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Abstract: Understanding the relationship between biodiversity and ecosystem functioning (BEF) is es-
sential to comprehend the impacts of biodiversity changes on ecosystem functioning. This knowledge
helps to detect and anticipate significant trends in global biodiversity loss and the homogenization
of biota worldwide to prevent them. Species act together with climate, resource availability, and
disturbance regimes to modulate ecological processes defining ecosystems’ complexity and their
dynamic adaptation to variability. In this article, we revisit the BEF paradigm by addressing current
knowledge of how biodiversity connects to ecosystem functioning across scales in the context of com-
plex adaptive systems (CAS). We focus on ecosystem processes that lead to the emergence of the BEF
relationship, considering ecosystem functioning as a macroscopic emergent property. Specifically, this
work integrates the knowledge of the processes that connect biodiversity to ecosystem functioning.
It addresses how biodiversity supports ecosystem multifunctionality across scales, resulting in the
persistence of CAS in a rapidly changing world. We present a framework for ecological management
considering the BEF relationship within the scope of CAS. The CAS standpoint brings new insights
into the BEF field and its relevance for future ecological conservation of the Earth’s life support.

Keywords: BEF; CAS; ecological processes; multifunctionality; macroscopic properties; scales;
ecological management framework

1. Introduction

Global climate change, overexploitation of natural resources, destruction and fragmen-
tation of natural habitats, and biological invasions are now having measurable effects on
ecosystem functioning and are expected to cause unprecedented effects on biodiversity
by increasing the rates of population and species extinctions in the near future [1,2]. Even
though the loss of species is a natural process on the evolutionary scale [3,4], the current
speed of non-random extinctions in natural systems due to the direct or indirect influence of
human activity [5] is alarming. The effects of extinctions may have considerable time-lags
that are challenging to identify [5,6], complicating long-term predictions of global-changing
biodiversity effects. The relationship between biodiversity and ecosystem functioning (BEF)
has thus led to significant interest in ecology [6–11].

Research on BEF is fundamental to understand the influence of species decline and the
homogenization of biota on general ecosystem properties. It also has particular societal rele-
vance when studying the consequences for ecosystems on which humans depend [5,12–14].
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BEF relationships are highly complex, i.e., with diverse, interacting, and adapting ele-
ments [2,11,15]. Thus, addressing BEF within the complex adaptive systems (CAS) frame-
work can improve our understanding of the links between biodiversity and ecosystem
functioning. This requires relating the adaptive interactions that characterize ecosystems
with the dynamics of ecological processes operating on BEF, along different levels of ecolog-
ical organization, environmental heterogeneity, and spatiotemporal scales [12,15–21]. This
knowledge is crucial to guide an effective management of resources to preserve ecosystem
services critical for the continuity of present and future generations.

Biodiversity encompasses the number, distribution, and functional traits of individuals
and species, intra- and interspecific genetic diversity, levels of organization (populations,
communities, ecosystems, biomes), and ecological interactions (trophic, behavioral, com-
petitive, mutualistic, and parasitic) at different spaciotemporal scales, defining the basis of
ecosystems as complex adaptive systems [4,11,15,22–24]. Ecosystem functioning refers to
the state or trajectory of ecosystems in terms of innate pathways and fluxes of energy, matter,
and information occurring through essential ecosystem processes, such as productivity, nu-
trient and biogeochemical cycling, and ecological network dynamics, from which is derived
the stability that supports ecosystem complexity at a larger scale [15,16,22,25,26]. Complex
adaptive systems are characterized by interconnected components, non-linear dynamics,
and the ability to self-organize and adapt in response to environmental changes [16,27].
Within this framework, biodiversity and ecosystem functioning are not static entities but
dynamic processes that emerge from local interactions within a larger system [4,16,17]. The
importance of examining BEF within the scope of CAS lies in the recognition that ecosystem
functioning may be perceived as an aggregate (or macroscopic) property since it displays
the emergent nature of ecosystems that self-organize from local evolved components, as
well as feed back loops [22]. CAS map our understanding of local biological interactions
and ecosystem processes that lead to emerging patterns, such as uncertainty, biodiversity,
collective behavior, common pool resources, robustness, redundancy, heterogeneity and
connectivity, that underlay ecosystem functioning [4,16,28]. These emergent properties may,
in turn, feed back to the local biotic and abiotic interactions generating regular changes,
critical phenomena, and flips among alternative stable states [4,16,17,27,29,30]. These feed
backs result from evolutionary processes at lower levels of the ecological organization.
Biodiversity acts as a buffer and homeostasis agent contributing to the coevolution of
ecosystems and the biosphere [16,31]. Thus, comprehending the processes linking biodi-
versity to ecosystem functioning, and the overall contribution of biodiversity to improve
ecosystem multifunctionality by considering this complexity and adaptability, is essen-
tial to develop conservation actions that will help to prevent future biodiversity loss and
ecosystem oversimplification.

This article revisits the biodiversity and ecosystem functioning paradigm by focusing
on the links between biodiversity and ecosystem functioning across scales in the context
of CAS. We present an integrative approach to examining why biodiversity is important
for ecosystem functioning by relating the processes that connect biodiversity to ecosystem
functioning. Then, we focus on how biodiversity ensures ecosystem multifunctionality
across distinct scales, highlighting its CAS nature, which enables adaptation to continuous
and abrupt changes. We ask four main questions: (1) How does biodiversity relate to
ecosystem functioning within the framework of complex adaptive systems? (2) How does
biodiversity interconnect with ecosystem processes, such as productivity, nutrient and
biogeochemical cycling, ecological networks dynamics, and stability, to modulate BEF?
(3) How does biodiversity link to ecosystem multifunctionality, particularly its role in
sustaining multiple simultaneous processes to generate adaptability? (4) What are the
implications of understanding BEF under the lens of CAS for ecological management?
From the CAS perspective, these questions focus on the ascending effects that lead to BEF
relationships considering that ecosystem functioning is a macroscopic property shaped by
emerging patterns. The rationale for this work encompassed the review of the empirical and
theoretical literature on BEF and CAS across systems at different scales (temporal, spatial,
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evolutionary, ecological). We discuss major findings, from seminal to current research,
that have provided increasingly rigorous answers to the above questions. Then, using
a BEF approach and adopting CAS thinking, we present an exploratory framework for
ecological management. This approach can be used as a guideline to develop plans aiming
at sustaining complex adaptive ecosystems, which are the foundation of all life on Earth.
We finalize by bringing forward contemporary challenges and prospects. By connecting key
data-driven and theoretical findings from a long body of research, this review contributes
with a comprehensive background knowledge coupling BEF with CAS.

