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Abstract: This work aimed to describe the adsorption behavior of Congo red (CR) onto activated
biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was
soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar.
The surface morphology of the adsorbent (before and after dye adsorption) was characterized by
scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-
transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were
carried out in the following intervals of pH = 4–10, temperature = 300.15–330.15 K, the dose of
adsorbent = 1–10 g/L, and isotherms evaluated the adsorption process to determine the maximum
adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial
concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of
activated biochar was evaluated by adsorption–desorption cycles. The maximum adsorption capacity
obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and
a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine
learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset,
a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization
within a Python programming environment. The optimization algorithm efficiently navigated the
input space to maximize the removal percentage, resulting in a predicted efficiency of approximately
90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in
similar removal processes, showcasing the potential of machine learning in process optimization and
environmental remediation.

Keywords: activated biochar; azo dye; Congo red adsorption; Haematoxylum campechianum; isotherms;
educational innovation; computational thinking

1. Introduction

Water pollution is a serious concern because almost all industrial activities generate
pollutants that are discharged into water resources without treatment or with a deficiency
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treatment. Dyes are an example of stable organic compounds used in many industries,
such as textile, paper, plastic, printing, cosmetics, and others. When dyes reach aquatic
environments, they risk the aquatic ecosystem and even human health because some are
toxic, carcinogenic, and mutagenic [1]. In addition, small amounts of dye cause a change
in the aesthetic perception of the water and also affect the penetration of sunlight and the
amount of oxygen dissolved in water [2].

Many types of dyes are on the market, and their classification depends mainly on how
they are applied to the substrate and their chemical structure. The first one includes direct
dyes, reactive dyes, vat dyes, and disperse dyes, and the latter includes azo dyes, indigo
dyes, acid dyes, basic dyes, and anthraquinone dyes, among others [3]. About 50% of the
dyes on the market are azo dyes, which is why azo dyes are considered the most important
widely used dyes [4].

Congo red (CR) is a di-azo dye containing two azo groups (-N=N-) which are attached
to two aromatic radicals. CR is widely used in the textile industry due to the fact that it
can easily form complexes with polysaccharides such as cellulose [5,6]. Another appli-
cation of Congo red is in histology, identifying amyloid proteins in tissues to diagnose
amyloidosis [7].

In the aqueous solution, the molecular structure of CR is affected by pH variations,
which give different colors. Congo red solutions remain red at neutral and alkaline pH
values but turn blue at acid pH values [6]. Thus, CR is also used as an acid–base indicator
in several industries. As mentioned above, CR dye has different uses in various industries
that generate waste that can be discharged into water resources. The problem with azo
dyes is their toxicity; when they degrade under anaerobic conditions, the benzidine formed
is a known carcinogen. Therefore, benzidine is a byproduct of CR degradation that may
cause bladder cancer in humans [8]. In addition to their carcinogenic effect, azo dyes have
other toxic effects that can affect human health by damaging organs such as skin, kidneys,
liver, and even central nervous system [9].

According to its adverse effects on humans and plants [10,11], Congo red dye presents
a significant risk to human health and the environment, so it is vital to achieve its elimina-
tion from aqueous media. There are many technologies for removing dyes, particularly
for Congo red dye in aqueous solution. The most common methods applied are bio-
logical degradation, photocatalysis, and adsorption. Microorganisms have developed
resistance to high dye concentrations and may degrade them into carbon dioxide, inorganic
salts, and water by enzymatic action. Different species of genus Aspergillus fungi, such
as Aspergillus flavus [12], Aspergillus niger [13], and Aspergillus fumigatus [14], have been
successfully used to biodegrade CR. Photocatalysis is an advanced removal technology
that has received more attention recently due to its main advantages, such as rapid dye
degradation and no generation of secondary waste [15]. Recent and novel investigations to
synthesize new photocatalysts and apply them to Congo red removal have been carried
out, such as orange peel extract biosynthesized zinc oxide nanoparticles being used to
remove CR via photocatalysis [16] and novel rare earth metal doped ZnO photocatalysts
for degradation of CR [17].

Adsorption has also been used for the removal of CR. Some biosorbents such as
Antigonon leptopus leaf powder [18], mango leaves powder [19], Moringa oleifera seed
coat [20], and peel waste of Hylocereus undatushave (white dragon fruit) [21] have been used
to remove CR dye efficiently. On the other hand, the most used adsorbent is commercial
activated carbon due to its high uptake capacity, high surface area, and environmental
friendliness. Non-toxicity is one of its advantages. However, its main disadvantage is its
high operating costs [22]. So, a need for new materials for synthesizing activated biochars
has risen. Different biomass, such as Guar gum [23] and walnut shell [24], have been used
to produce activated carbon.

In this work, activated biochar was prepared from Haematoxylum campechianum waste,
taking advantage of its abundance in the state of Campeche in Mexico. This material
was used to remove the azo dye CR in aqueous solution. ABHC was characterized before
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and after adsorption of the dye by SEM/EDS, BET method, X-ray powder diffraction
(XRD), and Fourier-transform infrared spectroscopy (FTIR), and, lastly, pHpzc was also
determined. The effects of contact time, dye concentration, temperature, pH of the aqueous
medium, and the activated biochar dose were evaluated to compare and evaluate the
removal efficiency. Cycles of adsorption–desorption were performed to determine the
reusability of the activated biochar.

Another research contribution of this work is to present a novel approach to op-
timize chemical removal processes using advanced machine learning techniques. The
efficient removal of contaminants from various mediums is a critical challenge in envi-
ronmental engineering and remediation. Traditional optimization methods often rely on
labor-intensive experimentation and trial-and-error approaches. Here, we contribute to the
field by proposing a data-driven approach that leverages the power of Gradient Boosting
regression models and Bayesian optimization. By harnessing a rich dataset containing
information on initial concentration, time, temperature, pH, and dose, we aim to maximize
the removal percentage through precise tuning of input variables. This research not only
offers a pragmatic solution to enhance removal efficiency but also underscores the potential
of machine learning in addressing complex environmental challenges.

2. Results and Discussion
2.1. Characterization of ABHC

As shown in Figure 1, the point of zero charge of ABHC was 6.5. This result is similar
to those obtained from other biomass precursor materials such as Dipterocarpus alatus
(pHpzc = 6.3) [25] and rice husk (pHpzc = 6.8) [26]. Therefore, when the solution pH is
above the pHpzc (pH > pHpzc), the surface of ABHC is negatively charged and the cationic
species will be preferentially removed. In contrast, if values of pH are below pHpzc
(pH < pHpzc), the charge of the surface of ABHC will become positive, and then anionic
species are preferentially attracted via electrostatic interactions [27].
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Figure 1. pHpzc of ABHC.

