
����������
�������

Citation: Cabanilles, P.; Acle, S.;

Arias, A.; Masiá, P.; Ardura, A.;

Garcia-Vazquez, E. Microplastics Risk

into a Three-Link Food Chain Inside

European Hake. Diversity 2022, 14,

308. https://doi.org/10.3390/

d14050308

Academic Editor: Bert W. Hoeksema

Received: 11 March 2022

Accepted: 13 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

Microplastics Risk into a Three-Link Food Chain Inside
European Hake
Paula Cabanilles 1, Susana Acle 2, Andrés Arias 3 , Paula Masiá 1 , Alba Ardura 1,*,† and Eva Garcia-Vazquez 1,†

1 Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/Julian Claveria s/n,
33006 Oviedo, Spain; paucabanilles@gmail.com (P.C.); masialillo.paula@gmail.com (P.M.);
egv@uniovi.es (E.G.-V.)

2 BIOPARC Acuario de Gijon, Playa de Poniente s/n, 33212 Gijon, Spain; susana.acle@acuariodegijon.es
3 Department of Organisms and Systems, Universidad de Oviedo, C/Julian Claveria s/n, 33006 Oviedo, Spain;

ariasandres@uniovi.es
* Correspondence: arduraalba@uniovi.es
† These authors contributed equally to this work.

Abstract: Microplastics (MPs) are increasing in the marine environment as well as inside marine
organisms, having an important effect on biological diversity. The trophic transfer of MPs was
demonstrated under laboratory conditions, but this study is based on the analysis of preys found in
stomach contents. MPs from Merluccius merluccius individuals caught in the Cantabrian Sea and preys
inside their guts (blue whiting, and northern krill inside blue whiting) were analyzed. MPs with
different chemical composition occurred inside every hake and their preys, with different damages,
from aquatic life hazards with long lasting effects, to allergic skin reactions and respiratory irritation,
not only for aquatic species and fishing resources, but also for humans through hake consumption.
The similarity of MPs profiles from gills and seawater samples would support seawater as the main
source of gill microplastics. The MPs profile of hake GIT was similar to that of hake preys inside.
Despite the small sample size, the presence of MPs in all the tissues analyzed of hakes and their preys,
together with the evidence of hazard compositions of some of them, highlights the need for policies
and actions to reduce plastic and microplastic production and consumption.

Keywords: Merluccius merluccius; Micromesistius poutassou; Meganyctiphanes norvegica; microplastics;
trophic transfer; chemical hazard

1. Introduction

Due to its high production and consumption rates and its long decomposition time,
plastic pollution has come to represent an added problem to an already stressed envi-
ronment [1–3]. Plastic production is increasing at a rate of over 8% a year with about
8 million tonnes of plastic debris reaching the sea each year [4]. Such plastic debris interacts
with hundreds of marine species, putting their lives at risk [2,3]. Physical agents and UV
action trigger the fragmentation of plastic fragments into microplastics (MPs) (<5 mm) [5],
increasing the availability of smaller particles to a wider range of organisms, including the
lowest levels in marine food webs [2]. MPs have been found in most marine environments
where they cause harm to marine organisms in different ways [6], an important one being
the effect on biological diversity [7,8]. Due to this ubiquity, the understanding of their
presence and relationship with biological communities at different trophic levels is of the
utmost importance, introducing the novel concept of “microplastic community”. These
“communities” show significant differences between different environments and biological
communities, which will be very important for microplastic risk assessment [9]. On the
other hand, current studies have highlighted that the presence of MPs increase the abun-
dance of some taxa but decrease the abundance of some other taxa, with the subsequent
alteration in community composition [10]. These alterations are highly conserved across
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taxonomic ranks. However, the alpha diversity of microbiota is often reduced or increased,
depending on the microplastics dose and environmental conditions, suggesting potential
threats to biodiversity [10].

If we focus our concern at the individual level, there is abundant evidence of MPs in
fish stomach and gut [11,12]. Once MPs are ingested, they can move to other tissues outside
the gastrointestinal tract (GIT) through mechanisms, such as intracellular or paracellular
endocytosis [13], or the translocation of small-sized particles [14] and adherence [15]. Sev-
eral studies have demonstrated the presence of MPs in liver and gills [13,14,16,17], whose
essential physiological functions can be affected by the presence of these particles [17].
These MPs can also alter the microbial community composition, with subsequent trade-offs
among taxa and the altered microbial community in the animal gut [10]. Beyond tissue
transfer within individuals, some studies have demonstrated the trophic transfer of MPs
in organisms of low trophic levels and under laboratory conditions [18,19]. The extent to
which this occurs in the wild and affects top predators is still poorly understood [20,21],
since the proportion of individuals that contains MPs greatly varies among studies, adding
uncertainty to this issue [22]. Although the number of MPs found in organisms is deter-
mined from the different feeding strategies of marine species [23], some studies suggest
that trophic transfer is a major route of MPs ingestion by fish and poses threats to organisms
at higher trophic levels, with biomagnification across the trophic chain varying among
geographical scales and species-specific trophic chains [20,23].