2. The Biodiversity–Ecosystem Functioning Paradigm

The study of the relationship between biodiversity and ecosystem functioning (BEF)
has been a dynamic and thriving research area in the field of ecology for the last three
decades. Until the beginning of the 1990s, biodiversity was viewed as the result of the
interaction between abiotic and biotic factors, with little or no consequences on ecosys-
tem functioning [32,33]. It was only after the 1992 Bayreuth conference that the connec-
tion between biodiversity and ecosystem functioning (BEF) emerged as a new research
field [34–38]. Within the 1990s, due to the increasing rate of species loss, research started to
reveal some effects of species diversity on the environment and the functioning of ecosys-
tems [32,36,38,39]. These effects manifested in habitats through changes in ecosystem
structure, and fluxes of nutrients, productivity, and stability [38], leading to a paradigm
shift in ecology [32]. Seminal work in this area ([14,36,38,39] can be seen for further details)
focused primarily on fieldwork and experimentation to test the hypothesis that species
diversity affects ecosystem functioning e.g., [40–47]. In addition, theoretical studies inte-
grating empirical results emerged in an attempt to determine if, and how, biodiversity
predictably affected essential ecological processes [48–54]. The growing interest in this area
led to the publication of contradictory results that instigated a strong degree of dispute
around the validity of BEF experiments (design, mechanisms involved, applicability to
natural systems) [10,34–36,39,47,55–65]. However, after three decades of research on BEF,
several papers have been published, underlining a general trend on the positive link be-
tween different metrics of biodiversity and ecosystem functioning throughout terrestrial,
freshwater, and marine ecosystems [2,34,35,38,39,66–72].

Several biodiversity attributes have been used to test the BEF hypothesis at different
scales (α-diversity: local; β-diversity: regional; and γ-diversity: global). These include
taxonomic approaches (species presence or absence); richness (number of species) and
evenness (equity of species abundances); functional and phylogenetic diversity (functional
groups within the ecosystem, the distribution of species traits within a community, or the
degree of species similarities and differences); and genetic diversity (genotypic variation
and genotype identity). However, the best measure to capture the BEF relationship is still
a subject of debate [10,14,34,67,68,73–77]. Richness and evenness generally show positive
or neutral effects on ecosystem productivity and related properties, while functional,
phylogenetic, and genetic diversity seem to exert an impact on mixed ecosystem processes,
with a tendency for genetic diversity to better predict community productivity, robustness,
invasibility, and vulnerability to disease [14,31,34,68,73–75]. Adopting multidimensional
biodiversity attributes allows a better understanding of the intricate relationship between
biodiversity and ecosystem functioning, and avoids underestimating the repercussions that
result from biodiversity loss [67]. In principle, the use of particular biodiversity metrics
will depend on the question, the processes, and the scale under analysis.

Despite this intricacy, the still-expanding scope of answers, and the emerging new
questions on BEF, various studies have identified common patterns regarding the links
between biodiversity and ecosystem functioning [5,10,14,26,34,38,67,76–79], which are put
into perspective in Figure 1. In accordance, biodiversity, either at the level of genes, species,
communities, or functional traits, interacts with climate, resource availability, and distur-
bance regimes at different scales to shape ecosystem functioning. By regulating distinct
ecosystem processes through a common set of biological mechanisms, biodiversity fosters
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ecosystem multifunctionality and sustains dynamic complex adaptive ecosystems [67]. The
magnitude of biodiversity effects over ecosystem functioning depends on the functional
traits of component species, the strength of interspecific interactions, the sequence of species
changes across space and time, and the relative biotic versus abiotic control over ecosystem
process rates [5,10,56,67,76,77].
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Figure 1. Common patterns in the relationship between biodiversity and ecosystem functioning
(BEF). Biodiversity interacts with climate, resource availability, disturbance regimes, and ecological
processes at different scales to configure ecosystem functioning. Biodiversity effects on ecosystem
functioning depend on the functional traits of component species, interspecific interactions, the
sequence of species changes, and the relative biotic versus abiotic control over process rates.

The integration of concepts and empirical studies on BEF has emphasized the crucial
role of biodiversity in the functioning of ecosystems and increased our understanding
of the consequences of diversity loss for ecosystems and humanity [5,12,26,38,66]. In
fact, recent advances on BEF have indicated that minimal biodiversity changes may have
profound effects on ecosystem functioning. Consequently, the impact of species loss may be
comparable to, or even greater than, that of other environmental factors held responsible for
global change [2,13,14,32,71,76]. These studies represented a new shift in the biodiversity
ecosystem functioning paradigm by acknowledging that biodiversity, in conjunction with
environmental heterogeneity, is a pivotal player in the regulation of ecosystem functioning.

3. Biodiversity and Ecosystem Functioning within the Scope of CAS

The intricate relationships and interactions among diverse species and their environ-
ment create complex interdependencies that contribute to ecosystem functioning. Environ-
mental conditions act on biodiversity, indirectly influencing ecosystem functioning [10,76].
Furthermore, environmental factors may directly affect ecosystem functioning, especially
within the context of global environmental changes [67]. This implies a balance between
species adaptation to existing settings and plasticity to endure environmental changes.
Biodiversity encompasses different species with unique adaptations and traits that enable
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them to occupy specific niches and perform distinct ecological functions affecting different
ecosystem processes [5,7,10,14,26,34,38,76,77,79,80]. These processes are nonlinear [12,77]
because the properties of ecosystems accumulate, deplete, and feed back to shape fu-
ture ecological interactions, leading to uncertainty [3,16,17,24,28]. Ecosystem functioning
emerges from the interplay between different levels of biological organization, ecosystem
processes, and environmental heterogeneity at small scales. Its macroscopic dynamic pat-
terns feed back to shape the development of local interactions into subsequent aggregate
properties [22,24,31]. Consequently, biodiversity sustains the ecosystem’s adaptive capacity
to adjust to biological and environmental changes across different ecological and evolu-
tionary scales [3,16,17,21,24,28]. Individual interactions and ecosystem processes result
in collective behaviors and the production of common pool resources that extend to the
whole ecosystem, which, in turn, slowly influence individual behaviors and the production
of natural resources through expanded time scales [3,28,31]. Thus, individual biological
components induce evolutionary changes that percolate throughout the ecosystem and
evolve from the interchange of ecological processes at different scales [17]. These processes
produce macroscopic properties, e.g., ecosystem functioning, emerging from trade-offs
during the course of evolution and the capacity of biological components to adapt to rapid
ecological shifts [16,22,24,31]. Ecosystem functioning is also adaptive because biological
interactions tend to respond to interference. For instance, the presence of diverse species
increases the likelihood of some degree of redundancy, i.e., some species have traits that
enable them to tolerate or adapt to changing conditions [81]. The adaptive capacity of
ecosystems confers robustness, i.e., a balance between adaptation to existing settings and
plasticity to endure environmental changes. Biodiversity and ecological heterogeneity
sustain permanent local environmental and biological changes which balance the turnover
of biotic components through continuous abiotic modifications [28]. Heterogeneity results
from the interaction among ecological processes that occur in different spatial and tem-
poral scales. This encompasses, for example, the counterbalance between positive local
short-term feed back and negative broad long-term feed back, which create and stabilize
heterogeneity, respectively [3].