XRD patterns of ABHC before and after Congo red adsorption are presented in Figure 2.
For ABHC, there is a highest intensity diffraction peak around 2θ = 26.5, which can be
assigned to the crystalline hexagonal phase of graphite [28]. There are other diffraction
peaks, with minor intensity, around 2θ = 22.3 and 42.9, which are attributed to crystalline
graphite [29]. After CR adsorption, the diffraction pattern did not present significant
changes, indicating that there is no change in the crystallinity of ABHC as a result of the
adsorption process [24]. Similar results were observed in previous studies. Homagai et al.
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(2022) reported that the XRD patterns did not show remarkable changes after adsorption of
crystal violet on modified rice husk. This result was due to the amorphous nature attributed
to the lignin, cellulose, and hemicellulose present in the biosorbents [30]. Furthermore, Li
et al. (2020) reported that there was no change in XRD patterns after adsorption of Congo
red and methylene blue dye on walnut shell-based activated carbon and also attributed
their result to the amorphous nature of the adsorbent [24]. Therefore, it can be assumed that
the similarity on XRD diffraction patterns of ABHC before and after Congo red adsorption
could be attributed to the presence of lignin, cellulose, and hemicellulose, which are
confirmed by FT-IR.
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Figure 2. XRD pattern of ABHC and ABHC-CR.

The grain size of the ABHC and ABHC-CR samples was calculated from the XRD
patterns using the Debye–Scherrer Equation (1).

D =
Kλ

BCos(θB)
(1)

where λ is the wavelength (λ(CuKα) = 0.15405 nm), K is an empirical constant related to the
crystalline shape (for no spherical shapes, K = 0.9), B is the full width at half maximum of the
peak (FWHM) in radian on the 2θ scale, and θ is the Bragg’s diffracting angle corresponding
to the maximum of the peak. FWHM were determined using the Origin Pro version 2021
based on the Gaussian line.

According to Equation (1), the average particle size of the ABHC and ABHC-CR
samples was 25.56 nm and 25.69 nm, respectively. This result implies that the particle size
of AC was not affected after adsorption of CR.

Scanning electron microscope (SEM) analysis was carried out to investigate the physi-
cal surface morphology of ABHC before and after dye adsorption.

The SEM micrographs of ABHC (Figure 3a) show that the particles of the synthesized
biochar material before dye adsorption have a rough surface and an irregular shape with
a variety of randomly distributed cavities, which can provide easy access transport toward
the adsorption sites [31]. After Congo red adsorption, ABHC has slight changes on its
surface, and some cavities were filled with CR molecules. Additionally, SEM micrographs
after CR adsorption (Figure 3b) show new flake-like deposits formed on the activated
biochar surface due to the interactions between the functional groups on the activated
biochar and the dye molecule. The elemental composition of the biochar material was
performed by energy dispersive X-ray spectroscopy (EDS), as shown in Figure 3c. In ABHC,
the material consists predominantly of carbon and oxygen, and the sum of these two
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elements is 98.0% per weight. The rest of the composition (2.0%) corresponds to metallic
fractions (Ca, Al, and P). Lastly, the elemental analysis presents 1.7% per weight of N and
0.2% of S (Figure 3d). Nitrogen is found in the Congo red molecule (azo dye). Additionally,
sulfur is also found in the molecule of the dye (Figure 16), which confirms the adsorption
of dye onto the adsorbent.
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Figure 4 shows the adsorption–desorption isotherm of N2 on the ABHC sample. As
observed in this figure, the isotherm belonged to type IV according to International Union
of Pure and Applied Chemistry (IUPAC classification), indicating that the ABHC had
mesoporous structure [32].

The mean pore diameter of ABHC calculated by Barrett, Joyner, and Halenda (BJH)
equations was 2.14 nm, with a surface area of 124.15 m2/g. The difference in the surface
properties can be attributed to the type of biomass precursor. The mean pore diameter
value of biochar allows it to be classified as a mesoporous type, and several activated
carbons with mesoporous type have been used to remove Congo red dye effectively [33].
Additionally, the width of the CR molecule is approximately 2.62 nm [34], requiring
a mesoporous type for being adsorbed. Lafi et al. (2019) [35] prepared activated carbon
using coffee waste as a precursor and reported a mean pore diameter of 4.04 nm and surface
area of 219.69 m2/g and removed CR efficiently. Values of pore diameter and surface area
of ABHC are close to those mentioned above. Therefore, it is suspected that ABHC can be
used to remove CR dye from the aqueous solution.
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Figure 4. Adsorption–desorption isotherm of N2 on the ABHC.

Figure 5 shows the FTIR spectrum for ABHC and ABHC-CR, and the assigned bands
are summarized in Table 1. For activated biochar from Haematoxylum campechianum (ABHC)
broadband at 3358 cm−1 attributed to OH groups present in cellulose [33], the band at
1705 cm−1 could be attributed to C=O present in lignin [5], and the band at 1224 cm−1 can
represent C-O stretching of aryl, carboxylates, or ether groups presents in lignin [33]. The
groups mentioned above are known to participate in pollutant adsorption processes. After
Congo red adsorption, new bands appeared. At 1421 cm−1, this band can be attributed
to C=C stretching in the aromatic ring [36], and the band at 1045 cm−1 corresponds to
S=O [37]. These functional groups are present in the Congo red dye molecule (Figure 16)
and confirm the presence of the adsorbate in the adsorbent. The change in the bands from
3358, 779, and 1224 cm−1 to 3368, 769, and 1196 cm−1 indicates that OH, N-H, and C-O
groups are mainly involved in the adsorption of CR onto ABHC and suggests hydrogen
bonding, n–π, and π–π interactions [38] as part of the dye adsorption interactions.
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Table 1. FT-IR bands before and after the adsorption process.

Functional Group
Wavenumber (cm−1)

ABHC ABHC-CR

O-H and N-H 3358 3368
C=O 1705 1705
C=C 1593 1600

C-C (in aromatic ring) - 1421
C-O - 1360
C-O 1224 1196
S=O - 1045
N-H 779 769

2.2. Kinetic Study

The behavior of the experimental data and their fit to the kinetics models are shown in
Figure 6. For both initial concentrations (25 and 50 mg/L), equilibrium seems to be reached
slowly, around 24 h of contact, and the experimental data are closer to the pseudo-second-
order model (blue curve) (Figure 6a,b). The results of the fit to the kinetic models and the
corresponding parameter values are shown in Table 2.
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Figure 6. Kinetic modeling of Congo red adsorption (a) Ci = 25 mg/L and (b) Ci = 50 mg/L pseudo-
first-order, pseudo-second-order, and Elovich nonlinear models by ABHC (pH = 7; D ABHC = 1 g/L;
T = 300.15 K; contact time = 15–2880 min).

Table 2. Kinetic parameters of CR adsorption onto (ABHC) at different Ci values.