MPs pose risks to marine ecosystems and biodiversity due to their chemical composi-
tion. Petrochemicals and their by-products cause a variety of health issues including cancer
for living creatures. Research has shown that many chemical additives tested for toxicity
are known endocrine disrupters, producing adverse developmental, reproductive (e.g.,
lower fertility), neurological, and immune effects (e.g., increased risk of cancer) [24,25].
Besides, MPs can adsorb and concentrate contaminants dissolved in seawater, passing
them through the food chain [26–28]. MP can release toxic chemicals, such as styrene,
metals (e.g., mercury), phthalates, bisphenol A (BPA), polychlorinated biphenyls (PCB),
and polycyclic aromatic hydrocarbons (PAHs), that cause neurotoxicity, oxidative damage,
and energy-related changes [29]. All those individual damages from MPs might have
consequences at the population level, triggering disruptions of the ecosystem dynamics
that will affect natural environments as well as our economy and society [30].

In this proof of concept, we have assessed the risks of the ingestion of MPs of different
chemical composition considering the MPs in a small sample of hakes Merluccius merluccius
(Linnaeus, 1758) and their preys in the wild. In other studies, MPs are assessed separately
in different organisms of the trophic web [20,21,31], but this study is based on the analysis
of preys found in stomach contents. Hakes were caught from the Cantabrian Sea offshore
Gijon (Spain), a highly industrialized area with historical events of critical pollution in
its surroundings [32]. Fish liver and gills have already been used for aquatic pollution
assessment for accumulating environmental pollutants [33]. So, based on this and on the
few studies that have assessed the presence of MPs in the gills, liver, and digestive tract at
the same time [29,34], we expected particles in gills to have a composition of MPs similar
to those present in water since they are directly exposed to water pollution, while particles
into the gastrointestinal tract could come from preys.

Therefore, the specific objectives of this proof of concept will be:

1. Analyse the risk of ingestion of MPs with different chemical composition in the
M. merluccius food chain.

2. Genetic identification of hake preys.
3. Compare the MPs composition present in the different hake organs, preys, and sur-

rounding water.
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2. Materials and Methods
2.1. Water and Hake Samples Collection

Three adult hakes (Merluccius merluccius) (H1, H2, and H3) collected from the coast of
Gijon (Cantabrian Sea in south Bay of Biscay, Asturias, Spain) in late October 2020 (Figure 1)
were kindly provided by fishermen and handed to the researchers by Mario Pidal (Nueva
Rula de Avilés S. A., Asturias). They had been obtained from a commercial fishing catch.
They were identified morphologically. Further genetic analysis was not necessary because
Merluccius merluccius is the only hake species present in the Cantabrian Sea, and thus
misidentification with other hake is not possible. The region is characterized by a temperate
Atlantic climate with a dominant eastward current parallel to the coast, the North Atlantic
current [35], and the Iberian Poleward current during the winter [36]. The region contains
a commercial international port, the Port of Gijon. Tourism during the summer has been
increasing in recent decades [37].
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Figure 1. Fishing area where the analysed hakes were caught, and water samples taken (Geographical
coordinates 43◦35′00.0′′ N 5◦30′00.0′′ W and nearby).

Fishermen also took 20 samples of 5 L of water (100 L in total) from the area where
the hakes were caught (Figure 1). Water was taken using sterile bottles that were immedi-
ately closed, labeled, and stored cold until arrival at the port, where Mario Pidal handed
them to the researchers. Water was vacuum filtered with a pump through a 0.45-µm
pore size (Supor® 450 Membrane Disc Filters), using the precautions described below for
contamination control.

2.2. Contamination Control Measures

In order to avoid any possible sample contamination with airborne synthetic fibres,
every step of the process was performed as quickly as possible, and materials were covered
when not in use. Samples were manipulated inside a laminar flow cabinet using a cotton
lab coat and gloves during the entire process. Plastic materials were avoided during lab
manipulation. Dissection was performed with metallic scissors, a scalpel, and forceps.
Materials were rinsed at least two times with distilled water. All the products employed in
the digestion and treatment of samples and lab material (H2O2, distilled water) were filtered
with a 0.2-µm filter (Supor® 200 Membrane Disc Filters) to prevent any contamination from
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these sources. Three blanks of 100 mL with no tissue were prepared simultaneously to the
digestion of tissue samples with the same products, following the same protocol, in the
same conditions and during the same time, to detect potential procedural contamination.