The BEF relationship reflects the multifunctionality and continuous adaptation of
biotic and environmental interactions at different spatial and temporal scales [72,75,82–84]
from short-term behavioral responses, and medium-term physiological and developmental
phenotypic plasticity, to long-term evolutionary changes [17,75,82,85–87]. Some studies
have detected a connection between biodiversity and ecosystem functioning at local but not
at regional or landscape levels [34]. However, several studies have indicated that the effects
of biodiversity increase through time and at larger spatial scales [10,38,76,77,85,88,89].
Large spatial scales provide environmental heterogeneity and connectivity, allowing the
coexistence and dispersal of species, and are key to evolution and the maintenance of
biodiversity [3,21,90]. Additionally, the prevalence of multiple ecosystem processes at
larger scales entails higher biodiversity than at smaller scales [10,38]. Multiple scales unite
features of space, time, and ecological complexity that sustain biodiversity. Broad scales
allow the patterns of biological and environmental variability to expand, generating more
patches and resources through the evolutionary divergence of species’ ecological niches
and life traits [3]. This drives speciation through the short-term advantage of new traits
capable of exploring new niches and permeating throughout biological assemblies over
ecological and evolutionary scales [3,17].

From the CAS point of view, integrating different biodiversity descriptors, and mul-
tiple ecosystem processes across temporal and spatial scales, will more likely provide a
better understanding of BEF.

4. Linking Biodiversity to Ecosystem Processes

Moving our understanding of BEF forward through the lens of CAS requires looking
at basic nonlinear ecosystem processes (such as productivity, nutrient and biogeochemical
cycling, ecological network dynamics, and stability), which foster fluxes of matter, energy,
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and information [15,16,22,25,26], through the local interplay between biodiversity and
abiotic features that translate into macroscopic properties, such as ecosystem functioning
(Figure 2); we address this in the sub-sections below. In accordance, biodiversity simultane-
ously interacts with several dynamic processes in different environmental contexts, leading
to ecosystem functioning, across different spatial and temporal scales, as well as ecological
and evolutionary scales. In this context, highly diverse communities contribute to enhanced
ecosystem functioning in heterogeneous environmental conditions, promoting complexity
and adaptation (i.e., complex adaptive ecosystems). However, this is one of the most diffi-
cult challenges for the field of BEF because spatiotemporal interconnectedness, adaptability,
variability, and uncertainty characterize the reciprocal interactions among biotic/biotic
and biotic/abiotic components that regulate ecosystem functioning and maintain complex
adaptive ecosystems [5,15,38]. Further, the simultaneous effect of environmental factors
and biodiversity on multiple ecosystem processes, and thus on ecosystem functioning,
remains unclear [72].

Diversity 2023, 15, x FOR PEER REVIEW 6 of 23 
 

 

4. Linking Biodiversity to Ecosystem Processes 

Moving our understanding of BEF forward through the lens of CAS requires looking 

at basic nonlinear ecosystem processes (such as productivity, nutrient and biogeochemical 

cycling, ecological network dynamics, and stability), which foster fluxes of matter, energy, 

and information [15,16,22,25,26], through the local interplay between biodiversity and abi-

otic features that translate into macroscopic properties, such as ecosystem functioning 

(Figure 2); we address this in the sub-sections below. In accordance, biodiversity simulta-

neously interacts with several dynamic processes in different environmental contexts, 

leading to ecosystem functioning, across different spatial and temporal scales, as well as 

ecological and evolutionary scales. In this context, highly diverse communities contribute 

to enhanced ecosystem functioning in heterogeneous environmental conditions, promot-

ing complexity and adaptation (i.e., complex adaptive ecosystems). However, this is one 

of the most difficult challenges for the field of BEF because spatiotemporal interconnect-

edness, adaptability, variability, and uncertainty characterize the reciprocal interactions 

among biotic/biotic and biotic/abiotic components that regulate ecosystem functioning 

and maintain complex adaptive ecosystems [5,15,38]. Further, the simultaneous effect of 

environmental factors and biodiversity on multiple ecosystem processes, and thus on eco-

system functioning, remains unclear [72]. 

 

Figure 2. Ecosystem processes linking biodiversity and ecosystem functioning. Ecosystem processes 

(such as productivity, nutrient and biogeochemical cycling, ecological networks dynamics and sta-

bility) link biodiversity to ecosystem functioning in multiple environmental contexts and at distinc-

tive scales. Diverse communities lead to aggregate ecosystem functioning that favors complexity 

and adaptation, resulting in complex adaptive ecosystems. 

4.1. Productivity 

Productivity, i.e., the rate of biomass production in ecosystems, is an essential aspect 

of BEF due to transformations of energy and matter flow through interspecific interactions 

that determine the productivity of the entire ecosystem [7,66,91]. Decades of theoretical 

and empirical work have shown that biodiversity has congruent outcomes in primary and 

secondary productivity—herein termed productivity—and vice versa [7,14,25,61,92,93]. 

Overall, highly diverse communities will maximize resource use efficiency, being more 

productive than systems characterized by reduced biodiversity, and this disparity 

Figure 2. Ecosystem processes linking biodiversity and ecosystem functioning. Ecosystem processes
(such as productivity, nutrient and biogeochemical cycling, ecological networks dynamics and stabil-
ity) link biodiversity to ecosystem functioning in multiple environmental contexts and at distinctive
scales. Diverse communities lead to aggregate ecosystem functioning that favors complexity and
adaptation, resulting in complex adaptive ecosystems.