Ci
(mg/L)

Pseudo-First-Order Pseudo-Second-Order Elovich
qe,exp

(mg/g)
qe

(mg/g)
k1/10−2

(1/min) R2 qe
(mg/g)

k2/10−3

[g/(mg·min)] R2 α
[mg/(g·min)]

β
(g/mg) R2

25 15.21 13.87 1.187 0.957 15.09 1.056 0.988 0.8100 0.4183 0.928
50 23.74 21.95 0.5693 0.877 23.81 0.3724 0.939 0.7880 0.2590 0.968

For CiCR = 25 mg/L, the three models presented a good fit to the experimental data
with values of R2 > 0.900. PFO, PSO, and Elovich models show values of R2 = 0.957,
R2 = 0.988, and R2 = 0.928, respectively. However, error functions show better results
for PSO (Table 3). Additionally, the adsorption capacity at equilibrium (qe,calc) obtained
with the pseudo-second-order model was 15.09 mg/g and is closer to the experimental
adsorption capacity at equilibrium (qe,exp = 15.21 mg/g) than qe obtained with the pseudo-
first-order model (13.87 mg/g). Therefore, the best model to describe the kinetics of the
adsorption of Congo red at CiCR = 25 mg/L is the pseudo-second-order.
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Table 3. Error functions data of the kinetic models.

Ci
(mg/L) Model

Error Functions

ARE SSE ∆q (%) χ2 EABS RMSE

25
PFO 7.593 5.918 8.996 0.512 0.819 1.088
PSO 7.669 1.599 15.085 0.373 0.389 0.565

Elovich 20.518 9.891 41.892 2.617 1.033 1.406

50
PFO 19.160 37.763 32.024 4.476 1.974 2.748
PSO 12.081 18.762 23.587 2.331 1.198 1.937

Elovich 7.818 10.001 10.337 0.693 1.040 1.414

Figure 6b shows a good fit to the PSO and Elovich adsorption kinetic models at
an initial concentration (CiCR = 50 mg/L) with values for R2 > 0.900 and small values for
the error functions (Table 3). The adsorption capacity at equilibrium (qe,cal) obtained with
the pseudo-second-order (PSO) model was 23.81 mg/g and is closer to qe,exp = 23.74 mg/g
than qe,cal obtained with the pseudo-first-order PFO model. Furthermore, it is important
to mention the good fit with the Elovich model (R2 = 0.968), which assumes that the
activation energy increases with adsorption time and that the surface of the adsorbent
is heterogeneous [39]. In summary, the adsorption kinetics of CR dye at the two initial
concentrations (25 and 50 mg/L) follow pseudo-second-order (PSO). A tendency to fit the
pseudo-second-order model at low initial dye concentrations is observed. Sabarinathan
et al. (2019) [40] reported the same trend in the adsorption kinetics of methylene blue onto
molecular polyoxometalate, and Ho & Mckay (1998) [41] studied the adsorption of two
dyes, Basic Blue 69 and Acid Blue 25, onto peat. According to the results of the kinetic
study, the capacity of adsorption at equilibrium (qe,exp) does not increase considerably
between 24 and 48 h. Hence, the next equilibrium experiments were carried out at the
equilibrium time of 24 h.

2.3. Adsorption Isotherms of CR at Different Solution pH

Congo red is used as a pH indicator. At acidic pH values (2.18–3.16), CR solutions
turn blue, and there is a shift in the maximum absorbance wavelength [42], and at pH
≥ 3.86, there is no significant shift in the maximum absorbance wavelength. Hence, the
study of the effect of pH was carried out in the range of 4 to 10 (Figure 7). According to
the best values of the determination coefficient R2 (Table 4) and error functions (Table 5),
the Redlich–Peterson and Langmuir models fit best over the entire studied pH range. β
values from the Redlich–Peterson model are close to 1. Therefore, the fit to the Langmuir
model is further supported, and it can be assumed that the adsorption of Congo red onto
activated biochar prepared from Haematoxylum campechianum waste (ABHC) implies the
following considerations: all the adsorption sites are equal; each adsorption site only keeps
one molecule of the adsorbate and all sites do not sterically and energetically depend
on the adsorbed amount of the adsorbate [43]. Table 4 shows the maximum adsorption
capacity, Qmax = 53.93, 114.8, 68.33, 30.83, and 10.51 mg/g at pH = 4.0, 5.4, 7.0,8.4, and 10.2,
respectively. At high pH values (7.0, 8.4, and 10.2), Qmax values decrease. This behavior
can be attributed to the pKa value of Congo red = 4.5 [44], which means that CR would be
negatively charged at basic values of pH solution and also at the pHpzc of ABHC, where,
at pH > 6.5, the surface of ABHC is negatively charged. Therefore, there will be repulsion
between the adsorbent surface’s negative charge and the adsorbate’s negative charge.
A decrease in Qmax, from 114.8 to 53.93 mg/g at pH from 4.0 to 5.4 was also observed. This
decrease is due to the positive charge of ABHC (pH < pHpzc = 6.5) and the protonation of
CR, resulting in repulsion. The highest value of Qmax= 114.831 mg/g was obtained at a pH
solution of 5.4, suggesting the best adsorption of CR at this pH value. Other works have
reported an optimal pH value for the removal of CR around 5 [27,45,46].
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Figure 7. Adsorption isotherms modeling of Congo red at different pH values: (a) pH = 4.0, (b) pH = 5.4,
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contact time = 1440 min).
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Table 4. Parameters of the Langmuir, Freundlich, and Redlich–Peterson nonlinear models for the
adsorption of CR onto activated biochar from Haematoxylum campechianum (ABHC) at different
pH values.

Isotherm Models Parameters
pH

4 5.4 7 8.4 10.2

Langmuir Qmax (mg/g) 53.93 114.8 68.33 30.83 10.51
KL/10−2 (L/mg) 7.252 1.108 3.679 0.832 9.695

R2 0.982 0.994 0.972 0.988 0.962

n 2.479 1.335 1.830 1.362 3.4315
Freundlich KF (mg/g)(L/mg)1/n 8.945 2.189 5.393 0.498 2.684

R2 0.940 0.990 0.992 0.983 0.941

Redlich–Peterson

αRP (L/mg) 0.085 0.001 1.726 0.015 0.214
KRP (L/g) 4.088 1.141 12.761 0.270 1.395

β 0.973 1.453 0.516 0.887 0.895
R2 0.982 0.995 0.992 0.988 0.969

Table 5. Error functions data of the pH effect.

pH Model
Error Functions

ARE SSE ∆q (%) χ2 EABS RMSE

4.0
Langmuir 4.440 11.51 5.922 0.394 1.161 1.696
Freundlich 11.49 37.99 19.43 2.439 2.214 3.082

Redlich–Peterson 4.731 11.41 6.443 0.421 1.186 1.689

5.4
Langmuir 6.050 6.119 9.495 0.495 0.816 1.106
Freundlich 5.246 10.64 7.910 0.557 1.092 1.459

Redlich–Peterson 5.997 5.692 10.97 0.565 0.710 1.067

7.0
Langmuir 10.32 32.09 15.52 1.933 1.811 2.533
Freundlich 6.060 8.534 9.491 0.602 0.947 1.306

Redlich–Peterson 5.317 8.615 8.012 0.520 0.899 1.313

8.4
Langmuir 5.612 1.246 7.802 0.153 0.354 0.499
Freundlich 9.324 1.672 16.82 0.382 0.407 0.578

Redlich–Peterson 5.818 1.237 8.731 0.166 0.350 0.497

10.2
Langmuir 4.587 1.049 5.899 0.143 0.325 0.458
Freundlich 6.917 1.617 11.29 0.334 0.386 0.569

Redlich–Peterson 4.611 0.836 6.531 0.139 0.287 0.409

2.4. Adsorption Isotherms of CR at Different Adsorbent Dose

Figure 8 depicts the effect of the dose of ABHC on the adsorption of Congo red dye.
It is observed that for all doses (1 g/L to 10 g/L), the experimental data are close to
Freundlich, Langmuir, and Redlich–Peterson nonlinear isotherms; however, for low doses
(1 g/L and 2 g/L), the experimental data are also close to mode. In addition, a decrease in
the adsorption capacity at equilibrium (qe) is observed when the dose of activated biochar
increases (Figure 8a–d).

