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Abstract: The frequency of cetacean strandings is increasing, with multiple causes identified. We
examined temporal and spatial trends in stranding numbers along the coastal areas of the East
China Sea from 1990 to 2021. Using structural equation models, we analyzed the relationships
between strandings and climate, oceanic properties, and human activities. Our findings revealed
time-dependent interannual variability in strandings but no linear trend, indicating relative stability
in cetacean strandings. Seasonal patterns were observed only in narrow-ridged finless porpoises
(Neophocaena asiaeorientalis), with significant spring increases (March to May). Clustering of strandings
occurred in central Fujian and northern/southern Taiwan, according to spatial analysis. The impact
of variables on cetacean strandings varied across time periods. Storm surges, coastal fishing, and the
Pacific decadal oscillation were associated with stranding events from 1990 to 2006. However, from
2006 to 2021, the influence of storm surges weakened, while the climate index only indirectly affected
strandings through sea surface temperature and salinity, with an increased intensity in the effects
of winter sea surface temperature and salinity. Structural equation models unveiled the cascading
effects of environmental changes on strandings. This study reports changing trends in cetacean
strandings and identifies relevant variables. Although not exhaustive, understanding the reasons
behind strandings enhances our comprehension of cetacean responses to environmental changes,
supporting targeted conservation and management efforts.

Keywords: cetacean strandings; East China Sea; Taiwan Strait; hotspot; structural equation models;
environmental changes

1. Introduction

Cetaceans serve as essential sentinel species for evaluating the health of marine
ecosystems due to their long lifespan, high trophic level, and significant ecological roles,
including their impact on prey population dynamics, nutrient cycling, and ecosystem
structure [1,2]. As top predators in marine ecosystems, cetaceans affect the popula-
tion status and evolutionary dynamics of prey organisms. Additionally, their exten-
sive feeding on marine organisms contributes to the bioaccumulation of pollutants,
reflecting changes in the ecological environment [3–5]. This is particularly relevant
for species inhabiting the continental shelf regions, as they are directly impacted by
human activities, and their abundance and distribution serve as ecological indicators in
environmental assessments [6]. Consequently, cetacean conservation often constitutes a
fundamental objective in establishing marine protected areas [7,8]. Understanding the
habitat utilization patterns of cetaceans is crucial for effective conservation measures [9]
and provides insights into prey availability and environmental changes within marine
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ecosystems [10–12]. It is difficult to conduct comprehensive research on the majority of
cetaceans due to their widespread distribution, extensive migrations, low population
densities, and prolonged periods spent below the ocean’s surface. Furthermore, the
lengthy lifespan of cetaceans necessitates long-term, continuous monitoring to observe
population changes throughout their entire life cycles. This requires substantial financial
support and policy attention, which are frequently deficient in developing nations and
regions. Common monitoring techniques include visual and acoustic surveys, both
of which have limitations such as high survey costs, demanding sea conditions, and
effectiveness only for specific species [13,14]. For instance, visual surveys are particu-
larly useful for documenting visually conspicuous and easily observed species such as
bottlenose dolphins (Tursiops truncatus). Widespread on a global scale, strandings have
been used for a long time as a relatively low-cost method to monitor marine mammal
populations [15,16], providing fundamental information on species composition and
relative abundance [17–19]. Since the last century, long-term monitoring and investi-
gations of cetacean strandings have been conducted in countries such as the United
Kingdom [20], Australia [21,22], the United States [23], and New Zealand [16]. For
instance, the cetacean strandings investigation program in the United Kingdom has
documented nearly 20,000 stranding events, establishing one of the world’s most exten-
sive and long-term datasets on cetacean strandings and enabling valuable insights into
population trends, stranding causes, and conservation strategies.

Cetacean strandings are the result of the combined effects of multiple factors [24].
Cetacean stranding patterns vary depending on species composition and population abun-
dance, resulting in species-specific distinctions in stranding frequency and spatial-temporal
distribution [25–27]. Moreover, climate change influences the utilization of cetacean habi-
tats, prompting some species to depart from their native habitats and resulting in an increase
in stranding rates in particular regions [28–30]. The magnetic sensitivity of cetaceans plays
a vital role in their migration behavior, and disturbances in the Earth’s magnetic field
caused by solar storms can disorient cetaceans, hindering their timely departure from
hazardous areas and increasing the likelihood of stranding events [31,32]. Post-mortem
examinations have revealed that a substantial portion of stranded cetaceans are the result
of anthropogenic causes such as ship collisions, fisheries interactions, marine pollution,
and naval exercises [33–37].

The East China Sea, rich in resources and characterized by a developed coastal
economy, has experienced significant impacts on its marine ecosystem in recent decades
due to intensive human activities and climate change [38]. Chinese waters are home to
approximately 39% of the global cetacean population, and the East China Sea harbors a
substantial proportion of China’s cetacean species [39,40]. Following notable revisions
to the wildlife protection law of the People’s Republic of China in 2018, subsequent
revisions to the list of key protected wild animals in China have resulted in more
cetaceans being listed as the Grade I National Key Protected Animal Species in China [41].
In addition, the Ministry of Agriculture and Rural Affairs of the People’s Republic of
China issued a notice in 2021 emphasizing the critical significance of proactive cetacean
conservation management [42]. The investigation of cetacean strandings holds particular
relevance for countries and regions that are relatively new to this field of study [43].
While regional (e.g., Hainan, Hong Kong, Taiwan) and national stranding databases
exist, as well as studies on the spatio-temporal distribution patterns of strandings, there
remains a dearth of research and analysis concerning the underlying causal factors
driving cetacean stranding events [40,44,45]. The study seeks to uncover the interannual
and seasonal variations and spatial patterns of cetacean strandings along the eastern
coast of China, as well as to analyze the drivers of spatio-temporal changes and the
disturbance patterns of various variables on strandings. This research contributes to the
improvement of cetacean conservation policies and a greater comprehension of coastal
ecosystems through its findings.
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2. Materials and Methods
2.1. Study Area and Stranding Data