4.1. Productivity

Productivity, i.e., the rate of biomass production in ecosystems, is an essential aspect
of BEF due to transformations of energy and matter flow through interspecific interactions
that determine the productivity of the entire ecosystem [7,66,91]. Decades of theoretical
and empirical work have shown that biodiversity has congruent outcomes in primary and
secondary productivity—herein termed productivity—and vice versa [7,14,25,61,92,93].
Overall, highly diverse communities will maximize resource use efficiency, being more
productive than systems characterized by reduced biodiversity, and this disparity increases
with time [77]. These differences in productivity related to biodiversity are triggered by
distinct causes, namely, interspecific niche partitioning, more effective use of limiting
resources (e.g., nutrients, water, prey, space, and light), energy that is more efficiently
converted into biomass or decomposed, reduced herbivory and disease, and nutrient-
cycling feed backs that increase elements such as nutrient stocks and allocation rates over
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time [10,14,38,75,76,94,95]. More diverse assemblages may contain key species with a sub-
stantial impact on productivity, as well as species with diverse functional traits that sustain
an increase in total resource uptake [38]. Findings from [73] support the idea that the
correlation between biodiversity and productivity, due to resource partitioning, is related
to evolutionary and genetic divergence. In situations of heterogeneous limiting resources,
biomass production increases with biodiversity as more species will be able to capture the
few available nutrient supplies [11,66]. Therefore, reduced biodiversity will lead to less effi-
cient use of resources that will translate into decreased productivity [26,35,59,68,73,96], and
thus accessible common pool resources. Furthermore, in cases of extreme climate events,
biodiversity is also a pivotal factor in balancing and upholding ecosystem productivity [97].

Biological mechanisms, such as complementarity [10,63,66,72,80,83,95,98–100], facil-
itation [10,26,66,76,95,98,101], and selection [26,50,59,63,66,72,83,95,98,99,102] effects, pri-
marily control the relationship between biodiversity and productivity [72,103,104]. This is
because dominant species contribute to increase productivity, which is further increased by
the occurrence of multiple complementary and facilitating species [63,72,99,103]. However,
in extreme unstable conditions or during habitat transformation, there may be a significant
shift in species composition, resulting in lower biodiversity characterized by dominant
species with high adaptive capacity [105]. Complementarity and facilitation are the main
drivers behind the effects of biodiversity on the productivity of aquatic ecosystems, while,
in terrestrial ecosystems, these effects may be similarly triggered by complementarity and
selection [66,72,101].

Most studies have indicated that the relationship between biodiversity and productiv-
ity varies through time, space, ecosystems, and ecological levels as species interactions and
community structure adjust to successional, seasonal, and environmental gradients and
changes [10,51,63,87,94,99,103,106–109].

4.2. Nutrient and Biogeochemical Cycling

Ecosystem functioning relies on nutrient and biogeochemical capacity, i.e., the aptitude
of an ecosystem to store and recycle nutrients across its biotic/abiotic components [110]. It
depends on the availability of nutrients and their interconnected dynamics, which uphold
metabolic processes and biodiversity feed backs [111]. In fact, natural ecosystems are
characterized by complex pathways that capture, store, and transfer nutrients as energy
flows through different trophic levels and microbial processing [111,112]. Nutrient and
biogeochemical cycling is an important ecosystem process supported by biodiversity and
the physical complexity of the habitat. The biota regulates nutrient and biogeochemical
processes by transferring materials among the hydro-, litho-, and atmospheres, sustaining
and shaping ecosystems over ecological and evolutionary scales [113]. Heterogeneous
habitats encompass high levels of biodiversity and resources, fostering nutrient and bio-
geochemical cycling [11,111,112]. The diversity of autotrophs, consumers (omnivores,
predators, and herbivores), and decomposers (sensu lato) regulates nutrient availability
and cycling throughout the whole ecosystem [114,115]. Biodiversity, either directly or
indirectly, conveys multifold routes for nutrient processing, such as absorption by primary
producers, transfer to and by consumers and pathogens, and decomposition, sustaining
ecosystem functioning and reducing nutrient losses [66,115]. Increased biodiversity max-
imizes nutrient uptake and energy flows through ecological networks as more diverse
communities include species with different traits. These assemblies provide additional
pathways to nutrient intercept, assimilation, and conversion into biomass or dead organic
matter, which comprise supplemental sources of nutrients and energy that are essential for
ecosystem functioning [26,63,96,111,112].

The connection between biodiversity and nutrient and biogeochemical cycling seems
to be primarily mediated by complementarity and facilitation [10,26,94,116]. Although
some studies have pointed out the importance of biodiversity on nutrient and biogeo-
chemical dynamics [26,60,66,94,110,111,114,117–122], we need a better understanding of
the influence of biodiversity on this process.
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4.3. Ecological Network Dynamics

Ecosystem functioning is the outcome of intricate linkages between biotic and abiotic
factors [37] mediated by trophic and non-trophic interactions [123,124]. The set of direct
and indirect trophic interactions and non-trophic links have a key role in tuning the
connection between biodiversity and ecosystem functioning [100,125]. Complex direct
(e.g., predation, competition, and parasitism) and indirect (e.g., behavior, habitat shift,
morphology, and life history) trophic interactions (within and among trophic levels and
trophic webs), together with non-trophic interactions (e.g., mutualism and commensalism)
shape ecological networks, which promotes adaptive changes and influence ecosystem
functioning through space and time [9,12,18,75,91,123,125–130]. Thus, understanding
ecological networks as a dynamic process is essential to unveil the effects of biodiversity on
ecosystem functioning underlying CAS. Ecological network dynamics are highly complex,
displaying non-random and persistent spatiotemporal features, which convey consistent
patterns linked to ecosystem functioning [18,123,124,130,131]. In an expansive approach,
ecological network dynamics may be perceived through ecological interactions assessed by
the trophic and non-trophic links and the degree of connection among species [125,132].