2.3. Fish Processing for MP Quantification

The three hakes were covered with foil, preserved in an icebox while transported to the
Department of Functional Biology at University of Oviedo, and kept at−20 ◦C in the freezer
until analysis. Once fish were defrosted and prior to digestion, the total length (cm) and
body weight (g) of each specimen were recorded. The gastrointestinal tract (GIT), liver and
gills were removed, weighed, and stored in a refrigerator until further MP extraction. In the
case of gills, the branchial arch was separated from filaments and discarded. Individuals
H1 and H3 had preys in their stomachs that were not yet digested. H1 had a fish (Prey 1.1),
and H3 had a fish (Prey 3.1) that had euphausiids in its GIT (Prey 3.1.1). Thus, the latter
were second-link hake’s prey.

For genetic identification, a small portion of tissue from the dorsal muscle of preys
was removed, preserved in ethanol, and stored at 4 ◦C. The remainder was used for
MPs analysis.

Glass jars previously cleaned with filtered distilled water were used to digest the
tissues. Besides, organs were rinsed too with filtered distilled water before the digestion.
Many authors have used H2O2 as an effective tool to digest biogenic material [17,22,38].
Thus, we employed the same digestion procedure. Between 200 and 600 mL of 30%
hydrogen peroxide (H2O2) was added to each jar, depending on the weight of each tissue
sample or prey (Supplementary Table S1), to digest the organic matter. Jars were covered
with foil and placed in the oven at 60 ◦C for 48–72 h (depending upon the digestion level)
to obtain dissolved solution. The heaviest samples of entire fish with almost intact skeleton
and organs needed extra time (up to 7 days of digestion) to allow them to dissolve, always
covered and inside the closed cabinet. Afterwards, the solutions were vacuum filtered with
a pump through a 0.45-µm pore size (Supor® 450 Membrane Disc Filters). The density
separation of MPs was not necessary thanks to the complete digestion of the organic matter,
favouring the filtering of the entire solution.

2.4. Characterization and Identification of Microplastics

After the filtration process, filters were stored in petri dishes previously cleaned with
filtered distilled water and observed trough. A LEICA ZOOM 2000 Stereomicroscope at
40× magnification [39] was used to quantify all potential plastic particles caught in the
filters. Visual identification of <5 mm long [40] plastic particles was carried according to
the physical characteristics of the particles following Hidalgo Ruz et al. [41], classifying
them as fibres (elongated) or fragments (small angular pieces) [31]. Besides, particles were
categorized by colour (black, blue, red, and transparent/white). In order to confirm their
chemical composition, 6.6% of black, 6.9% of blue, 17.7% of red, 30.4% of transparent/white
fibres, and 31.6% of fragments obtained from animal tissue, corresponding to the 12% of the
total of the MPs items found, were randomly selected and identified with a micro-Fourier-
transformed infrared spectroscopy (µ-FT-IR). These items represented the most common
morphotypes of visually identified particles from all filters (Supplementary Table S2). In
addition, the most striking and unique pieces were also selected. All the MP items found
from water samples were chemically analysed by µ-FT-IR. Clean spectra were obtained
with no evidence of the mixture of compounds (Supplementary Figure S1).

The potential health danger caused by the materials found in MPs analysis was
identified according to the European Chemical Agency (ECHA) with a presence/absence
analysis (1/0 respectively). This information is publicly available at the ECHA website
(https://echa.europa.eu/es/, accessed on 15 December 2021). Pictograms of different
chemical hazards associated with the chemical composition of MPs were taken from ECHA
in order present the risk assessment per species with a graphical perspective (Figure 2).

https://echa.europa.eu/es/


Diversity 2022, 14, 308 5 of 15

Diversity 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

chemical hazards associated with the chemical composition of MPs were taken from 
ECHA in order present the risk assessment per species with a graphical perspective (Fig-
ure 2). 

 
Figure 2. Risk assessment based on the chemicals found in hake, whiting and shrimp (from left to 
right) in this study, illustrated from hazard pictograms taken from ECHA. 

2.5. Genetic Identification of Preys 
Preys were first identified de visu, then confirmed using DNA because, as seen in 

Figure 3, they were relatively altered due to the digestion. Due to the different degree of 
tissue degradation of the preys, different DNA extraction methodologies had to be ap-
plied to each of them. A tissue sample of Prey H1.1 was digested with proteinase K, fol-
lowed by DNA extraction with a filter-based system (DNeasy Tissue Kit, Qiagen Inc., 
Düsseldorf, Germany) following the manufacturer’s instructions. On the other hand, 
DNA of Prey H3.1 was extracted adapting the protocol based on Chelex® resin (Bio-Rad 
Laboratories, Hercules, CA, USA) developed by Estoup et al. [42]. In both preys, a frag-
ment of the cytochrome oxidase subunit 1 (COI) was amplified by polymerase chain reac-
tion (PCR), employing the universal COI primers for fish published by Ward et al. [43]: 
COI-Fish-F (5′-TTC TCA ACT AAC CAY AAA GAY ATY GG-3′) and COI-Fish-R (5′-TAG 
ACT TCT GGG TGG CCR AAR AAY CA-3′). PCR conditions were the following: an initial 
denaturing step of 5 min at 95 °C, followed by 35 cycles of denaturing at 95 °C for 30 s, 
annealing of 57 °C for 30 s and extension at 72 °C for 30 s, and a final extension at 72 °C 
for 10 min. All the PCR assays were run in a Thermal Cycler (Applied Biosystems, Wal-
tham, MA,USA, model 2700). 