The study area included two parts of China’s waters, including the East China Sea. This
article documents stranding events in five administrative regions: Jiangsu (JS), Shanghai
(SH), Zhejiang (ZJ), Fujian (FJ), and Taiwan (TW) (Figure 1). We compiled records of
cetacean strandings from 1990 to 2021, primarily from news articles, research papers,
and other pertinent publications. Each stranding record consists of the date of stranding,
location, and species. We initiated our data collection process by conducting systematic
searches using keywords such as “whale”, “cetacean”, “dolphin”, and “porpoise” across
various search engines, online English literature databases, as well as online Chinese
literature databases. Subsequently, we refined our search results by incorporating additional
keywords such as “stranding” to specifically target stranding records. These records
were then compiled and aggregated, focusing on the coastal areas of the East China Sea.
Furthermore, we complemented our dataset by extracting pertinent information from books
and reports, as well as incorporating insights derived from reports submitted by residents
and local communities. Based on search results, a rigorous selection process was applied
to all available records, followed by meticulous manual examination. We conducted a
comprehensive validation of the collected cetacean species records, with a primary focus
on assessing the reliability of their sources and verifying the consistency of reported species
occurrences with existing research findings. Records were scrutinized for factors such as
stranding dates, locations, and cetacean species. Non-specialized, duplicate, irrelevant, and
problematic entries were systematically excluded from the final dataset.
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Figure 1. The red box is map of study and the area where the local variables are gathered (Jiangsu
(JS), Shanghai (SH), Zhejiang (ZJ), Fujian (FJ), and Taiwan (TW)).

2.2. Environmental Data

In our analysis, we considered various factors associated with cetacean strandings
(Table 1). As a key climatic indicator, the present study employs the Pacific decadal
oscillation (PDO) index, which represents the average monthly value throughout the year.
Another significant climatic variable considered is the East Asian summer monsoon index
(EASMi), which quantifies the strength of the summer monsoon in the East Asian region by
calculating the annual deviation from the mean monsoon index within the specified area.
In terms of the fishing industry, the analysis focuses on the landed quantities from Jiangsu,
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Zhejiang, Shanghai, Fujian, and Taiwan. Trawls, purse seines, gillnets, and trap nets are the
four principal fishing equipment used in the region.

Table 1. Environmental variables used in our structural equation model.

Variable Data Sources *

Pacific Decadal Oscillation

A pattern of climate variability in the
Pacific Ocean characterized by long-term
changes in sea surface temperatures and

atmospheric conditions

Climate Prediction Center, NOAA

The East Asian summer monsoon index A measure of the strength and activity of
the summer monsoon in East Asia National Tibetan Plateau Data Center

Sea Level Pressure The atmospheric pressure at sea level The Fleet Numerical Meteorology and
Oceanography Center (FNMOC), NOAA

Storm surge Count of annual storm surge occurrences Bulletin of China marine disaster

Sea surface temperature The measurement of ocean
surface temperature Met Office: HadISST

Sea surface Salinity The measurement of salt content in the
uppermost layer of the ocean’s surface Naval Oceanographic Office, NOAA NCEI

Power of fishing vessel Annual total power of fishing vessels China Fisheries Yearbook from 1990–2021
Yearly fishing catch Total yearly catch data for 40 fish species China Fisheries Yearbook from 1990–2021

* NOAA: National Oceanic and Atmospheric Administration, NCEI: National Centers for Environmental Information.

2.2.1. The Influence of Climate on Cetacean Strandings

It has been documented that climate factors influence the distribution and abundance
of prey organisms for cetaceans [46]. These factors contribute to the alteration of cetacean
distribution and the increase of strandings [47]. Coastal storm surges have direct detrimen-
tal effects on whales, causing physical harm and disorientation. Another factor to consider
is that storm surges can significantly impact whether a deceased or weakened cetacean
ends up stranded on the shoreline. Additionally, similar climatic phenomena disrupt
the availability of prey organisms, consequently impacting cetaceans [48,49]. The PDO,
recognized as one of the primary mechanisms of decadal-scale climate variability, exerts
substantial effects on global climate and ecosystems. Its effects are primarily observed
through variations in sea surface temperature, salinity, and nutrient concentrations [46].
Notably, studies have demonstrated a significant contemporaneous negative correlation
between the catch of economically important fish species in the East China Sea and PDO
variations [50]. These findings emphasize the significance of incorporating the PDO into
fisheries management and stranding analyses.

2.2.2. The Influence of Oceanic Properties on Cetacean Strandings

The temperature, salinity, and other oceanic properties of seawater have direct or
indirect effects on the foraging, reproduction, and migration of cetaceans, resulting in
alterations to their distribution [51] and consequently affecting stranding spatial patterns.
Significant increases in precipitation or environmental pollution can lead to a sustained
decrease in seawater salinity, resulting in higher disease prevalence among cetacean
populations. This elevated disease occurrence, in turn, indirectly contributes to the
incidence of strandings [52–54]. Moreover, rising sea temperatures contribute to the
extended persistence of deleterious algal blooms, highlighting the significance of this
ecological relationship [55].

