. parapleurosigma were both collected from Lake Weishan Wetland,
and they share several morphological features, e.g., possessing two rows of contractile
vacuoles and having apical extrusome groups. But they can be distinguished from each
other morphologically by the number of kineties: 8–10 left and 42–61 right kineties in
Amphileptus sinicus sp. nov. vs. 4–6 left and 19–24 right kineties in A. parapleurosigma. A
small variation is also found in their cell size (330–490 µm in Amphileptus sinicus sp. nov. vs.
180–370 µm in A. parapleurosigma). It is worth noting here the possibility of cryptic species
in this example (as well as ciliates in general), especially with regard to two apparently
different cells sharing an exact molecular signature of one gene marker. To what extent there
is morphological plasticity between similar appearing species within Amphileptus awaits
further investigations. As more sequences become available in databases, and as alternate
gene markers are utilized for comparisons, the exact divergences between these species
and ones awaiting discovery can be compared. The importance of detailed morphological
descriptions such as those presented here remain vital for the use of future researchers ex-
amining advancing molecular markers. Equally important is combining these descriptions
with sequencing of the exact species/cell being described. Misidentifications uploaded to
public databases such as GenBank can hinder future researchers for generations, such that
where clonal strains are not possible or practical, freshly sampled environmental material
must be confidently identified prior to DNA analysis.

Amphileptus sinicus sp. nov. and A. paracarchesii share a similar cell shape. However, A.
sinicus sp. nov. can be distinguished from A. paracarchesii by having more left kineties (8–10
vs. 4–6 in A. paracarchesii), fewer macronuclear nodules (two vs. four in A. paracarchesii) and
two rows of contractile vacuoles (vs. one row of the contractile vacuoles along the dorsal
margin in A. paracarchesii). Additionally, A. paracarchesii has a lateral fossa (groove) in the
posterior cell portion, which is absent in Amphileptus sinicus sp. nov. [39]. Previous studies
of Amphileptus though have found species with differences in only a single 18S rRNA gene
base pair or no differences in these bases but still found apparently clear differences of
morphology [38,39], with these instances also occurring in hypotrich ciliates [66]. The
rates of morphological and molecular evolution between various higher species have been
discussed in many studies [67–70]. A previous study found that the rates of molecular
and morphological change are considered to be effectively disassociated [68]. Additional
previous studies have found that the molecular evolution of different species can vary
substantially and can be considered as an essentially stochastic process [68,69]. Irrespective
of this, it is well established that the 18S rRNA gene is highly conserved [71], and therefore
may not always be an appropriate marker to display a species-specific signal for some
ciliates [39,66]. Consequently, more gene markers such as the ITS1-5.8S-ITS2, 28S rRNA
gene and CO1 gene can be utilized in future research that would help to confirm or reject a
novel species.

Amphileptus piscinarius sp. nov. is positioned on a separated branch, which branches
basally in the assemblage of two clades (Clade 4 and Clade 5) with poor statistical supports
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(50% ML, 0.81 BI). However, Amphileptus piscinarius sp. nov. clearly differs from all
species (within Clades 4 and 5) by the distribution of extrusomes (having a well-developed
apical extrusome group and no scattered extrusomes in the cytoplasm). Furthermore,
Amphileptus piscinarius sp. nov. is a typical freshwater planktonic species, never gliding on
substrate. Due to the low statistical support for the assemblage, the phylogenetic positions
of Amphileptus piscinarius sp. nov. and relationship between Amphileptus piscinarius sp. nov.
and other species remaining ambiguous, further molecular data from future studies will
help to resolve the phylogenetic position of this species.

4.4. The Biogeography of the Genus Amphileptus

Amphileptus species are commonly found in a variety of aquatic environments includ-
ing marine, freshwater and brackish water habitats. Previous studies have shown that
Amphileptus spp. are widely distributed in Europe, America, Africa and China. However,
in the past two decades, studies on the taxonomy and systematics of pleurostomatids were
highly biased in China as most studies were based only on marine and brackish habitats.
The evolutionary and phylogenetic relationships within this group would benefit from
further explorations including additional molecular and detailed morphological informa-
tion. Thus, studies such as this on the freshwater pleurostomatids in China and beyond are
necessary, including morphological information, ecological data and molecular information
from diverse habitats.

5. Conclusions

Increased sampling continues to increase the diversity of species (approximately 50)
in the genus Amphileptus, which are commonly found from a variety of habitats. Due to
the similarity of morphological features of species in this genus, it is difficult to separate
them based on living characteristics alone. Since other genera in the family Amphileptidae
are yet to have their molecular sequences described, the ultimate taxonomical positioning
remains to be formulated. Here, we described two Amphileptus species from Lake Weishan
Wetland, northern China using modern taxonomic and molecular techniques to provide
underpinning for future work investigating known and new species yet to be discovered,
and ultimately allowing for a better understanding of the placement of this and other
genera in the family. Since some Amphileptus species cannot be easily separated by their
18S rRNA gene sequence alone, investigating additional gene markers could provide better
clarity into the phylogenetic positioning of species within the Amphileptidae.
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