The parameters of each adjusted nonlinear isotherm model at a different dose of
ABHC are listed in Table 6. At low dose values (1 g/L and 2 g/L), the values of R2

were superior to 0.900 for all isotherm models. For Langmuir isotherm, the R2 values
were 0.940 and 0.988, while for Freundlich, R2 = 0.976 and 0.993 for doses of 1 g/L and
2 g/L, respectively. The good fit to both models suggests that the adsorption of CR dye
onto activated biochar involves several interactions, which had already been mentioned
previously in FTIR studies. At high doses of ABHC (5 g/L and 10 g/L), the best adjustments
are obtained with the Langmuir (R2 = 0.970 and R2 = 0.966), Freundlich (R2 = 0.985 and
R2 = 0.982), and Redlich–Peterson (R2 = 0.985 and R2 = 0.982).
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(b) dose = 2 g/L, (c) dose = 5 g/L, and (d) dose = 10 g/L (pH = 7; CiCR = 20–1000 mg/L; T = 300.15 K;
contact time = 1440 min).

Table 6. Parameters of the Langmuir, Freundlich, and Redlich–Peterson nonlinear models for the
adsorption of CR onto different doses of activated biochar from Haematoxylum campechianum (ABHC).

Isotherm Models Parameters
Dose (g/L)

1 2 5 10

Langmuir Qmax (mg/g) 92.86 59.53 47.62 12.22
KL/10−2 (L/mg) 1.887 0.369 0.125 0.685

R2 0.940 0.988 0.970 0.966

n 3.079 2.051 1.579 2.551
Freundlich KF (mg/g)(L/mg)1/n 10.85 1.747 0.346 0.787

R2 0.976 0.993 0.985 0.982

Redlich–Peterson

αRP (L/mg) 0.401 0.091 252.8 3.338
KRP (L/g) 6.788 0.506 87.64 2.811

β 0.742 0.669 0.367 0.618
R2 0.984 0.997 0.985 0.982

In the whole range of doses (1 g/L to 10 g/L), the best-fitted model was
Redlich–Peterson with the highest values of R2 and the lowest values of error functions
(Table 7); this is a hybrid model of the Langmuir and Freundlich models, and when its
dimensionless parameter β is close to one, the model approaches Langmuir, and when
β is close to zero, the model approaches Freundlich [47]. At low dose, dose = 1 g/L,
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β = 0.742 and at dose = 2 g/L, β = 0.669 values are close to 1, so adsorption is close to the
features of the Langmuir model. By increasing the dose to 5 g/L (β = 0.367 is closer to
zero), adsorption is close to the features of the Freundlich model. Finally, Table 6 shows
that Qmax (from the Langmuir isotherm model) decreases as the dose of activated biochar
increases (from Qmax = 92.86 mg/g at dose = 1 g/L to Qmax = 12.22 mg/g at dose = 10 g/L);
this behavior is due to the fact that as the dose of ABHC increases, there is a decrease in the
amount of free active sites because of the agglomeration of sorption sites at high dose [9] or
the solute concentration gradient between the solution of dye and the adsorbent surface,
so the amount of CR adsorbed per unit weight of ABHC is reduced with increasing ABHC
dose [48]. The highest value of the parameters Qmax= 92.86 mg/g and n = 3.079 were
achieved with the lowest dose used in this work; therefore, the optimum dose of ABHC
is 1 g/L.

Table 7. Error functions data of the dose effect.

Dose (g/L) Model
Error Functions

ARE SSE ∆q (%) χ2 EABS RMSE

1
Langmuir 14.52 552.4 22.17 10.83 5.004 7.835
Freundlich 16.67 224.9 32.14 10.60 3.950 4.999

Redlich–Peterson 7.262 151.7 10.66 2.813 2.886 4.105

2
Langmuir 12.22 19.55 20.21 1.881 1.355 1.977
Freundlich 9.945 12.46 19.84 1.215 1.083 1.579

Redlich–Peterson 4.830 4.912 6.941 0.332 0.698 0.991

5
Langmuir 26.89 14.41 43.57 3.437 1.215 1.698
Freundlich 13.67 7.352 26.16 1.264 0.777 1.213

Redlich–Peterson 13.68 7.356 26.18 1.266 0.778 1.213

10
Langmuir 20.93 2.996 36.48 1.346 0.573 0.774
Freundlich 9.020 1.549 13.55 0.315 0.363 0.557

Redlich–Peterson 9.977 1.543 14.89 0.342 0.375 0.556

2.5. Adsorption Isotherms of CR at Different Temperatures

The effect of the temperature on the adsorption of Congo red is shown in Figure 9.
A change in the shape of the isotherm is observed when temperature increases from
T = 300.15 to T = 330.15. In the whole studied temperature range, experimental data best fit
the Redlich–Peterson model.

At low temperatures (Figure 9a), experimental data are closer to the Freundlich nonlin-
ear model than the Langmuir nonlinear model. However, at higher temperatures (Figure 9c),
experimental data and the shape of the isotherm are closer to the nonlinear Langmuir model
than the Freundlich nonlinear model.

Table 8 summarizes the parameters of the Langmuir, Freundlich, and Redlich–Peterson
nonlinear isotherms. The maximum adsorption capacity, Qmax (mg/g) (from the Lang-
muir model), decreased significantly from 92.86 to 29.20 mg/g at 300.15 and 330.15 K,
respectively. In other words, the adsorption of CR onto ABHC is less favorable at high tem-
peratures. In addition, KF (from the Freundlich model) values decreased when increasing
the temperature from 300.15 to 330.15 K, which also indicates unfavorable adsorption at
high temperatures. This behavior has been commonly reported in the adsorption of azo
dyes, suggesting a better adsorption of these types of dyes at low temperatures [49].
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Table 8. Parameters of the Langmuir, Freundlich, and Redlich–Peterson nonlinear models
for the adsorption of CR onto activated biochar from Haematoxylum campechianum (ABHC) at
different temperatures.