2.2.3. The Influence of Human Activities on Cetacean Strandings

Cetacean distribution is intricately correlated with the availability of prey organisms.
Examining stranded whale carcasses has revealed that food scarcity and the accumulation
of seawater contaminants contribute to cetacean strandings [56]. The depletion of prey
organisms for cetaceans as a result of overfishing has had detrimental effects on their
survival and well-being [57]. Furthermore, the power of fishing vessels serves as the most
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direct measure of fishing effort, providing a more immediate reflection of the impact of
fishing vessels on cetaceans beyond their fishing activities. For instance, during navigation,
fishing vessels may accidentally collide with cetaceans or generate noise that affects them.
Additionally, an increase in the power of fishing vessels can also lead to a higher number of
abandoned fishing gears, posing a direct threat to cetaceans and leading to mortalities [58].
In our study, we use the power of fishing vessels and the yearly fishing catch of fishing
vessels as indicators of human activities, allowing us to evaluate the level of disturbance
caused to cetaceans.

2.3. Data Analysis
2.3.1. Temporal and Spatial Analyses

In order to examine the temporal patterns of cetacean strandings, seasonal and
annual trends were analyzed based on the recorded counts of all stranding events.
In order to verify the stationarity of the cetacean stranding data and that the mean
and variance of the time series are constant over time, we conducted the augmented
Dickey–Fuller test using the ‘tseries’ package [59] in the statistical software R [60]. In
addition, the presence of monotonic trends in strandings throughout the 31-year time
series (1990–2021) was assessed using the Mann–Kendall trend test implemented in the
‘trend’ package [61]. Furthermore, analyses of the seasonal difference were investigated
with the Kruskal–Wallis [62] test using the software R for the entire dataset and the
two most commonly reported families, Balaenopteridae and Phocoenidae. The seasons
were defined as follows: spring (March to May), summer (June to August), autumn
(September to November), and winter (December to February).

We used Moran’s I index to compute spatial autocorrelation [63]. This approach
assesses whether stranding locations were dispersed, random, or clustered. Once the
stranding patterns were determined, Gi* hotspot analysis was used to identify stranding
hotspots [64]. On the basis of the calculated p-values and z-scores, the spatial clustering
locations of high- and low-value factors can be determined. All spatial analyses were
undertaken in ArcGIS 10.8.

2.3.2. Structural Equation Model

To examine the factors contributing to variations in cetacean strandings, we used
structural equation models (SEM) to examine the correlation between key factors and
interannual changes in strandings. A structural equation represents the causal relationships
among variables, with a basic example being a univariate linear equation. SEM, as an
analytical method, combines path analysis and confirmatory factor analysis to display
the results of structural equations [65]. By integrating these methods, SEM allows for the
examination of relationships between endogenous variables and exogenous variables [66],
thereby revealing direct and indirect causal connections among multiple variables.

The implementation of the structural equation model in this study was based on
the “piecewise SEM” package in the statistical software R, developed by Lefcheck in
2015. Unlike conventional SEM, this package employs local estimation rather than global
estimation, enabling the analysis of each path individually [67]. The SEM was used to
examine the impact of interannual changes in various variables on cetacean strandings [68].
Initially, an a priori model was developed based on previous research findings. The Fisher’s
C test [67] was used for model identification to assess potential issues of overfitting or
inadequate fit. Additionally, the directed separation test [69] was used to determine the
conditional independence of variables. If the model fit was inadequate, significant missing
paths (i.e., p < 0.05) with the smallest p-values were incorporated into the model via directed
separation, and this procedure was repeated until an adequate model fit was achieved [67].
In cases where multiple models passed the Fish’s C test, the final model was selected based
on the comparison of AIC values.
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To account for the extensive temporal span of our study and the observable increase
in fish catch in the eastern coastal waters of China from the 1990s to the early 21st century,
followed by a subsequent plateau, the dataset was divided into two distinct time periods,
using 2006 as the dividing line. For each period, separate structural equation models
were developed to assure a comprehensive analysis. Through a series of iterations and
refinements, we derived the final model, which exhibited a satisfactory level of goodness-
of-fit. Specifically, considering that the annual average temperature may not adequately
capture temperature variations, we compared the goodness of fit of the average temperature
of the highest monthly average temperature and the average daily temperature during
the winter months (December to February) within the model. Notably, the average daily
temperature during the winter demonstrated the strongest performance. Recognizing
the time-lagged impact of the PDO on marine ecosystems [70,71], we discovered that the
PDOwin 2 yr-lag had stronger explanatory power after fitting several models with various
delays of years. As a result, we incorporated the two-year-lagged winter PDO into the
revised model. In an a priori model, the relationship between fish catch and strandings
of cetaceans was not statistically significant. By disaggregating fish catch into power of
fishing vessel and yearly fishing catch, we were able to identify a significant positive effect
of catch on stranding events. To address the issue of collinearity between fishing vessel
power and cetacean strandings, a direct relationship was established between the two
variables. Ultimately, the final model demonstrated a favorable fit (p = 0.74). Furthermore,
despite our initial expectation that PDO would not exert a direct influence on stranding
occurrences, the results of the direct separation test revealed that this relationship was not
conditionally independent, as predicted by an a priori model. Consequently, we integrated
a direct effect of PDO into the structural equation model encompassing 1990 to 2006.