Regarding Prey H3.1.1, DNA was extracted following the above mentioned Chelex® 
resin protocol. In this case, a 158 base pairs fragment of the mitochondrial gene coding for 
the subunit 1 of NADH dehydrogenase was amplified, employing specific Euphausiacea 
primers and PCR conditions developed by Zane et al. [44]. 

PCR products were visualized using 2% agarose gel stained with 10 mg mL−1 
SympleSafe™ (2.5 µL, EURx, Gdansk, Poland). Amplicons were sent for sequencing at 
Macrogen Spain, Inc. (Madrid, Spain) using a Sanger sequencing method procedure. Se-
quences were then edited and trimmed with BioEdit Sequence Alignment Editor software 
[45]. Finally, the outcome sequences were identified in the GenBank database using the 
BLAST algorithm (GenBank. Available online: http://www.ncbi.nlm.nih.gov/genbank/, 
accessed on 10 May 2021) and best match criterion. 

Figure 2. Risk assessment based on the chemicals found in hake, whiting and shrimp (from left to
right) in this study, illustrated from hazard pictograms taken from ECHA.

2.5. Genetic Identification of Preys

Preys were first identified de visu, then confirmed using DNA because, as seen in
Figure 3, they were relatively altered due to the digestion. Due to the different degree of
tissue degradation of the preys, different DNA extraction methodologies had to be applied
to each of them. A tissue sample of Prey H1.1 was digested with proteinase K, followed by
DNA extraction with a filter-based system (DNeasy Tissue Kit, Qiagen Inc., Düsseldorf,
Germany) following the manufacturer’s instructions. On the other hand, DNA of Prey
H3.1 was extracted adapting the protocol based on Chelex® resin (Bio-Rad Laboratories,
Hercules, CA, USA) developed by Estoup et al. [42]. In both preys, a fragment of the
cytochrome oxidase subunit 1 (COI) was amplified by polymerase chain reaction (PCR),
employing the universal COI primers for fish published by Ward et al. [43]: COI-Fish-F
(5′-TTC TCA ACT AAC CAY AAA GAY ATY GG-3′) and COI-Fish-R (5′-TAG ACT TCT
GGG TGG CCR AAR AAY CA-3′). PCR conditions were the following: an initial denaturing
step of 5 min at 95 ◦C, followed by 35 cycles of denaturing at 95 ◦C for 30 s, annealing of
57 ◦C for 30 s and extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 10 min. All
the PCR assays were run in a Thermal Cycler (Applied Biosystems, Waltham, MA, USA,
model 2700).

Regarding Prey H3.1.1, DNA was extracted following the above mentioned Chelex®

resin protocol. In this case, a 158 base pairs fragment of the mitochondrial gene coding for
the subunit 1 of NADH dehydrogenase was amplified, employing specific Euphausiacea
primers and PCR conditions developed by Zane et al. [44].

PCR products were visualized using 2% agarose gel stained with 10 mg mL−1 Symple-
Safe™ (2.5 µL, EURx, Gdansk, Poland). Amplicons were sent for sequencing at Macrogen
Spain, Inc. (Madrid, Spain) using a Sanger sequencing method procedure. Sequences
were then edited and trimmed with BioEdit Sequence Alignment Editor software [45].
Finally, the outcome sequences were identified in the GenBank database using the BLAST
algorithm (GenBank. Available online: http://www.ncbi.nlm.nih.gov/genbank/, accessed
on 10 May 2021) and best match criterion.

http://www.ncbi.nlm.nih.gov/genbank/
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Figure 3. The three individuals of hake (Merluccius merluccius) analysed (H1, H2 and H3) and
the preys found in the stomachs of H1 (Prey H1.1 Micromesistius poutassou) and H3 (Prey H3.1 M.
poutassou, and Prey H3.1.1 Meganyctiphanes norvegica found inside the stomach of Prey H3.1). * No
prey was found inside Prey 1.1 and Hake 2.

3. Results
3.1. Microplastic Pollution in Water, Hake Organs and Preys

Table 1 summarises MPs concentration (density) in water, hakes, and the preys inside
them. The length and weight of hakes are also given.

Table 1. Length and weight of hakes. Prey species in corresponding to each predator (M. norvegica
was found inside M. poutassou). MPs concentration in MPs/g for hakes, preys and MPs/L for
surrounding water from the same fishing area.