In the trophic web context, biodiversity links to ecosystem functioning through hor-
izontal (within trophic levels) and vertical (among trophic levels) diversity [12]. So, bio-
diversity has the potential to simultaneously affect several trophic links in such a way
that changes in contiguous levels may produce contrasting results on specific ecosystem
processes [12,59,91,128,133,134].The existence of multiple trophic levels in natural trophic
webs generates complex BEF relationships [9,128]. As multitrophic diversity increases,
average ecosystem functioning may increase or be maintained, displaying complex nonlin-
ear configurations [12,20,126,134]. Therefore, the trophic web dynamics (e.g., the flow of
energy and matter through trophic levels) depends on the nature of the trophic interactions
and the biodiversity within and across trophic levels [91,135], affecting productivity and
nutrient cycling [9,112,127–130,136,137]. Further, it confers ecosystem adaptability by pro-
viding alternative routes for slow and fast fluxes of energy and matter and by reducing
the strength of consumer–resource interactions that have potentially destabilizing effects
on ecosystems [9,12,124,129,131]. Biodiversity also influences the strength of ecological
interactions and the dynamics of ecological networks by balancing the top-down and
bottom-up control of trophic webs [129,136]. Robust top-down and bottom-up forces
have extensive indirect effects on ecological network dynamics and ecosystem function-
ing [118,126,134].Top-down control of biodiversity relates to the impact consumers have
on lower trophic levels, i.e., the rate at which consumers convert resources into matter.
Bottom-up effects of biodiversity refer to the impact of producers on higher trophic levels,
i.e., the rate at which energy flows and resources are captured and converted into consumer
matter [135,136,138]. Top-down control by predator diversity varies across ecosystems de-
pending on whether the predator is a specialist or a generalist, on migration, dispersal, and
habitat complexity [12,90,128,129,133,136,138]. Omnivores and intra-guild predators may
have either positive or negative results on predator, consumer, and producer diversity [100],
and are the main factors determining the effects of biodiversity at higher trophic levels [12].
Strict predators (carnivores) generally control their prey by either decreasing or maintain-
ing their biodiversity, which in turn increases or maintains producer biodiversity [129].
High herbivore diversity controls producers by promoting a diversified resource use and
buffering top-down effects of top predators [91]. This results from the trade-offs between
herbivores’ competitive ability and anti-predator behaviours, e.g., asynchronous foraging
activity or habitat shifts, which also dampen the impact of herbivory [91,100]. The diversity
of consumers (omnivores, predators, and herbivores) may also exert top-down or bottom-
up control on decomposition rates and vice versa [34,35,112,135]. Consumer diversity is
essential for supporting balanced ecosystem functioning, dampening the risk of decoupling
trophic cascade effects [131,133]. Producer diversity, on the other hand, upholds bottom-up
control through competitive advantage and resistance to consumption [90,126,130,136,138],
meaning that biodiversity may lead to the dominance of producers with relevant effects
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on ecosystem functioning [90,126]. Further, high consumer and producer biodiversity
enhance mutualistic interactions that may elicit positive feed backs on the biodiversity
of symbiotic interactors and on several ecosystem processes [14,70,87] and reduce the
incidence of pathogens [14,70,114]. The balance between top-down vs. bottom-up control
by biodiversity strongly determines the outcome of ecosystem functioning, the adjustment
of ecosystems to biodiversity and environmental changes, and the decoupling of trophic
cascade effects [27,127,128].

Complementarity, facilitation, and selection effects are the most common mecha-
nisms underlying ecological network processes [18,26,91,126,128,129,137]. However, these
mechanisms differentially mediate the effects of consumer vs. producer biodiversity on
ecosystem functioning [12,26,126,129,137]. In an ecological network setting, complemen-
tarity and facilitation are not only the result of resource partitioning among competitors
or positive interspecific interactions, but also of top-down control by upper trophic lev-
els [18,100,129,137]. Likewise, selection effects may emerge from both the prevalence of
species displaying anti-predator behavior and competitive dominance [129,137]. Con-
sumer biodiversity can drive ecosystem functioning through different mechanisms, such
as adaptation (i.e., adaptive protection by prey and adaptive food search by predators),
non-additive interactions (i.e., the outcome of multi-consumer interactions is different from
the sum of each component), and indirect effects (i.e., one species has an indirect effect on a
third species), which are tiers of complementarity, facilitation, and selection [98,137,139].
These mechanisms may be related to consumer–consumer synergistic interactions or inter-
ference competition and to consumer–prey antagonistic interactions [18,98]. Adaptation,
non-additive, and indirect mechanisms may decrease prey extinction as consumer diversity
increases [100,137].

The set of direct and indirect trophic interactions and non-trophic links have a key role
in tuning the connection between biodiversity and ecosystem functioning [100,125]. Com-
bining distinct interactions and mechanisms at different levels of ecological organization,
environmental heterogeneity, and scale conveys an in-depth insight into the connection
between biodiversity and ecosystem functioning [12,15–20].

4.4. Stability

Ecosystem stability is a fundamental characteristic of CAS that may be perceived as
the capacity ecosystems have to achieve and sustain a stable state by re-adjusting their func-
tioning to return to equilibrium after natural or anthropogenic stressful events (e.g., decline
in population abundances, introduction of invasive species, species extinction, introduc-
tion of pollutants, land use and habitat fragmentation, and climate change) [125,140,141].
Thus, an ecosystem’s equilibrium state is not static. Rather, it is the result of a dynamic
time-dependent state (such as a limit cycle in population abundances or a chaotic attractor),
which provides adaptability benefits in the face of perturbation. Ecosystems can, thus, dis-
play multiple states at specific periods of time, and are considered dynamically stable [142].
Local stability occurs when (all considered properties of) the ecosystem return (in the
considered time scale) to their initial state after small disturbances or the new state presents
reduced deviations, but alternative (attractor) states exist; and global stability occurs when
an equilibrium state is maintained after wide-ranging perturbations [140]. At broad spatial
and temporal scales, shifts between the alternative (attractor) states may result in landscape
transformation or in sustained mosaics of states. Either way, local short-term instability
may drive biodiversity at larger scales [3], paradoxically resulting in higher stability at
either higher spatial or temporal scales. The notion of stability needs further refinement,
and it may encompass five core properties [31,37,140,143–145]: variability—the long-term
variability of ecosystem properties in relation to environmental fluctuations; persistence
or constancy—capacity to maintain constant characteristics through time; resistance—the
ability to preserve primary features under disturbance; resilience—the ability to absorb
changes of state variables under disturbance; and robustness—endurance of ecosystem
integrity combining resistance with resilience to recover from displacement. Robustness is
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considered by some authors as more appropriate to define stability in terms of ecosystem
functioning [31]. Clearly, all these concepts need to be connected to a specific spatial and
temporal scale, which would clarify the still-active debate (see below). The multiple com-
ponents of stability are related, having divergent connections with biodiversity, and acting
at different levels of the biological hierarchy (population, community, and ecosystem) and
spatiotemporal scales [21,37,140,144].