3. Results

During the period from 1990 to 2021, 239 cetacean stranding records were obtained
and involved 27 cetacean species belonging to seven families [39]. The majority of the
strandings belonged to three prominent families, namely Balaenopteridae, Delphinidae,
and Phocoenidae, accounting for a substantial proportion of the overall strandings,
specifically 46, 96, and 46 events, respectively, which collectively accounted for approxi-
mately 77% of cetacean stranding events (Table 2). The narrow-ridged finless porpoise
(Neophocaena asiaeorientalis) was the most frequently recorded species, accounting for
approximately 16% of cetacean stranding events. Intriguingly, an overwhelming majority
of these porpoise strandings, approximately 70%, were recorded in Zhejiang Province
(Figure 2). Temporally, cetacean strandings were observed annually throughout the
entirety of the study period, with a notable peak in stranding events documented in 2008
and the highest number of cetacean stranding individuals observed in 2021 (Figure 2).
Geographically, Taiwan had the highest number of stranding records, accounting for
approximately 42% of cetacean stranding events, followed by Zhejiang (21%), and Fujian
(21%), which also made significant contributions to the cetacean stranding events.

Table 2. Stranded cetaceans from 1990 to 2021 along coasts of East China Sea.

Common Name Scientific Name Family Number of Events

Short-finned pilot whale Globicephala macrorhynchus Gray, 1846 Delphinidae 27
Risso’s dolphin Grampus griseus G. Cuvier, 1812 Delphinidae 14

Pygmy killer whale Feresa attenuata Gray, 1874 Delphinidae 9
Indo-Pacific humpback dolphin Sousa chinensis Osbeck, 1765 Delphinidae 9

Pantropical spotted dolphin Stenella attenuata Gray, 1846 Delphinidae 9
Melon-headed whale Peponocephala electra Gray, 1846 Delphinidae 7

Fraser’s dolphin Lagenodelphis hosei Fraser, 1956 Delphinidae 6
Rough-toothed dolphin Steno bredanensis G. Cuvier in Lesson, 1828 Delphinidae 5

Common bottlenose dolphin Tursiops truncatus Montagu, 1821 Delphinidae 5
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Table 2. Cont.

Common Name Scientific Name Family Number of Events

False killer whale Pseudorca crassidens Owen, 1846 Delphinidae 3
Spinner dolphin Stenella longirostris Gray, 1828 Delphinidae 2

Common minke whale Balaenoptera acutorostrata Lacépède, 1804 Balaenopteridae 13
Omura‘s whale Balaenoptera omurai Wada, Oishi & Yamada, 2003 Balaenopteridae 12
Bryde’s whale Balaenoptera edeni Anderson, 1878 Balaenopteridae 11

Fin whale Balaenoptera physalus Linnaeus, 1758 Balaenopteridae 4
Sei whale Balaenoptera borealis Lesson, 1828 Balaenopteridae 3

Humpback whale Megaptera novaeangliae Borowski, 1781 Balaenopteridae 3
Cuvier’s beaked whale Ziphius cavirostris Cuvier, 1823 Ziphiidae 10

Blainville’s beaked whale Mesoplodon densirostris de Blainville, 1817 Ziphiidae 9
Longman’s beaked whale Mesoplodon pacificus Longman, 1926 Ziphiidae 2

Ginkgo-toothed beaked whale Mesoplodon ginkgodens Baker & van Helden, 1999 Ziphiidae 1
Narrow-ridged finless porpoise Neophocaena asiaeorientalis Pilleri and Gihr, 1972 Phocoenidae 40

Indo-Pacific finless porpoise Neophocaena phocaenoides Cuvier, 1829 Phocoenidae 2
Dwarf sperm whale Kogia sima Owen, 1866 Kogiidae 13
Pygmy sperm whale Kogia breviceps de Blainville, 1838 Kogiidae 9

Sperm whale Physeter macrocephalus Linnaeus, 1758 Physeteridae 9
North Pacific right whale Eschrichtius robustus Lilljeborg, 1861 Eschrichtiidae 2
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between 1990 and 2021.

3.1. Temporal Patterns

The occurrence of whale strandings exhibited a discernible upward trend between
2000 and 2008, with the highest number of strandings recorded in 2008 (Figure 2). The
Augmented Dickey–Fuller test was conducted to evaluate the stationarity of the time
series, and the results indicated non-significance (p = 0.67), suggesting a non-stationary
pattern. The Mann–Kendall trend test did not detect any significant upward or down-
ward trend in the annual occurrence of strandings (p = 0.93). And the Kruskal–Wallis
test revealed no significant seasonal differences (Kruskal–Wallis chi-squared = 1.9721,
df = 3, p-value = 0.5782). Subsequently, a more concentrated investigation was conducted
on families with an increased number of stranding records. Due to the considerable
species diversity and ecological variations within the family Delphinidae [72], seasonal
differences within this family were not examined (Figure 3). There were no significant
seasonal differences in strandings within Family Balaenopteridae (Kruskal–Wallis chi-
squared = 2.3792, df = 3, p-value = 0.4975). In contrast, significant seasonal differences
were identified within Family Phocoenidae (Kruskal–Wallis chi-squared = 10.909, df = 3,
p-value = 0.01223), with significant spring increases.
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3.2. Spatial Patterns