Hake 1 Hake 2 Hake 3

Length (cm) 36 35 39

Weight (g) 378.3 264.25 472.5

MPs density
(MPs/g)

GIT 5.19 5.77 0.73

Liver 0.77 6.4 1.38

Gills 4.79 8.49 2.29

Prey Micromesistius poutassou No prey
Micromesistius

poutassou/Meganyctiphanes
norvegica

MPs density of prey
(MPs/g) 4.25 - 0.76/1.93

MPs density in
surrounding water

(MPs/L)
0.0002

Water samples contained a total of 17 MPs in 100 L corresponding to approximately
0.0002 items/L. MPs occurred in all the hakes and hake’s organs analysed (Table 1, Supple-
mentary Table S2). The abundance of MPs in GIT varied from eight to 26 items/individual
(i.e., 0.73 to 5.77 items/g), in the liver from seven to 23 (i.e., 0.77 to 6.4 items/g), and in
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gills from nine to 15 (i.e., 2.29 to 8.49 items/g) (Table 1). MPs concentrations observed were
higher in H2 organs than in the other samples, suggesting differences among individuals.

Blanks contained a few putative MP items (mean 7.6 ± 5.7), with a concentration of
about 0.08 MPs/g, which is one order of magnitude lower than the lowest concentration
of the animal samples analyzed. This indicates that the results for hake organs and preys
were not biased by contamination during the digestion process.

The magnification of MPs in higher trophic levels was not suggested in our results.
The total MPs concentrations calculated for H1 (4.37 MPs/g) and H3 (1.26 MPs/g) were
similar to those found for their prey (whiting H1.1 and H3.1 being 4.25 and 0.76 MPs/g
respectively), while the MPs concentration in the shrimp H3.1.1 (1.93 MPs/g) was higher
than that found in its predator H3.1.

Among the MPs recovered in hakes’ tissues and prey, fibres were the most abun-
dant (92%), with the other 8% corresponding to fragments (Supplementary Table S2).
Black (41.7%) and blue/greenish (40%) were frequent colours in fibres, followed by
white/transparent (10.5%) and red (7.8%). In the water samples analysed, fibres were also
more abundant than fragments, with blue/greenish and black fibres being the most abun-
dant item types. Blanks exhibited a completely different pattern, with white/transparent
fibres being the majority (57%), followed by blue (17%), black (17%), and green (8.7%).
From this result and the low densities reported above, a relevant effect of contamination in
our results during sample processing can be reasonably discarded.

The profile of MPs was not significantly different between gills (χ2 = 8.09, 8 d.f.,
p = 0.42), livers (χ2 = 7.76, 8 d.f., p = 0.45), or GIT samples (χ2 = 5.25, 8 d.f., p = 0.63)
(Supplementary Table S2). Therefore, the results of the three samples were combined in
a single profile by organ. Similarly, since the MPs profile of the two direct hake preys
(whiting) were not significantly different to each other (χ2 = 3.83, 4 d.f., p = 0.43), they were
also combined. The few MPs found in shrimp (only four) were two black fragments, one
red fibre and one blue fibre. Black fibres were the most abundant MP type in hake GIT and
liver, while blue/greenish fibres were dominant in water and hake gill samples (Figure 4).
Hake GIT were the samples with the lowest proportion of MP fragments. Despite low
sample sizes, contingency chi-square comparing the six types of samples was significant
(χ2 = 44.27, 25 d.f., p = 0.01) and had a moderate effect size (Cramer’s V = 0.18). Post-hoc
contingency tests revealed significant differences between water and GIT (χ2 = 11.38, 5 d.f.,
p = 0.04, large effect size V = 0.41), but not between water and gills (χ2 = 3.09, 5 d.f., p = 0.69,
moderate effect size V = 0.2) nor water and liver (χ2 = 6.17, 5 d.f., p = 0.29, large V = 0.29).
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3.2. Microplastic Composition and Risk

µ-FT-IR analysis supported visual identification to confirm plastic materials and dis-
card natural ones. Cellulose (two items) and rayon (six items in total, four of them in
water) were removed from further analysis because they are not plastic. Rayon is a syn-
thetic fibre made from natural sources of regenerated cellulose, such as wood and related
agricultural products, but not plastic. In total, 16 plastic types were identified, the most
abundant being polyester, acrylic, and polyethyleneimine cellulose (transformed cellulose
with chelating properties stable in water, widely used from coffee filters to water decontam-
ination in treatment plants [34]). Vinyl, polyvinyl, polyvinyl butyral, polyalkylene oxide,
ethylene-vinyl acetate copolymer (EVA), polyethylene terephthalate (PET), polyacrylamide,
polyacrylonitrile, polyethylene (PE), polyethylene glycol, styrene-isoprene copolymer, poly
(propylene:ethylene), and tetrahydrophthalimide were also identified (Table 2).