Isotherm Models Parameters
Temperature (K)

300.15 313.15 330.15

Langmuir Qmax (mg/g) 92.86 27.44 29.20
KL/10−2 (L/mg) 1.887 26.78 1.917

R2 0.940 0.709 0.980

n 3.079 7.411 3.878
Freundlich KF (mg/g)(L/mg)1/n 10.85 12.38 5.106

R2 0.976 0.999 0.951

Redlich–Peterson

αRP (L/mg) 0.401 19.66 0.057
KRP (L/g) 6.788 247.2 0.852

β 0.742 0.867 0.899
R2 0.984 0.999 0.988

According to R2 and error function values (Table 9), at 300.15 and 313.15 K, the best fit
to the isotherm models corresponds to the following order: Redlich–Peterson > Freundlich
>Langmuir. While, at 330.15 K, Redlich–Peterson > Langmuir> Freundlich. That is, the
best isotherm model to describe the adsorption of Congo red dye onto ABHC in the full
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range of studied temperatures is the Redlich–Peterson, which assumes the considerations
of Freundlich and Langmuir models [47]. However, values of the parameter β presented
an increasing trend as the temperature increased (β = 0.742 at T = 300.15 K and β = 0.899
at T = 330.15 K). Therefore, the dye adsorption tends to be in the Langmuir model at
high temperatures.

Table 9. Error functions data of temperature effect.

Temperature (K) Model
Error Functions

ARE SSE ∆q (%) χ2 EABS RMSE

300.15
Langmuir 14.52 552.4 22.17 10.83 5.004 7.835
Freundlich 16.67 224.9 32.14 10.60 3.950 4.999

Redlich–Peterson 7.262 151.7 10.66 2.813 2.886 4.105

313.15
Langmuir 13.64 71.57 16.61 3.316 2.978 3.783
Freundlich 0.813 0.321 1.211 0.017 0.162 0.254

Redlich–Peterson 0.673 0.289 1.054 0.014 0.145 0.240

330.15
Langmuir 6.921 8.183 14.16 0.958 0.746 1.279
Freundlich 9.950 20.13 13.09 1.245 1.580 2.006

Redlich–Peterson 5.720 4.807 8.774 0.433 0.752 0.980

2.6. Comparison of the Maximum Adsorption Capacity Qmax onto Different Activated Carbons

As mentioned in the introduction, CR dye is difficult to remove from the aqueous
medium; this proves the low maximum adsorption capacity obtained with other activated
carbons (Table 10). However, [50,51] and this work have reported high values of Qmax
(Qmax > 100 mg/g), which indicates these activated carbons are good sorbents to remove
CR. In Table 10, the experimental conditions are also shown. It is observed that most of
the works reported Qmax at temperatures that are not too high, in the range of 25–30 ◦C,
like this work. With respect to the pH value, high pH values are not observed, i.e., high
adsorption capacities are not obtained at very high pH (as mentioned previously in the pH
effect). However, Qmax values reported at lower pH values (2–3) are sometimes questioned
due to the change in the wavelength of maximum absorbance of Congo red at acidic pH
values that can lead to errors at the moment of quantifying CR solutions [42]. Activated
biochar from Haematoxylum campechianum (ABHC) presented a high adsorption capacity of
CR dye at not-so-extreme experimental conditions compared to the other activated carbons.

Table 10. Comparison of the maximum adsorption capacity of Congo red onto different activated
carbons.

Substrate Qmax (mg/g) T (◦C) pH Ci (mg/L) References

Coffee waste 90.90 25 3.0 20–120 [35]
Kenaf fiber (Hibiscus cannabinus) 14.20 27 7 5–25 [33]

Guava leaves 47.62 30 3 10–50 [52]
Rubber (Hevea brasiliensis) 55.87 30 2 100–500 [36]

Aloe vera leaves 91.00 25 2 100 [53]
Cornulaca monacantha 78.19 55 2.0 20–160 [54]

Peanut shell 153.4 - - 20–200 [50]
Casuarinas waste 232.0 25 - 5–1000 [51]

Delonix regia 17.12 30 - 200–1200 [55]
Corn cobs 41.67 50 3 10–50 [56]

Haematoxylum campechianum 114.8 27 5 10–100 This study

2.7. Adsorption and Desorption Cycles of CR

Two different NaOH concentrations (0.01 and 0.2 M) were used in two adsorp-
tion/desorption cycles. For 0.01M NaOH (Figure 10a), Qads decreased from 44.70 mg/g to
5.50 mg/g for cycles 1 and 2, respectively. Regarding the Qdes, after cycle number 1, only



Int. J. Mol. Sci. 2024, 25, 4771 15 of 29

8.58 mg/g of CR was desorbed, and after cycle number 2, no desorption of CR was achieved.
While, for 0.2M NaOH (Figure 10b), the adsorption capacity (Qads) resulted in 7.69 mg/g
for cycle number 2; comparing these results with those mentioned above for 0.01M NaOH,
there is only an increase of approximately 2 mg/g in the adsorption capacity using 0.2M
NaOH. Whereas, for the desorption capacity, after cycle number 1, Qdes increased from
8.58 mg/g to 18.01 mg/g, and for cycle 2, a desorption capacity of 3.02 mg/g was achieved,
suggesting better desorption of Congo red with increasing NaOH concentration. However,
these desorption results are low, which means that CR is well sorbed onto the surface of the
ABHC and that the interactions are strong. The low adsorption removal after two cycles
indicates the low possibility of reuse, which is a disadvantage of activated carbon that has
already been reported [57]. In order to improve the reusability of ABHC, it is suggested to
apply any other regeneration method such as another eluent or even temperature.
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2.8. Machine Learning-Assisted Optimization for Improving the Adsorption Process

Machine learning (ML) techniques have become pivotal in enhancing the predictabil-
ity [58] and understanding of adsorption processes across various domains, including
environmental and materials science. This review synthesizes recent advancements in the
integration of ML with adsorption modeling, highlighting its application in predicting the
behavior of diverse adsorbents and adsorbates, from heavy metals to organic pollutants
and gases. Guanwei Yin et al. (2021) explored different ML models—Multi-Layer Percep-
tron (MLP), Passive Aggressive Regression, and Decision Tree Regressor—to predict dye
adsorption from aqueous solutions. Among these, the Decision Tree Regressor emerged as
the most effective, suggesting its suitability for correlating adsorption equilibrium data due
to high accuracy and low error rates (R2 = 0.99) [59]. Chen Zhao et al. (2024) demonstrated
how multivalent ions like Ca2+, K+, Na+, and Mg2+ impact the adsorption of azo dyes
using ML models coupled with Density Functional Theory (DFT). Their study revealed
that the Gradient Boosting Decision Tree model provided the best fit, suggesting that
mixed background ions significantly influence adsorption behavior, as validated through
experimental and theoretical analyses [60]. Shoushi Zhao et al. (2024) applied ML to predict
adsorption of various metal cations by clay minerals, identifying key descriptors through
extensive feature engineering. The Extreme Gradient Boosting model was highlighted for
its exceptional predictive accuracy (R2 = 0.977), underscoring the model’s capability in
geochemical applications [61]. Qing-Yun Cai et al. (2024) focused on predicting protein
adsorption capacities using QSAR models derived from ML. Utilizing Random Forest and
Gradient Boosting methods, they achieved high predictive performances across various
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datasets, showing that ML can significantly contribute to the design of more efficient
separation processes in biochemical engineering [62]. Hyeonmin Lee and Yongju Choi
(2023) developed ML models to predict the adsorption capacity of sediment-amended acti-
vated carbon for hydrophobic organic contaminants. The top-performing model achieved
an R2 of 0.94, illustrating the utility of ML in enhancing the predictability of adsorption
processes in complex environmental matrices [63]. Lisheng Guo et al. (2024) employed
multiple ML algorithms to model heavy metal adsorption by bentonite, with the extreme
Gradient Boosting Regression (XGB) model showing the best performance. This study also
provided insights into the influence of various factors on adsorption capacity, supported by
a web-based graphical interface for model access [64]. Kai Chen et al. (2023) developed
ML models to predict the adsorption percentage of oxyanions on goethite, assessing the
influence of specific surface area and other descriptors. The study provided detailed in-
sights into the non-linear relationships and crystal face compositions affecting adsorption
capacities [65]. Raja Selvaraj et al. (2024) utilized ANN and ANFIS to model tetracycline
adsorption on activated carbon derived from fruit biomass. This approach not only yielded
high correlation coefficients but also provided a detailed mechanism of adsorption through
statistical physics models, highlighting the method’s applicability in pharmaceutical waste
treatment [66]. The reviewed studies collectively underscore the transformative potential
of machine learning in adsorption science. By effectively predicting adsorption capacities
and understanding the underlying mechanisms through models like Decision Trees, Gra-
dient Boosting, and Extreme Gradient Boosting, ML facilitates more precise control and
optimization of adsorption processes across varied applications. This integration not only
enhances model accuracy but also contributes significantly to environmental sustainability
and material efficiency.