Observations of cetacean strandings along the coasts of Jiangsu (JS), Shanghai (SH),
Zhejiang (ZJ), Fujian (FJ), and Taiwan (TW) between 1990 and 2021 indicate a pervasive
occurrence of stranding events in these regions. Notably, the frequency of stranding was
highest in the northern and southern regions of Taiwan, whereas Jiangsu had considerably
fewer records (Figure 4). We analyzed the spatial distribution pattern of cetacean strandings
using the Global Moran’s I index, which indicates a statistically significant clustered pattern.
(Z-score = 48.42 and p-value < 0.001). The Gi* hotspot analysis provided a statistical way
to identify stranding clusters with significance levels. The central regions of Fujian and
the northern and southern regions of Taiwan exhibited a high level of significance at the
99% confidence level, indicating the presence of significant stranding hotspots. In addition,
the coastal areas of central Fujian and the southern end of Zhejiang were identified as
significant hotspot regions for cetacean strandings at the 95% confidence level (Figure 5).
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3.3. Factors Driving Patterns of Cetacean Strandings

Piecewise SEM was utilized to further elucidate the direct and indirect pathways of
factors influencing cetacean strandings. The variables incorporated in the model collec-
tively explained a large proportion of the variation in cetacean strandings. Moreover, the
analysis of the graph revealed discernible variations in the strength of external influences
on strandings across different temporal intervals. However, it is noteworthy that sea
level pressure did not exhibit a significant influence on storms during the entire study
period, consequently lacking an indirect impact on cetacean strandings. All of these
variables explained 59% and 65%, respectively, of the variations in strandings during
the two time periods (Figure 6). Specifically, from 1990 to 2006, the incidence of coastal
storm surges, fishery capture, and the PDOwin 2 yr-lag were found to have direct and
statistically significant effects on strandings, as indicated by standardized coefficients of
0.59, 0.6861, and −0.5933, respectively. Furthermore, the EASMi factor was observed
to indirectly affect strandings by influencing the frequency of coastal storm surges. In
addition, the rising total power of fishing vessels contributed to an increase in fishing
pressure, thereby promoting strandings.

In the subsequent timeframe of 2007 to 2021, salinity and winter sea surface temper-
ature emerged as significant factors influencing cetacean strandings, with standardized
path coefficients of −0.4345 and −0.5635, respectively. In spite of the absence of direct
effects of the PDOwin 2-year lag on strandings during this period, it was found to impart
indirect influences via its association with sea surface temperature and salinity. Notably,
the PDOwin 2 yr-lag exhibited a positive effect on temperature but a negative effect on
salinity. By contrasting the cumulative effects of the two pathways through meticulous
calculations, it is possible to conclude that the PDOwin 2 yr-lag had an overall negative
impact on the incidence of strandings.
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Figure 6. Piecewise structural equation modeling (SEM) describing the effects of predictor variables
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period was from 2006 to 2021 (B). *: p < 0.05, **: p < 0.01, ***: p < 0.001. Significant paths (p < 0.05) are
presented in blue (positive effects) and in red (negative effects). Non-significant paths (p > 0.05) are
shown in dashed gray lines. Numbers adjacent to arrows indicate path coefficient estimates. The
variance explained by the model (R2) is shown next to each response variable.
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4. Discussion
4.1. Temporal and Spatial Trends

The temporal and spatial variations of cetacean strandings are reflective of the status
of species, seasonal distribution, and population changes to a significant degree [73].
Analyzing stranding events is crucial for cetacean research. Temporal analyses of strand-
ing events in this study have revealed interannual fluctuations but no linear trend. In
the present study, the significant increase in stranding events between 2000 and 2008
is likely attributable, in part, to increased media coverage and public awareness. The
seasonal analysis reveals that the overall distribution of cetacean strandings, as well
as those within the Balaenopteridae family, exhibits a statistically insignificant pattern
of seasonal uniformity. Nevertheless, this discovery contradicts existing perspectives.
Due to the relatively limited sample size obtained in this study, all cetacean species
were pooled together for seasonal analysis to examine the overall seasonality of cetacean
strandings. Therefore, the difficulty in detecting seasonality across all cetacean species
may be attributable to the wide variety of included species, each of which possesses
distinct ecological characteristics. For instance, the family Phocoenidae experiences a
surge in strandings during the spring in Indonesia [62], whereas certain species within
the family Delphinidae experience a peak in strandings during the months of March
and April in the UK [58]. In contrast, strandings of the family Ziphiidae are more com-
mon in autumn in China, Australia, and the Northeast Pacific [40,74,75]. Consequently,
an overarching seasonal trend is not discernible. Due to its limited presence along
the Chinese coast, the Balaenopteridae family displays a relatively uniform distribu-
tion of strandings throughout the year. Another reason is the presence of six species
within the Balaenopteridae family in the East China Sea (Table 2). Due to differences
in their ecological behaviors, it is challenging to monitor their seasonality. Thus, the
sample size derived from strandings is small, and the occurrence appears to be random.
Population migrations [22,76], temporal variations in prey distribution [77], climate
change [78], and seasonal coastal human activities such as recreational pursuits and
fishing operations [58,79] may contribute to significant seasonality in strandings. No-
tably, the narrow-ridged finless porpoise (Neophocaena asiaeorientalis) exhibits statistically
significant seasonality in strandings during spring. This species is commonly found
along the Chinese coast [80], and its reproductive season in the East China Sea occurs
from April to May [81]. During this time, the cetacean population increases and moves
closer to the coast, increasing the likelihood of strandings. Additionally, the finless
porpoise demonstrates nurturing behavior, with young calves often tightly clinging to
their mother’s dorsal fins in nearshore coastal areas, prolonging their proximity to the
shore [82]. Therefore, another reason may be due to increased calves stranding [30]. The
peak period of porpoise strandings coincides with the increased incidence of fishing
and incidental injury events involving this species in the study area [83], indicating that
fishing may also contribute to the seasonality of strandings. Nevertheless, thorough
necropsies are required to corroborate the cause of death.