The biodiversity–stability relationship has been the subject of a long debate [25,37,
41,79–81,125,140,141,144–152]. Although the biodiversity–stability relationship is not yet
fully resolved, experimental and theoretical advances have indicated that biodiversity may
promote the stability of aggregate ecosystem functioning, and concomitantly destabilize
species abundances, which increases robustness [5,25,31,42,79,81,151–154]. Fluctuations at
the population level result in asynchronous responses of individual species to environmen-
tal variation, the rate at which species react to distress, and the reduction in competitive
interactions [81,152]. Accordingly, increased biodiversity incorporates species at the com-
munity level that will perform a wide range of functions (i.e., the role and functional
attributes of each species within the ecosystem) and will respond differently to changes
enhancing overall ecosystem robustness [31] and, thus, stability [37,38,80]. This multiplicity
contributes to a variable adjustment (variability) of aggregate ecosystem functioning while
maintaining a dynamic equilibrium state through time and space (persistence/constancy)
in the face of environmental fluctuations, and enhances robustness, i.e., resistance and re-
silience to disturbance (e.g., invasion, drought, fire, acute climate events, nutrient overloads,
disease, etc.) [31,37,155–157].

The relationship between stability and diversity is intrinsically related to the ecosys-
tem processes described previously and may be modulated by a variety of mechanisms
that drive biological insurance [5,25,37,50,76,83,129,144,146,155,156,158–160] on ecosys-
tem functioning. For instance, productivity increases over time through biological in-
surance, i.e., increased biodiversity protects ecosystem aggregate properties against en-
vironmental oscillations through differential responses of each species in the commu-
nity [63,94,97,103,106,108,109]. This is primarily explained by ecosystem feed backs such as
nutrient cycling over space and time [65,94], which contribute to the build-up of common
pool resources. Interspecific complementarity and facilitation [63,73,95,98,101,161,162] re-
sult in different and unsynchronized responses by diverse component species to nutrient
and ecological network fluctuations. These generate compensatory dynamics through
negative covariance, adjusting ecosystem functioning to variability and fostering persis-
tence [5,81,163,164]. This asynchrony improves robustness to environmental and biological
disturbances by balancing bottom-up and top-down effects [76,81,131,143,165], which may
also be enhanced by the presence of more stable and resistant species in diverse commu-
nities [26,76,81]. By favoring individual adaptation, cooperative interactions, collective
behaviors, and complexity through strong and weak links, biodiverse ecological networks
lead to aggregate ecosystem robustness [15,24,163]. Thus, biodiversity ensures manifold
biotic interactions and distinct functional attributes that interact with abiotic factors to
elicit multiple dynamic feed backs. These prompt complex adaptive responses to environ-
mental heterogeneity and ecological variation that minimize the propagation of stressful
events, encompassing ecosystem functioning stability across scales [15,21,24,143,157,163].
Redundancy is another important factor of stability related to biological insurance, as
functionally identical species will ensure that a particular ecosystem process will over-
come perturbance [16,28,31,83,94,151,159,163]. However, interspecific complementarity
may increase through space and time due to both evolutionary and ecological adaptations,
decreasing redundancy in highly diverse assemblages as species will perform more unique
functions [86,91,94,146].

To assess the relationship between biodiversity and stability, it is crucial to adopt a
CAS lens and compartmentalize the notions of stability into responses at different levels of
functional and spatiotemporal aggregations (e.g., the discussion presented above between
stability in species abundance vs. stability of ecosystem functioning). Moreover, since



Diversity 2023, 15, 895 11 of 22

ecosystems are adaptive, it is critical to develop notions of stability at a set scale and period,
not only in terms of the magnitude of the perturbations but, more importantly, in terms of
the frequency of these perturbations and the rate of their magnitude change.

5. Biodiversity and Ecosystem Multifunctionality

Ecosystem functioning combines various biological and environmental interactions,
sustaining multiple simultaneous ecological processes—multifunctionality—that will trans-
late into services essential for humanity [4,72,84,88,166]. Since biodiversity regulates differ-
ent ecosystem dimensions, i.e., ecosystem structure and related processes [4], it is funda-
mental to uncover how it strengthens multifunctionality [84,85,88,167]. This will enhance
our ability to predict the persistence and robustness of complex adaptive ecosystems in a
fast-changing world.

Initial studies on BEF typically focused on unidimensional effects of biodiversity on
single processes and ecological levels, providing conflicting results. However, a framework
of recent research using multifunctional BEF methodologies [5,72,78,82,84–86,88,166–170]
has systematically shown a positive relationship between biodiversity and the overall
ecosystem functioning. In fact, growing evidence suggests that comprehending how
biodiversity mediates the functioning of natural ecosystems entails the integration (Figure 3)
of multiple ecological processes, different levels of biodiversity, various environmental
contexts, habitat connectivity and dispersal rates, diverse spatiotemporal and ecological–
evolutionary scales, and the interaction among all these factors [18,20,66,90,166].
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Figure 3. Interplay between biodiversity and ecosystem multifunctionality. Increased biodiversity
supports high ecosystem multifunctionality, through niche differentiation, redundancy, and biological
insurance, which foster the functioning of the overall ecosystem at different spatial–temporal and
ecological–evolutionary scales, sustaining complex adaptive ecosystems. Dispersal affects species
distributions in face of environmental shifts and links metacommunities through habitat connectivity.

Biodiversity is essential to support dynamic adaptive ecosystem multifunctionality
at different temporal and spatial scales within variable environmental contexts. Increased
biodiversity sustains cumulative multifunctionality across local habitats and landscapes
through niche partitioning, low redundancy, and biological insurance over multiple sea-
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sonal and time-based periods [79,82,83,85,86,88,166–170], especially when environmental
conditions are highly variable [38,88,166,170]. Ecosystem multifunctionality is fostered by
biodiversity since different species frequently affect distinct processes; one species may
contribute to several ecological processes at the same time; and these processes may be in-
fluenced asymmetrically by various species [85,86,88,170]. In a multifunctional ecosystem,
increased biodiversity contributes to an array of different processes because each species be-
comes unique, i.e., with reduced functional overlap, strengthening ecosystem multifunction-
ality [82,84–86]. Reduced redundancy supports increasing ecosystem complexity through
niche differentiation among species with different functional traits [82,85,86,166,169,171].
Indeed, the degree to which ecosystem functioning changes after biodiversity shifts strongly
depends on the functional traits that are gained by or made extinct in the ecological sys-
tem, i.e., the functional role of the new or extinct species [5,38,172]. Different functional
traits, either individually or interactively, have the capacity to directly and/or indirectly
convey alternative pathways to fully achieve ecosystem multifunctionality [72,82,86,167].
Dispersal is also a key process in temporal and spatial multifunctionality [170]. By tracking
local environmental shifts, species reshape their distribution and link metacommunities
through connected habitats, upholding high biodiversity levels and overall ecosystem
functioning [20,22,90,146,170].