Table 2. Polymer types identified by µ-FT-IR from items found in water, hake tissues and hake
preys that might encompass risks. Presence in a sample is marked with X. Substances labelled
by the European Chemical Agency as dangerous for health, are marked with the letter D. GIT,
gastrointestinal tract; Aq Env: specific risk for aquatic environments. Presence in hake tissues: L-liver,
G-gills, GIT-gastrointestinal tract.

Organ or Environment Damaged Organism

Chemical Composition Respiratory Eye Skin GIT Aq Env Hake Whiting Shrimp

Acrylic D D D D D L X

Ethylene-vinyl acetate copolymer Under evaluation/Pre-registration process L

Polyacrylamide D X

Polyacrylonitrile Under evaluation/Pre-registration process X

Polyalkylene oxide D D D L

Polyester D D D D D G, GIT X

Polyethylene glycol D X

Polyethylene terephthalate Under evaluation/Pre-registration process L

Polyethyleneimine D D D D G X

Polyvinyl/Vinyl Under evaluation/Pre-registration process L X

Tetrahydrophthalimide D D X

ECHA employs hazard pictograms to summarize visually adverse effects of chemical
substances, e.g., explosive, flammable, corrosive, serious health hazard (damage to organs,
carcinogenic, cause genetic defects etc.), health hazards (respiratory irritation, harmful if
swallowed, skin irritation, eye irritation, harm to public health through ozone destruction),
acute toxicity, environmental hazards (specifically to aquatic life), and others. While it is
true that the risk is also determined by doses of MPs ingested, in the individuals analysed in
this study, some of the substances encompassed several of those risks that are summarized
in Figure 2, which could be dangerous for the resource and final consumer.

According to the ECHA, seven of the 16 identified chemicals are harmful for health, or
are under evaluation, and may cause problems in the individuals carrying them (Table 2).
To mention those that can damage aquatic organisms, polyalkylene oxide (found in hake)
is harmful to aquatic life with long lasting effects, causing serious eye and skin irritation
(Table 2). Polyethyleneimine, found in hake and shrimp (Table 2), is toxic to aquatic life
with long lasting effects, is harmful if swallowed, causes serious eye damage, and may
cause an allergic skin reaction. Acrylic and polyester were found in hake and whiting
(Table 2). Acrylic causes severe skin burns and eye damage, is very toxic to aquatic life,
is harmful if swallowed, may cause respiratory irritation, and may cause an allergic skin
reaction. Polyester causes severe skin burns and eye damage, is very toxic to aquatic life, is
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harmful if swallowed, is harmful in contact with skin, is harmful if inhaled and may cause
respiratory irritation.

3.3. Genetic Identification of Preys

The DNA sequences obtained from the preys are available in BE2SHARE, http://doi.
org/10.23728/b2share.3b8180d694fd4ce79a6e33c98241a27a (accessed on 15 December 2021).
Visual and morphological identification were consistent. Direct preys (Prey H1.1 and Prey
H3.1) found in Hake 1 and Hake 3 (Figure 1) were identified as blue whiting Micromesistius
poutassou (Risso, 1827). Several indirect preys of Hake 3 were found in the GIT of Prey H3.1,
all small shrimps (Figure 2). They were in different states of digestion, and we took for
analysis the least degraded with all tissue’s integers. Prey H3.1.1 was identified as Northern
krill Meganyctiphanes norvegica (Sars, 1856), through DNA identification, belonging to the
Euphausiidae family. Analysis in BLAST of the consensus barcode sequence for the three
preys revealed a high percentage of nucleotide identity matches (100% for H1.1, 100% for
H3.1 and 99.35% for H3.1.1).

4. Discussion

This study, although based on a limited number of samples, demonstrates empirically
the simultaneous occurrence of MPs in three steps of the trophic web: a prey inside a
predator inside a higher predator, such as an all-inclusive pack-krill inside whiting inside
hake. The trophic transfer of MPs has been documented in recent studies in the wild [46]
and under laboratory conditions [18,19], but to our knowledge, not as in the present case
where the higher predator is contained inside MPs carried by preys as well as preys of
preys, in the manner of a Russian doll. Due the importance of the trophic transfer of MPs,
studies developed by trophic ecologists have used stable isotope analyses to quantify the
trophic niche in freshwater ecosystems [47]. Comparing this methodology with traditional
ones, such as the analysis of stomach contents that represent only a snapshot into the diet of
organisms, stable isotope analyses provide an integrative quantification, over several weeks
to months depending on the tissue analyzed, of the diet of individuals [47–49]. Specifically,
stable isotope analyses of carbon (δ13C) and nitrogen (δ15N) provide for the assessment
of the origin of the preys and their trophic position in the food chain, respectively, and
are commonly used in freshwater ecology, notably to quantify the consequences of global
changes [49–51]. On this path, the use of stable isotope analyses, together with the analysis
of the simultaneous occurrence of MPs in the trophic web and the species behavior with
different factors influencing MPs consumption, e.g., feeding strategy, trophic level transfer,
and environmental concentrations, represents a promising approach to understand the
microplastic contamination in aquatic food webs.