Based on the records, there are sporadic reports of cetacean strandings along the
coasts of the study region, and the hotspots for stranding are situated on both sides of the
Taiwan Strait. Similar to interannual variations in strandings, the differential attention
given to these events by different governments and stranding organizations is a factor in
the formation of spatial hotspots [84]. Regions with well-established networks tend to
report more strandings due to efficient data collection, faster response times, and increased
research efforts. In contrast, areas lacking such networks may have fewer reported cases,
contributing to apparent spatial variations in cetacean strandings. In addition, numerous
factors, such as species resources, climate conditions, fisheries, and maritime traffic in
different regions, may have direct or indirect effects on strandings. The study area, which is
characterized by numerous river estuaries, dense islands and reefs, and multiple cold and
warm coastal currents, not only sustains an abundance of fishery resources [85], but also a
great diversity of cetacean species. Therefore, the natural conditions in the Taiwan Strait
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make it a suitable habitat for cetaceans. It is noteworthy that roughly half of the cetacean
species documented in Chinese waters are located within the Taiwan Strait [86]. This
region’s elevated species diversity contributes to the frequency of cetacean strandings [22].
In addition, the Taiwan Strait is a vital passage connecting the East China Sea and the
South China Sea, facilitating maritime commerce between East Asia, Southeast Asia, and
the Indian Ocean’s coasts. The resulting dense and complex maritime traffic poses a direct
threat to the survival and growth of cetaceans. According to necropsy results, fishing and
marine traffic are causing a significant number of whale strandings in Taiwan’s waters [87].
In addition, a growing body of evidence suggests a link between cetacean strandings and
human activities [12,88].

4.2. Correlates of Strandings through Time

To investigate variations in strandings in greater depth, we analyzed multiple variables
and divided the study period into two distinct phases: 1990–2006 and 2007–2021. The
significance of the influencing elements varied significantly between the two models. In
the 1990–2006 model, storm frequency, the PDOwin 2-yr-lag, and fishery catch had a
discernible effect on strandings, whereas sea surface temperature and salinity did not
manifest a statistically significant effect. However, a subsequent analysis for the period
2007 to 2021 revealed a correlation between strandings and both sea surface temperature
and salinity, whereas storm frequency and fishery catch exhibited no significant association.
These findings suggest that the factors influencing strandings have changed over time. The
following sections will conduct a thorough analysis of each individual factor.

The disruptive forces of strong storm surges and tumultuous oceanic conditions,
which can affect the likelihood of cetacean strandings, are known to play a significant
role in facilitating strandings during storm events. Consequently, a large number of
cetacean strandings are frequently recorded during storms [23,89]. Notably, smaller
coastal cetaceans are especially susceptible to the negative effects of cyclones because
their limited mobility makes evading turbulent conditions difficult and makes them
more susceptible to disturbance [47]. Intriguingly, our study reveals that the family
Delphinidae comprises the most commonly stranded species, predominantly inhabiting
sloping areas and coastal margins, which corresponds to the observed stranding patterns.
In addition, cyclones and surges can contribute to the presence of whale carcasses near
the coast, thereby increasing the number of recordings [89,90]. In addition, storm surges
can influence the availability of prey by modifying various physicochemical properties
of the water column, such as disturbances within the mixing layer and temperature
and salinity fluctuations. Consequently, such alterations can have a significant impact
on the distribution and abundance of phytoplankton and zooplankton, influencing the
food chain and decreasing the availability of food resources for cetaceans [91,92]. These
findings highlight the importance of storm surges as key environmental factors that
influence the occurrence of cetacean strandings. Consequently, it is essential to closely
monitor and investigate trends in storm surges in order to facilitate the development of
more effective conservation and management strategies for cetaceans.

Our analysis reveals a direct relationship between fish catch and strandings during
the first time period. It was discovered that the magnitude of fishing activities correlates
with the frequency of cetacean strandings. However, the subsequent analysis for the
period 2007–2021 did not reveal any statistically significant association between fish
catch and strandings. This disparity may be attributed to the relatively stable levels of
inshore landings during the latter time period. Another plausible explanation could be
the variation in prey organisms among various cetacean species, and the documented
fish catch incorporates the totality of nearshore fishing and is therefore incapable of
capturing the interannual variations in prey organisms targeted by cetaceans [57]. To
conduct an in-depth investigation into the effect of exploitation on cetacean strandings,
the scope of the study must be restricted to cetacean species with comparable ecological
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behaviors. In addition, it is crucial to select primary onshore prey landing data in order
to improve the accuracy and dependability of the results.