The scatter matrix provided in Figure 11 presents a visual representation of pairwise
relationships across multiple variables, with dot colors corresponding to different ranges
of the “Removal percentage”. From the distribution of points, it can discern patterns and
correlations within the data. The descriptive statistics complement the scatter matrix by
quantifying the central tendency and dispersion of the same variables. With a count of
105 for each variable, it is a sizeable dataset. The “Initial concentration” has a mean of
approximately 201.55, but its standard deviation is relatively high, at 293.31, indicating a
wide range of values, which is also visible in the scatter plot with a spread across the axis.
The “Time” variable shows less variation relative to its mean, suggesting more consistent
data. The “Temperature” data are less varied, with a small standard deviation around its
mean of 303.02. The “pH” values have a mean near neutral, at 7.01, and “Dosis” averages
around 1.93 with a larger standard deviation, showing some variability in the dataset. The
“Removal percentage” has a mean of 35.71, with a broad standard deviation of 22.47, which
indicates variability in the removal efficiency. In the scatter matrix, there does not seem to
be a clear linear pattern or strong correlation between most variables and the “Removal
percentage”, as indicated by the wide scatter of points. However, a higher concentration of
points along the lower range of “Initial concentration” suggests that lower concentrations
may be associated with a broader range of “Removal percentage” outcomes. “Time” seems
to show clusters at specific intervals, perhaps indicative of experimental time points or
specific durations at which data were collected. Temperature appears fairly constant except
for a few higher measurements, which might represent a different experimental condition.
The pH levels are centered around neutral, with fewer instances of more acidic or basic
conditions. The dosages show a strong clustering at the lower end, suggesting most
experiments used a smaller dose, with fewer instances using higher dosages. Overall, the
combination of scatter matrix and descriptive statistics provides a comprehensive overview
of the dataset, indicating a wide variance in some variables and suggesting potential trends
that might warrant further investigation, such as the influence of “Initial concentration” on
the “Removal percentage”. These insights could be crucial for optimizing conditions to
enhance the removal process’s efficiency.
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Figure 11. Scatter matrix showing the relationship between the input variables and the removal
percentage.

The heatmap visualization of this matrix, as constructed with seaborn and matplotlib,
implementing Pearson Coefficient of Correlation, enhance the comprehensibility of these
relationships, presenting a clear and concise graphical representation of the data, where
the ‘coolwarm’ color palette effectively differentiates between positive and negative associ-
ations, displayed in Figure 12. In examining the correlation matrix for the dataset, there
is a notable linear relationship between the variables and the removal percentage, which
serves as the target variable in the context of the removal process’s efficacy. The initial
concentration is significantly inversely correlated with the removal percentage (r = −0.61),
indicating a tendency for the removal efficiency to decrease as the initial concentration of
the substance increases. On the other hand, time exhibits a positive but weak correlation
with the removal percentage (r = 0.14), suggesting only a minor influence on removal
efficiency. The temperature’s negative and moderate correlation (r = −0.28) with removal
percentage may reflect a thermally dependent process where increased temperatures could
potentially impede the removal efficiency. In the case of pH, there exists a moderately
negative correlation with removal percentage (r = −0.40), hinting at a higher pH potentially
reducing the efficacy of removal. Dosis, however, shows a negligible negative correlation
with removal percentage (r = −0.06), indicating a very slight decrease in removal efficiency
with increased dosis, though this relationship is so weak that it might not be significant.
This correlation matrix not only highlights the strength and direction of relationships be-
tween multiple variables but also underscores the intricate dynamics within the removal
process. The negative correlations observed with initial concentration and pH notably
suggest that these variables are crucial for understanding the process in depth. While
correlations provide insights into potential patterns within the dataset, they do not confirm
causation and should prompt further investigative analysis, such as regression modeling,
to unravel the complex interactions between these factors and optimize the conditions for
maximum removal efficiency.
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For the optimization [67] of removal percentage, predictive models of removal percent-
age, using a variety of machine learning algorithms, were evaluated for their effectiveness.
The Gradient Boosting algorithm outshined its counterparts, exhibiting superior perfor-
mance in terms of accuracy and computational efficiency. Henceforth, this discussion
delineates the development process of a Gradient Boosting regression model, which is
presented as the most efficacious algorithm for establishing a regression model between the
input variables—’Initial concentration’, ‘Time’, ‘Temperature’, ‘pH’, and ‘Dosis’—and the
target variable, ‘Removal percentage’. The Gradient Boosting Regressor was constructed
using Python’s renowned Scikit-learn library, a tool of choice for its comprehensive suite
of machine learning algorithms. The model was tailored with hyperparameters set to
100 estimators, ensuring a robust learning process without overfitting. The data division
was configured with a traditional 80–20 split between the training and testing datasets,
facilitated by Scikit-learn’s train_test_split function. Random state control was employed
to ensure reproducibility of the results. This computational experiment was executed
within a Python programming environment on Google Colab, renowned for its extensive
support for data analysis and machine learning. The meticulous selection and tuning of
hyperparameters were pivotal in harnessing the full potential of the Gradient Boosting
method. The resultant model not only encapsulates the intricate relationships within the
data but also stands as a testament to the meticulous computational methodology, paving
the way for future endeavors in process optimization.