The strength of the positive effects of biodiversity on ecosystem multifunctionality
depends on the trade-offs between negative and additive/synergistic intra/interspecific
contributions that simultaneously affect multiple processes [78,82,88,166,170,173]. Since
different species may enhance different processes, biodiversity levels promoting multi-
functionality will increase ecosystem complexity and adaptability through, for example,
variability, persistence, resistance to invasions and/or disease, resilience to perturbation
and, thus, ecosystem robustness and stability [31,82,86,88,166].

6. Ecological Management—A BEF Approach Adopting CAS Thinking

A paramount achievement of the BEF research is that it provides a comprehensive
background to assess the effects of biodiversity loss and homogenization of biota triggered
by humans and a supporting framework for ecological management [14,37,62,174]. Man-
agement strategies for the sustainable use of ecosystems are difficult to implement because
the structural and functional complexities of ecosystems call for multiple and interdisci-
plinary methodologies to study and model them. In this sense, embracing CAS thinking
for the BEF approach provides a tool for explicit management, focusing on sustainability,
conservation, and restoration problems. Doing so requires detailed knowledge of specific
ecosystem features to solve key management challenges [28].

An integrated understanding of the properties that convey CAS is essential to im-
plement effective ecosystem management and informed policy decisions. The challenge
is to develop management strategies that simultaneous acknowledge trade-offs relating
to fundamental attributes of both BEF and CAS to avoid unintended consequences, and
accepting that interventions are prone to providing new knowledge that needs to be in-
tegrated into ecological management. Taking this into account will ensure the ability of
ecosystems to adapt to changing environmental conditions while performing well under
existing conditions and providing sustainable ecosystem services [28].

We propose an exploratory framework for ecological management that integrates
BEF attributes taking into account CAS properties (Figure 4). Ecological management
encompasses the identification and analysis of local interactions and processes. These
include critical transitions and regime shifts, biological interactions, behavioral interactions,
ecosystem processes, resistance and resilience, species losses, dispersal, and different habi-
tats. The goal is to detect emergent patterns of key interconnected ecosystem properties
common in CAS (uncertainty, biodiversity, collective behavior, common pool resources,
robustness, redundancy, heterogeneity, and connectivity) across spatiotemporal scales and
different levels of biological and abiotic complexity. Critical transitions and regime shifts
between alternative stable states reveal the level of uncertainty. Biological components
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and their interactions convey variability, complexity, and adaptation to sustain biodiver-
sity. Behavioral interactions within and among species enhance adaptation, resulting in
collective behavior. Ecosystem processes ensure the flow of matter and energy, produc-
ing common pool resources. Resistance and resilience to unfavorable conditions confer
robustness. Similar functional species may buffer species losses, contributing to redun-
dancy. Species dispersal and different habitats enable individuals and species to interact
and track favorable conditions, conveying environmental heterogeneity and connectivity
among different scales. Accounting for fast ecological and slow evolutionary processes
by analyzing ecological and co-evolutionary features is also important. Spatial scales and
different levels of organization need to be considered due to spatial heterogeneity and feed
backs between local and emergent ecosystem patterns. The role of local interactions and
aggregate emerging properties, such as ecosystem functioning, must be acknowledged.
Management strategies need to be flexible and ecosystem-based, and to integrate socio-
ecological perspectives that leverage and foster the capacity of ecosystems to resist, recover,
and adapt.
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Figure 4. Framework for ecological management based on a BEF approach adopting CAS thinking.
Ecological management should include the identification and analysis of local interactions and
processes to detect ecosystem emergent patterns across spatiotemporal scales. Critical transitions
and regime shifts between alternative stable states reveal uncertainty. Biological interactions convey
variability, complexity, and adaptation to sustain biodiversity. Behavioral interactions enhance
adaptative capacity, resulting in collective behavior. Ecosystem processes ensure the flow of matter
and energy, producing common pool resources. Resistance and resilience to unfavorable conditions
confer robustness. Similar functional species buffer species losses, contributing to redundancy.
Species dispersal and different habitats enable species to track favorable conditions, conveying
environmental heterogeneity and connectivity among scales. Accounting for fast ecological and
slow evolutionary processes is important. The role of local interactions and aggregate properties
must be assessed. Management strategies need to be flexible and ecosystem-based, and to integrate
socio-ecological perspectives that enhance the capacity of ecosystems to resist, recover, and adapt.

This framework can be used to develop sustainable management plans, conservation
prioritization, ecosystem restoration, climate change adaptation, and effective policies. For
example, recognizing the influence of biodiversity on ecosystem functioning highlights the
importance of maintaining biodiversity for the sustainable provision of ecosystem services
such as food production, water purification, climate regulation, and cultural activities.
Sustainable management practices can integrate biodiversity through the lens of CAS
into decision making to ensure the long-term sustainability of natural resources and the
well-being of human communities that rely on these resources. Conservation strategies
can focus on protecting heterogenous areas with high biodiversity, supporting essential
ecosystem processes that result in collective behavior and the production of common pool
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resources, which provide essential ecosystem services. Moreover, considering the func-
tional traits of species and their interactions within complex adaptive systems allows for
more targeted conservation actions, ensuring robustness, redundancy, and connectivity in
the preservation of key ecological functions. By considering diversity, restoration projects
can aim to reestablish functions and ecosystem processes that have been lost or disrupted.
Restoring biodiverse assemblages can help rebuild trophic interactions, nutrient cycling,
and other essential ecosystem processes, enhancing robustness and the functioning of
degraded ecosystems. Understanding the connection between biodiversity and ecosystem
functioning can inform climate change adaptation strategies. Sustainable management,
conservation, and restoration practices can focus on maintaining and enhancing biodiver-
sity to support the adaptive capacity of ecosystems. Diverse ecosystems are more likely
to include species with a range of adaptive traits, allowing them to respond to changing
environmental conditions and reducing their vulnerability and the services they provide.
Finally, understanding the connection between biodiversity and ecosystem functioning
within complex adaptive systems provides a scientific basis for policy development. Poli-
cies can be informed by the need to protect and restore biodiversity to maintain ecosystem
resilience and functioning. Additionally, incorporating the complexity and dynamics of
ecosystems into policy frameworks can help address emerging challenges and promote
adaptive management approaches that consider the interplay between biodiversity, ecosys-
tem functioning, and human activities.