Based on stranding reports in the Atlantic and Mediterranean, malnutrition is the
most common cause of cetacean strandings, and the increasing fish catch has a direct effect
on the availability of food resources [57,93]. The depletion of resources forces whales to
seek alternative food sources, causing some species to migrate to shallower water areas
with greater resource abundance, thereby increasing the stranding risk [94]. In addition,
the increased difficulty in procuring sustenance necessitates a greater frequency of foraging,
thereby increasing the likelihood of vessel collisions [95]. Bycatch and entanglement
continue to pose significant hazards to the survival of cetaceans [96]. Seventy-five percent
of odontoceti whales and sixty-four percent of baleen whales were accidentally captured in
gillnets globally between 1990 and 2011 [97]. Certain gillnet fisheries in New Zealand and
the United States have alarmingly high bycatch rates, resulting in a precipitous decline of
small cetaceans [98,99]. A total of 36% of fishermen in the Kuching Bay region of Malaysia
unintentionally caught cetaceans, but only 50% of them had the ability to release the
animals unharmed, according to an investigation [100]. Additionally, abandoned fishing
gear poses a threat to cetaceans, as individuals may become entangled, resulting in injury
or death [101–103]. Indirectly increasing the risks associated with cetacean bycatch and
entanglement, the expansion of fishing activities and rapid technological advancements
from 1990 to 2006 rendered fishing tools and equipment more efficient, thereby increasing
the likelihood of cetacean bycatch and entanglement [35,104]. Large-scale fishing operations
may also contribute to habitat degradation, forcing cetaceans to seek out new habitats or
alter their migration routes, thereby increasing their likelihood of interacting with shallow
water areas [105]. In addition, fishing activities are frequently accompanied by vessel noise
and the emission of sonar signals, which can interfere with the acoustic navigation and
communication systems of cetaceans [106,107], resulting in disorientation or disrupted
migration patterns. In conclusion, the intensification of coastal fish catch can increase
interactions between cetaceans and fishing vessels, making cetaceans more vulnerable
to the effects of fishing gear, resource competition, and acoustic disturbances, and thus
increasing the likelihood of strandings. To reduce the number of cetacean strandings,
sustainable fisheries management measures must be implemented to reduce the negative
impacts of fishing on cetaceans and their habitats while ensuring the coexistence of fishing
and cetacean conservation efforts.

A higher value of the PDOwin 2 yr-lag correlates with a larger number of cetacean
strandings, and the model also indicates the existence of both direct and indirect effects.
During the positive phase of the PDO, the East Asian Subtropical Western Jet Stream
strengthens and shifts southward [108]. As the majority of recorded cetacean species
inhabit slope and continental shelf regions, a positive PDO is likely to result in an increase
in cetacean strandings. When large-scale oceanic climate changes occur, cetaceans may
abandon their habitats, resulting in a decrease in species abundance and a decrease in
the likelihood of cetacean strandings [109]. The absence of this phenomenon during the
positive phase of the PDO can be attributed to the diverse species composition and varying
adaptive abilities of various cetaceans. In addition to influencing the local climate, the PDO
can indirectly affect cetacean strandings by affecting the distribution and abundance of
their prey. During the negative phase of the PDO, there is a warming of seawater and an
increase in primary productivity in the coastal waters of China, leading to an increase in
prey for cetaceans and subsequently altering their distribution. This indirect effect of the
PDO can contribute to variations in strandings.

In addition, the 2007–2021 model reveals a significant correlation between winter
sea surface temperature and stranding records, suggesting that higher temperatures are
associated with fewer strandings. The influence of the marine environment on cetaceans
is predominantly determined by their ecological habits and environmental adaptability,
resulting in variations in stranding patterns among various cetacean species [110]. In the
western waters of Scotland, for instance, the relative strandings of white-beaked dolphins



Diversity 2023, 15, 1082 14 of 21

(a cold-water species) and common dolphins (a warm-water species) respond differently
to variations in water temperature [111]. The majority of cetaceans recorded in this study
are warm-water species, and as water temperatures rise, they are likely to migrate to
polar regions, except for some particular species with high-site fidelity [112], thereby
reducing their activity range. Therefore, if cetaceans migrate northward in years with higher
temperatures, the abundance in the study area decreases, resulting in fewer strandings. The
effect of temperature on the metabolism of cetaceans is another factor. Higher temperatures
can reduce the availability of prey, making it difficult for cetaceans to obtain the necessary
energy for growth and development, thereby delaying sexual maturation and lowering
progeny survival rates [113,114]. Consequently, variations in temperature have a significant
impact on reproductive rates and reproductive success, resulting in decreased population
sizes and stranding rates [25,29]. The model demonstrates a significant negative correlation
between salinity and strandings, a relationship that has been substantiated by previous
research [52,54]. In instances of stranding events, a notable decline in seawater salinity
has been detected. Cetaceans exposed to prolonged periods of low salinity conditions
have been documented to develop dermatological abnormalities, including vesiculation,
erosion, and the formation of intra-epithelial pustules, ultimately resulting in ulceration
and hypodermal necrosis [53]. These pathological changes adversely affect the health of
cetaceans, thereby increasing the occurrence of cetacean strandings. Stratification and
circulation can influence the distribution of light, temperature, oxygen, and nutrients in the
water, thereby influencing the availability of prey [115,116].

Although we have explained some of the causes of cetacean strandings, there are still
unquantifiable factors that cannot be accounted for in the model. In several areas, vessel
collisions are one of the leading anthropogenic causes of cetacean mortality [117–119].
In addition to fishing vessels, cruise ships, cargo ships, and sailboats are also capable
of colliding with cetaceans. As marine fisheries, transportation, and tourism continue
to develop, collisions with cetaceans are on the rise [120]. To reduce collision incidents,
it is necessary to enhance collision records and conduct research on high-collision-rate
regions and species. Additionally, it is difficult to acquire data on the distance from the
shore and oceanic conditions at the time of cetacean fatalities [121]. In this study, we
assumed that all dead whales would be observed and recorded, ignoring the possibility
that individuals may sink, be scavenged, or decompose prior to stranding and that small
cetaceans may be impeded from reaching the shore by various environmental factors [122].
Additionally, coastlines with higher human activity are more likely to detect strandings,
thereby increasing the probability of inadvertent stranding records. To minimize the impact
of these factors on research conclusions, it is essential to pay close attention to stranding
details, such as the cause of mortality and decomposition status, and to increase stranding
monitoring and reporting.