Figure 13 shows a scatter plot that illustrates the relationship between the actual
and predicted removal percentages derived from a Gradient Boosting regression model.
The green dots represent predictions on the training dataset, while the red dots denote
predictions on the testing dataset. A dashed blue line, described as the “fit line”, suggests
a linear relationship indicative of the model’s predictions compared to the true values.
Generally, the proximity of the dots to the fit line reflects the accuracy of the model: the
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closer the dots are to the line, the more accurate the predictions. In this case, both green
and red dots are close to the fit line, indicating good model performance on both the
training and testing sets. The continuation of the dots along the fit line without deviating
significantly in either direction suggests that the model does not have a systemic bias
toward over- or under-prediction. The blue fit line likely represents the ideal scenario
where the predicted values exactly match the actual values, often referred to as the line of
perfect fit. If the model’s predictions were perfect, all points would lie on this line, with
predicted values equaling actual values. The training and testing data are clustered around
a trend line defined by the equation y = 0.9583x + 1.5813. This equation embodies the
model’s predictive behavior, where y represents the predicted removal percentage and x
represents the actual removal percentage. The slope of the trend line, 0.9583, indicates that
for every unit increase in the actual removal percentage, the predicted removal percentage
increases by approximately 0.9583 units. This value, being close to 1, signifies that the
model predictions are nearly proportional to the actual values, highlighting the model’s
accuracy. The y-intercept of 1.5813 suggests that when the actual removal percentage is zero,
the model predicts a baseline removal percentage of 1.5813, which might be interpreted
as the model’s expected performance when no contributing factors are present. Overall,
the proximity of the data points to the trend line, along with the slope nearing unity,
reinforces the model’s precision and suggests minimal bias in prediction. However, the
slight deviation from a perfect 1:1 slope implies that the model may slightly underestimate
the removal percentage since the slope is less than 1. The y-intercept also suggests a small
systematic offset in the model’s predictions. This detailed interpretation of the trend line
equation allows for a nuanced understanding of the model’s characteristics and provides
an avenue for further refining its predictions for use in optimization processes.
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percentage obtained through the application of Gradient Boosting method.

The Gradient Boosting (GB) model’s performance metrics for both training and testing
phases offer a comprehensive evaluation of its predictive accuracy, as displayed in Table 11.
The mean squared error (MSE) for the training set stands at approximately 4.05, suggesting
a satisfactory model fit, whereas a notably higher MSE of around 33.17 for the testing set
indicates potential overfitting, with the model not generalizing as well to unseen data. The
sum of squares error (SSE) corroborates this, with values of 340.39 and 696.54 for the training
and testing sets, respectively, indicating a greater cumulative deviation in the testing phase.
The mean absolute percentage error (MAPE) values, 5.95% for training and 23.09% for
testing, further reflect the model’s accuracy deterioration from training to testing. Root
mean squared error (RMSE) follows the same pattern, with a lower training error of 2.01,
contrasted with a higher testing error of 5.76, mirroring the MSE’s suggestion of overfitting.
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Similarly, the mean absolute error (MAE) is relatively low for training data at 1.49 but
escalates to 3.70 for the testing data, highlighting larger average prediction errors when the
model encounters new data. The mean percentage error (MPE) indicates an underprediction
bias in both datasets, with more pronounced underestimation in the testing data at −14.27%,
compared to −0.92% for training data. The coefficient of determination (COD), or R², which
assesses the variance in the dependent variable explained by the independent variables,
presents high values of 0.992 for training and 0.914 for testing. Despite the reduction in the
testing phase, these values imply the model’s strong explanatory power. Overall, while
the GB model exhibits robust predictive capabilities for the training data, evidenced by
high R² and low error metrics, the escalation of error measures in the testing data suggests
an imperative for model refinement to enhance its generalization and mitigate overfitting,
ensuring more reliable predictions across new datasets.

Table 11. Performance metrices of Gradient Boosting method during the training and testing phase.

Type of Data MSE SSE MAPE RMSE MPE COD

Training data 4.052313 340.3943 5.947051 2.013036 −0.92448 0.992258
Testing data 33.1685 696.5386 23.08819 5.75921 −14.2749 0.91353

Figure 14 presents a parallel coordinates plot, a multidimensional visualization that
allows for the inspection of individual data points across several quantitative variables
simultaneously. The axes represent the variables under consideration, namely Initial
Concentration, Time, Temperature, pH, Dosis, and Removal Percentage. Each line in the
plot corresponds to a single observation from the dataset, with the position on each axis
reflecting its value for the respective variable. Color gradation from turquoise to deep
red indicates the spectrum of Removal Percentage values, serving as the classification
criterion in this context. Observations with higher removal efficiencies are denoted in
warmer hues, which suggests a tendency towards lower Initial Concentrations and possibly
lower Dosis levels. Notably, there is no discernible trend relating Temperature or Time
to removal efficiency, as lines are largely intermixed along these axes. Meanwhile, pH
values predominantly cluster around neutral, with only a few observations indicating
more extreme acidic or basic conditions. This visualization technique reveals complex
relationships within the dataset that may not be apparent through traditional scatter plots
or correlation matrices. It can be instrumental in identifying patterns, outliers, and potential
areas of interest for further statistical analysis or experimental investigation. For instance,
one could hypothesize from the visualization that for this particular removal process,
optimal efficiency may be more sensitive to variations in initial concentrations and less
affected by temperature or dosis variations within the examined range. Such insights are
valuable for optimizing the parameters of the removal process to achieve higher efficiencies.

The problem is then solved for the optimization problem [68,69]. For the maximization
of the removal percentage, the developed code implements a process known as Bayesian op-
timization using the scikit-optimize library to fine-tune the hyperparameters of a Gradient
Boosting Regressor. The aim is to find the set of hyperparameters that maximizes the
removal percentage predicted by the model.

Hyperparameters: These are the adjustable parameters that control the model training
process. For Gradient Boosting, typical hyperparameters can include the number of trees
(n_estimators), the learning rate, the depth of each tree, etc. The specific hyperparameters
being optimized in this snippet are not directly shown, but we assume that they are encap-
sulated within the GradientBoostingRegressor with n_estimators = 100 and random_state
= 42. The n_estimators parameter determines the number of sequential trees to be modeled,
and the random_state ensures reproducibility of results.
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Search Space: The search space is defined by a set of ranges for the input variables the
model will use to make predictions. This space is represented as a list of Real or Integer
objects, which are types provided by scikit-optimize to specify continuous and discrete
parameters, respectively.

• ‘Initial concentration’ varies between 10 and 1000 (continuous).
• ‘Time’ varies between 15 and 2880 (discrete).
• ‘Temperature’ varies between 300.15 and 330.15 (continuous).
• ‘pH’ varies between 4 and 10 (continuous).
• ‘Dosis’ varies between 1 and 10 (continuous).

These parameters are part of the input feature set for the Gradient Boosting model, and
the ranges provide boundaries for the Bayesian optimization algorithm to search within.

Optimization Algorithm: The following specific parameters are used for the Bayesian
optimization algorithm.

• gp_minimize is the function from scikit-optimize that performs the Bayesian opti-
mization. It utilizes Gaussian Processes to model the probability distribution of the
objective function and makes educated guesses where the function might achieve
optimal values.