As expected, water was MP-polluted as in other regions [41]. The water MPs profile
was not different to that of gills, and the same happened in the case of the liver, two tissues
with recognized pollutants accumulation in fish [29]. A high concentration of MPs in
the hake gills is consistent with other studies [26]. This organ is especially vulnerable to
environmental pollution because it is in direct and permanent contact with polluted water.
Complete gills, without previous rinse, were digested, not differentiating the inside and the
outside. However, from the water circulation in the gill system, the most likely origin of the
microplastics found in the gills is the seawater the fish breathe. Acquiring microplastics in
the gills from the blood during the counter current gas exchange would imply a previous
translocation of ingested microplastics to the circulatory system, which seems less probable.
The similarity of microplastics from gills and seawater samples would support seawater as
the main source of gill microplastics. Zhang et al. [31] have suggested that the number of
MPs in gills might be directly related with the pollution characteristics of the contaminated
habitats where fish live, leading to a wide variety of results in the literature. On the other
hand, the MPs profile of hake GIT was similar to that of hake preys inside, as expected. In
other studies, the quantity of particles in GIT is highly variable among individuals and

http://doi.org/10.23728/b2share.3b8180d694fd4ce79a6e33c98241a27a
http://doi.org/10.23728/b2share.3b8180d694fd4ce79a6e33c98241a27a
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species, depending on the type and amount of consumed food as well as the digestion and
excretion time [12].

As one of the most common types of MP debris worldwide and in the marine environ-
ment [52], black and blue fibers were the most abundant type in our study, despite not being
possible to know their origin, and this is in line with previous studies [20,53]. Wastewaters,
textiles, hygiene, and cosmetic products as well as the fishing industry are some of the main
sources of MPs pollution [40]. Organisms inhabiting coastal environments are especially
susceptible to MP contamination due to the inputs from land [53]. Moreover, large, urban-
ized areas are responsible for abundant marine litter [54]. The coast in front of the catch
area of the hakes analyzed here is a highly industrialized and populated area where high
levels of MP pollution, especially fibers, have been reported in water and sediments from
previous studies [55]. The European hake, being a demersal species, will likely encounter
MPs, since the seabed has been revealed as a major sink for MP debris [56]. Altogether, this
could explain the high concentration of MPs found in all tissues and preys analyzed here,
being higher than the amount found in fishes form other areas such as Asia [57], with a
range of 0–0.56 items/gram in commercial dried fish [58], or 0.0002–3.64 items per gram
in fishes from Indian coast [59]. However, biomagnification would not play a main role
here. Always considering the issue of limited sample size, our results would not support
the magnification [23,60] or dilution [20,61] of MPs along the trophic chain, because prey
MPs contents were always within the range of MP contents in the predators. In addition, it
is important to highlight that a higher number of steps in the food chain would offer us a
broader view, since PM can be transported from lower trophic levels to the hake, through
intermediate prey.

Regarding the risk of ingestion that was the main focus of our study, we found a wide
variety of plastics in the MPs analyzed, with polyester and acrylic being the most abundant
followed by different types of vinyl. As seen in Table 2, several of those compounds are
labeled as dangerous for animal health by the ECHA, with important hazards for the
individual and the environment (Figure 4). These hazards are consistent with many studies
that have demonstrated adverse effects of MPs to animals and humans (e.g., carcinogenic,
endocrine disruption, neurotoxic) [24–27,29,62], even at a very high hazard level consid-
ering the health hazard ranking published by Lithner et al. [62], such as polyacrylamide
in second position with a hazard level of 12,379 or polyvinyl in fifth position with a level
of danger of 10,551 (out of a maximum of 13,844 in the first position of the ranking). MPs
can cause histological damage in the intestine of adult zebrafish [63], may diminish the
chances of capturing prey or escaping the predators [64], and encompass negative effects at
the population level [65]. These and other adverse effects of MPs may be expected in hakes
given that they already contain a noticeable density of MPs in functionally essential organs,
such as the gills and liver, as is consistent with previous studies that reveal the real human
health risks posed by MPs in seafood [66], also emphasizing that, although the GIT of fish
are usually discarded before consumption, the edible parts of fish could be contaminated
by the MPs contained in the GIT during food preparation or through translocation, raising
potential health concerns [13]. Authors warn about the potential of MPs to contribute to
biodiversity losses and the emergence of human and animal diseases [67], compromising
ecological processes as well as food security and health [29]. If MPs really cause disruptions
in hake populations, this would affect the local economy and perhaps compromise this
type of seafood [61].