This framework is designed to combine with multi-factor empirical studies that collect
pre-and post-intervention information, as well as with analytical and computational models
of ecological dynamics and driving forces of change over ecological and evolutionary
scales [15,175] considered in the intervention. The models need then to be confronted
with the new post intervention data and updated, either in terms of their recalibration
and extension, or simply by clarifying their scope. Using complementary approaches will
help to keep a diverse portfolio of increasingly valuable tools. Knowledge graphs [176]
present a promising tool to organize and connect such diverse information on data, models,
and interventions. These will lead to the identification of various types of feed back
among natural ecological systems, anthropogenic pressures, and the evolutionary trends
of different scenarios. However, advancing fully cohesive information and delivering
science-based tools to back up management plans interconnected with biodiversity and
ecosystem sustainability, conservation, and restoration is still a challenge as it requires
multidisciplinary and multi-method teams.

7. Biodiversity Loss, Hindered Ecosystem Functioning, and CAS

Research undertaken in recent decades has highlighted the pivotal role of biodiversity
in the functioning of ecosystems (see sections above), and the consequences of biodiversity
loss for ecosystems and humanity. These studies have indicated that net biodiversity loss
threatens multiple ecosystem processes. Therefore, we know that impaired ecosystem
functioning will exacerbate with biodiversity loss [5]. Nonetheless, and in spite of various
international commitments (e.g., CBD, Aichi Targets, IPBES, SDGs), biodiversity is still
experiencing increasing rates of decline and ecosystems are facing ongoing oversimplifica-
tion worldwide due to human-driven environmental pressures. Using natural resources is
vital for human survival and development, but paradoxically the increasing exploitation of
ecosystems is severely reducing global biodiversity with detrimental effects on the same
resources that humans depend on to survive.

Current knowledge stresses the importance of BEF to comprehend the potential im-
pacts of biodiversity changes on ecosystem functioning, especially to detect the adverse
effects on ecosystems of immediate interest to humans and the major trends in global
biodiversity loss and the homogenization of biota worldwide. The BEF connection secures
complex adaptive ecosystems, as ecosystems emerge through biodiverse interactive com-
munities within changing environmental contexts that simultaneously mediate multiple
ecological processes across scales. Increasing biodiversity loss and ecosystem degradation
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will compromise the fluxes of energy, matter, and information, and thus the robustness and
adaptive capacity of ecosystems to endure changes and support the Earth’s system that is
so vital to humanity.

8. Conclusions

Understanding how biodiversity relates to ecosystem functioning is still the main
focus of the BEF research [4,18,38]. BEF is one of the most critical challenges for ecologi-
cal science because complex interactions and adaptation play a crucial role in ecosystem
functioning [5,38]. Field, experimental, and theoretical studies on BEF have consistently in-
dicated a general trend on the positive link between biodiversity and ecosystem functioning
throughout terrestrial, freshwater, and marine ecosystems. The BEF relationship simultane-
ously regulates multiple dynamic processes, leading to emergent properties across different
spatial and temporal scales, as well as ecological and evolutionary scales. Ecosystems are
CASs that rely on biodiverse interactive local assemblages within variable environmental
conditions, habitat connectivity, and dispersal rates. These components interact and evolve
to foster fluxes of matter, energy, and information through nonlinear, basic processes. Bio-
diversity interacts with climate, resource availability, and disturbance regimes at different
scales to configure ecosystem functioning. By regulating distinct ecosystem processes,
biodiversity fosters multifunctionality and sustains complex adaptive ecosystems that are
capable of adjusting to a fast-changing planet and providing ecosystem services essential
to the survival of humanity.

Ecosystem functioning may be perceived as a macroscopic emerging property, which,
from the CAS perspective, must affect smaller scales. Using the CAS perspective, we
identify a knowledge gap: the feed backs between macrolevel properties, such as ecosys-
tem functioning, and the adaptive capacity at smaller scales, which renders the adaptive
capacity of the macroscopic properties themselves. Disentangling this complexity is a long-
term conundrum in the BEF relationship. It requires unraveling the role of biodiversity
in the dynamics of aggregate ecological patterns, which result from the interplay of all
ecosystem compartments at different scales (spatial versus temporal; ecological versus
evolutionary; disaggregated properties versus aggregated), and the role of these patterns
in those compartments to ensure the persistence of complex adaptive ecosystems.

Recognizing the potential trade-offs and synergies between biodiversity conservation
and ecosystem functioning within complex adaptive systems is essential for developing
integrated and sustainable management strategies. Balancing these dynamics requires
careful consideration of ecological, social, and economic factors, as well as long-term
sustainability goals. It emphasizes the importance of adopting an interdisciplinary and
systems-based approach to management and conservation practices. Advances in the
combined facets of BEF and CAS are critical to a comprehensive assessment of the effects
of biodiversity loss triggered by humans.

9. Future Directions

Further progress on BEF entails a forward-looking strategy towards in-depth field
research in real-world ecosystems, at landscape and management scales over long periods
of time, comprising the integration of data on several biodiversity metrics (namely genetic
diversity, species composition, and functional traits); the link between biodiversity and
multiple fundamental ecosystem processes; the adaptation of biodiversity and ecosystem
functioning to both natural and non-random anthropogenic ecological fluctuations; and
the human-induced forces driving species extinction and ecosystem functioning frailty at
different scales. Scaling up experiments to combine the complex biotic and environmental
interactions that shape BEF and CAS in natural ecosystems will be an important comple-
ment to field studies. This experimentation requires the development of new designs that
further account for issues of scale, complexity, and applicability to natural systems. As
ecosystems operate at multiple spatial and temporal scales, increasing our knowledge
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still calls for the acquisition of data revealing the scales at which interactions operate and
changes occur [4,66].

Integrating currently available meta-datasets and models with previous and novel
observational, experimental, and theoretical approaches will identify gaps and produce
new knowledge. Such an approach can emerge in parallel with interventionist conservation
efforts that, beyond their primary conservation goal, act as theory testers and partners in
building a knowledge database that integrates diverse sets of experiments, models, and
interventions. The created reference knowledge should be able to produce increasingly ac-
curate scenarios regarding the connection between biodiversity and ecosystem functioning
and, consequently, biosphere preservation. Such an integrated approach will be essential
to tackle biodiversity loss, and the functionality and sustainability of the Earth’s complex
adaptive ecosystems. It will further expand the application of better-informed solutions
in conservation policy and decision making addressing the protection, restoration, and
sustainable use of biodiversity and ecosystems by humanity.
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