In order to use stranding data to support the research and conservation of cetaceans, it
is essential to consider the trends and key influencing factors. Studies have revealed the
spatiotemporal characteristics of strandings, which may reflect seasonal and interannual
fluctuations in cetacean abundance and their regional and seasonal resource utilization
patterns. We analyzed the direct and indirect impacts of various variables on cetacean
strandings using structural equation models, revealing causal relationships between strand-
ings and human activities, environmental variables, and prey distribution. Both the indirect
and direct effects of the PDO’s impact on temperature emphasize the relationship between
climate change and the stranding of cetaceans. Understanding how cetaceans respond to cli-
mate change can result in more effective protection measures and fewer stranding incidents.
The information gathered from strandings can be used to guide stranding response efforts
and the allocation of conservation resources, which are essential for conservation measures
and management work, even though there may not be an immediate decline in the number
of strandings due to an increasing focus on cetaceans and growing anthropogenic threats.
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4.3. The Implications for Conservation and Management

This study provides insights into the historical patterns of cetacean strandings along
the East China Sea coast and can be used to inform the management of marine resources.
Firstly, the identification of cetacean stranding hotspots is a key outcome, allowing local
authorities and conservation organizations to focus their efforts on monitoring and imple-
menting protective measures in these specific areas [123]. By concentrating resources on
these hotspots, conservation efforts can be more effective in safeguarding local cetacean pop-
ulations. Secondly, the analysis of temporal trends and seasonal characteristics of cetacean
strandings is valuable for local conservation. It equips them with the necessary information
to allocate resources efficiently and implement timely response measures when there is an
increase in stranding events [124,125]. Understanding the timing of strandings facilitates
better planning and preparedness [126]. Additionally, it provides recommendations for
policies related to fisheries, environmental protection, and other areas, thereby preventing
indirect harm to cetaceans and improving overall management efficiency. Looking for-
ward, future measures should be implemented to enhance local cetacean conservation and
management. These measures may include increasing the importance of stranding data
recording, enhancing environmental protection initiatives, and managing fishing activities.
Such actions are essential for protecting and managing local cetacean populations while
promoting the sustainability of marine ecosystems.

On a global scale, this study reinforces the significance of cetacean strandings in the
context of cetacean conservation and management. Stranding data, as easily accessible
information, plays a crucial role in identifying and addressing urgent issues related to
cetacean protection [20]. Furthermore, the research underscores the global importance of the
East China Sea due to its rich cetacean biodiversity. Given the migratory nature of cetaceans,
the information obtained in this study can facilitate international cooperation among
neighboring countries and international organizations. This cooperation can contribute to
the development of regional protection strategies and the establishment of scientifically
sound protected areas. Additionally, the cetacean stranding information obtained in this
study can be used for comparative analysis in other global regions [126]. Researchers
worldwide can utilize these data as reference points to enhance their understanding of
cetacean strandings on a global scale. Moreover, the structural equation model employed
in this study, with its ability to reveal cascading effects between factors, provides a valuable
analytical method reference for other cetacean researchers globally. This methodology can
aid in investigating complex relationships among environmental variables and cetacean
strandings [126,127]. The findings of this study are not limited to the East China Sea region.
They have broader applicability for global conservation efforts. This research on cetacean
stranding factors contributes not only to the protection and management of cetaceans in
the East China Sea but also to addressing similar issues in other regions globally.

In the realm of future research directions, there are several critical avenues that merit
exploration. Firstly, a focus on species-specific research is paramount. It is imperative that
future studies delve deeper into the intricacies of specific cetacean species, particularly
those that exhibit pronounced seasonal strandings, exemplified by the narrow-ridged
finless porpoise. Such investigations will provide the foundation for the development
of targeted strategies aimed at reducing stranding probabilities. These measures may
encompass heightened vigilance during peak stranding seasons and the prompt initiation
of rescue operations [128]. Continued monitoring and a steadfast emphasis on strand-
ing hotspots represent a second pivotal research trajectory. The formulation of effective
cetacean stranding response plans, aimed at enhancing the success rate of rescue operations
and ensuring a comprehensive acquisition of stranding information, holds the promise
of yielding invaluable insights into the evolving stranding patterns and the adaptive re-
sponses of cetaceans to external fluctuations [44]. These findings hold immense significance
in the formulation of dynamic management strategies that can better safeguard these
marine species. Furthermore, the enhancement of our comprehension regarding cetacean
interactions with other marine species constitutes a third avenue of exploration. Delving
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into the intricacies of how cetaceans engage with their prey and other marine organisms
can culminate in a more comprehensive grasp of cetacean ecology and behavior [123,129].
This deeper insight is essential for the holistic understanding of these marine mammals
within their ecosystem. Lastly, the knowledge garnered from this study should be actively
harnessed for policy development. The information acquired has the potential to underpin
the creation of protective measures that mitigate the impacts of various factors, such as
fisheries and local environmental changes, on cetaceans. Policymakers must take these
research findings into account when formulating decisions related to the conservation
and management of cetaceans. In summation, these research directions not only hold
the promise of benefiting local cetacean populations but also bear relevance to the global
conservation and management endeavors surrounding these majestic marine mammals.
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