The presence of plastic in the human blood is a current sad reality [68]. However, few
data are available to assess the ecological risk of marine MPs to human health through
seafood consumption [69]. Therefore, there is currently no legal framework regulating ad-
missible levels of MP pollution in seafood [70,71]. Fish that are consumed whole (including
the GIT), such as anchovies and sardines, and shrimps included in our case study, pose risk
of MPs ingestion to consumers [13,72]. Although hakes are normally eviscerated before
consumption, it seems that removing the digestive tract does not eliminate the risk of MPs
intake by consumers [34]. Some studies have detected MPs in the muscle of commercially
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important fish [14,73] and a crustacean [10]. Once ingested, >90% of MPs were reported to
be excreted in feces [74], especially large particles > 150 µm. However, smaller particles
may be absorbed systematically. It has been reported that MPs 0.1–10 µm in size can cross
the blood–brain barrier and the placenta [75], particles < 150 µm can cross gastrointestinal
epithelium, and particles < 2.5 µm can enter the systemic circulation through endocy-
tosis [13]. However, there is still little certainty about the transfer of and risk posed by
MPs to humans through diet [70]. Some studies suggest limited health risks of seafood
to humans [76], proposing minimal MP uptake through seafood consumption compared
to other sources of exposure, such as dust [77], plastic-packaged food [70], or airborne
MPs [77]. Nevertheless, the presence of hazard components in widely consumed species,
such as the hake, whiting, and shrimps analyzed here, together with their great popularity
among consumers (0.94 and 1.51 kg/pers/year for hake and shrimps respectively, ECHA.
Available online: https://ec.europa.eu/, accessed on 15 December 2021), make necessary
more and deeper studies to unravel the real ingestion of MPs and their implications for
consumer’s health through the seafood.

Finally, there is difficulty in comparing MPs studies without a standardized method-
ology [66], since it hinders the possibility to equate the results regarding the amount of
plastics found. We found MPs in all the hake tissues and preys analyzed. Indeed, MPs
have also been found in GITs, livers, and gills of many species in other studies [15–17,30].
Despite the fact they are usually reported in the gastric tract [78] and the alleged transloca-
tion in most cases of such large particles is difficult to explain with the current knowledge
on the translocation pathways for MPs in fish [79], the translocation of MP particles to
other tissues, such as the liver [68,80] and muscle [14,81], is a reality [79]. Therefore, as
the gastrointestinal tract is especially important to the entry of MPs to the organism, their
translocation and dietary transfer into the trophic chain, exploring the microplastic transfer
inside and between organisms into the trophic web, is essential [82], highlighting the need
for more in-depth studies.

On the other hand, the literature shows varied results regarding the plastics found in the
different organs, sometimes due to technical or methodological issues. Here, we used H2O2
for tissue digestion, but other studies use different digestion agents (HNO3, KOH, etc.) that
allow for a different recovery of MPs and may even dissolve some types [83]. Besides, using
different digestion agents will produce changes in the MPs bleaching: while the bleaching is
not expected using H2O2, or in a smaller way, as it has been presented in previous studies [84],
the bleached of different materials is present in samples exposed to KOH [85]. Another source
of variation between studies is the filter pore. Decreasing the filter pore size, the number of
MPs recovered per liter increases by several orders of magnitude [86]. In this study, we have
used filters with a small pore size (0.45 µm), while other studies [17,20] use filters with a much
larger pore size, making comparisons difficult. For instance, Su et al. [17] did not find MPs
in fish livers and suggested that this could be due to methodological limitations, (i.e., they
used a 20 µm pore size filter, in comparison with the 0.45 µm pore size filters employed in our
study), thus demonstrating the urgent needed of a standardized methodology.

5. Conclusions and Recommendations

Our research demonstrates the occurrence of MPs through a three-link food chain in
wild hakes. It seems that MPs concentration would not be magnified in higher trophic level
organisms. To confirm this, studies with more individuals are recommended.

Despite the small sample size, small water volume, and small MPs chemical compo-
sition analyzed, the presence of MPs in all the tissues analyzed of hakes and their preys,
together with the evidence of hazard compositions of some of them, highlights the need for
policies and actions to reduce plastic and microplastic production and consumption.

Finally, standardized protocols are recommended in order to make comparison among
different works concerning MPs quantifications for an accurate risk assessment [60].

https://ec.europa.eu/
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050308/s1, Figure S1: Clean spectra obtained from some
dangerous polymer identified by µ-FT-IR (Table 2), with no evidence of mixture of compounds.
In different colours the sample analysed, in black the reference pattern. (A) Acrylic, (B) Polyester
and (C) Tetrahydrophthalimide.; Table S1: H2O2 volume in mL employed to digest the samples
analysed in this study. GIT, gastrointestinal tract. More volume was employed when hard tissue
was present; Table S2: Number and type of microplastics found in each sample analysed. GIT,
gastrointestinal tract.
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