• The objective function is defined to return the negative predicted removal percentage
by the model given a set of parameters. The negative sign is used because gp_minimize
by default searches for the minimum value of the function, but since we want to
maximize the removal percentage, we need to minimize its negative.

• n_calls = 50 specifies the number of evaluations of the objective function, or how many
times the algorithm will try different sets of parameters.

• random_state = 42 ensures that the results are reproducible; the algorithm will start
from the same random seed.

The convergence plot, which is shown in Figure 15, visualizes the optimization algo-
rithm’s progress over successive iterations, depicting the minimum objective function value
attained after each function call. In the context of Bayesian optimization, each function call
equates to an evaluation of the objective function with a particular set of hyperparame-
ters. The y-axis, representing the minimum of the objective function, shows an initially
steep decline, indicating a rapid improvement in the model’s performance with the first
few evaluations. As the optimization proceeds, the curve flattens out, suggesting that
subsequent iterations provide incremental improvements and eventually reach a plateau.
This behavior is characteristic of optimization algorithms converging towards an optimal
set of parameters. Around the 20th call, the curve levels significantly, implying that the
algorithm has likely identified a region close to the optimum. Subsequent iterations re-
fine the solution, but the objective function’s value changes only marginally, signifying
that further searches yield little benefit, and the algorithm is approaching the maximum
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predicted removal percentage. This plateau indicates the optimal solution space within
the predefined hyperparameter boundaries has been thoroughly explored, and additional
evaluations do not substantially enhance the predictive capacity of the model. The figure
encapsulates the efficiency and effectiveness of the Bayesian optimization process, demon-
strating a pronounced convergence within 50 evaluations, which is critical in the context of
resource-intensive computational tasks typical in scientific research.

Int. J. Mol. Sci. 2024, 25, 4771 22 of 30 
 

 

• n_calls = 50 specifies the number of evaluations of the objective function, or how 

many times the algorithm will try different sets of parameters. 

• random_state = 42 ensures that the results are reproducible; the algorithm will start 

from the same random seed. 

The convergence plot, which is shown in Figure 15, visualizes the optimization algo-

rithm’s progress over successive iterations, depicting the minimum objective function 

value attained after each function call. In the context of Bayesian optimization, each func-

tion call equates to an evaluation of the objective function with a particular set of hyperpa-

rameters. The y-axis, representing the minimum of the objective function, shows an ini-

tially steep decline, indicating a rapid improvement in the model’s performance with the 

first few evaluations. As the optimization proceeds, the curve flattens out, suggesting that 

subsequent iterations provide incremental improvements and eventually reach a plateau. 

This behavior is characteristic of optimization algorithms converging towards an optimal 

set of parameters. Around the 20th call, the curve levels significantly, implying that the 

algorithm has likely identified a region close to the optimum. Subsequent iterations refine 

the solution, but the objective function’s value changes only marginally, signifying that 

further searches yield little benefit, and the algorithm is approaching the maximum pre-

dicted removal percentage. This plateau indicates the optimal solution space within the 

predefined hyperparameter boundaries has been thoroughly explored, and additional 

evaluations do not substantially enhance the predictive capacity of the model. The figure 

encapsulates the efficiency and effectiveness of the Bayesian optimization process, demon-

strating a pronounced convergence within 50 evaluations, which is critical in the context 

of resource-intensive computational tasks typical in scientific research. 

 

Figure 15. Convergence plot for the optimization process using Bayesian optimization algorithm. 

Table 12 presents the set of input variables that yield the optimal removal percentage 

as determined by the optimization algorithm. The table outlines that an initial concentra-

tion of 10.0 units, a lengthy process time of 2880 units, a mid-range temperature of 313.15 

units, a relatively acidic pH of 4.0, and the lowest dosis level of 1.0 unit culminate in a 

removal percentage of approximately 90.4733%. This optimal scenario likely reflects a spe-

cific operational sweet spot for the system under study, balancing the chemical and phys-

ical inputs to maximize efficiency. The removal percentage achieved underscores the 

model’s capability to identify conditions under which the process efficiency is near its 

peak within the constraints and ranges specified in the study. 

Figure 15. Convergence plot for the optimization process using Bayesian optimization algorithm.

Table 12 presents the set of input variables that yield the optimal removal percentage as
determined by the optimization algorithm. The table outlines that an initial concentration
of 10.0 units, a lengthy process time of 2880 units, a mid-range temperature of 313.15 units,
a relatively acidic pH of 4.0, and the lowest dosis level of 1.0 unit culminate in a removal
percentage of approximately 90.4733%. This optimal scenario likely reflects a specific
operational sweet spot for the system under study, balancing the chemical and physical
inputs to maximize efficiency. The removal percentage achieved underscores the model’s
capability to identify conditions under which the process efficiency is near its peak within
the constraints and ranges specified in the study.

Table 12. Optimal removal percentage and the input variables.

Initial Concentration
(mg/L)

Time
(min)

Temperature
(K) pH Removal Percentage

10.0 2880 313.15 4.0 90.4733

3. Materials and Methods
3.1. Adsorbate

Congo red dye (C.I. 22120, CAS number: 573-58-0, chemical formula: C32H22N6Na2O6S2)
was reagent grade (99.92%) and procured from Fagalab. Figure 16 shows the CR molecule
(drawn with ChemDraw professional software 17 version 17.0.0.206), and Table 13 presents
the physical properties of CR dye.
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Table 13. Physical properties of Congo red (CR).

Parameter Value

Molecular weight 696.66 g/mol
Density 0.995 g/mL at 25 ◦C

Solubility H2O: 25 g/L
Water solubility

pKa

Soluble
4.5 [44]

pH 6.7 (10 g/L, H2O and at 20 ◦C)
Color and pH range 3 (blue)–5.2 (red)

λmax 567 nm at pH 2.18–3.16 and 497 nm at pH ≥ 3.86

3.2. Biochar Preparation

The bark of Haematoxylum campechianum was collected from the Faculty of Engineering,
Autonomous University of Carmen in Campeche, Mexico. First, a pretreatment was carried
out. The bark was chopped, milled, and sieved between 0.2 and 0.5 mm. Then, it was
washed with abundant distilled water at 50 ◦C to eliminate any residue from the surface
and oven-dried at 70 ◦C for 12 h.

For the chemical activation, 250 mL of H3PO4 was mixed with 50 g of Haematoxy-
lum campechianum (pretreated, previously) for 3 h at 50 ◦C, and then, the mixture was
filtered and the solids dried at 70 ◦C for 12 h. For the thermal treatment, 50 g of phospho-
ric acid-treated Haematoxylum campechianum was introduced into a muffle at 500 ◦C for
60 min, at 10 ◦C/min. Then, when the sample was cold, in order to remove H3PO4 residue,
the activated biochar was washed with a 5% NaHCO3 solution and then with abundant
distilled water until the filtrate reached a pH value between 6 and 7. Finally, activated
biochar from Haematoxylum campechianum (ABHC) was dried at 110 ◦C for 12 h and then
stored in a closed glass bottle and placed in a desiccator.

3.3. Characterization Techniques

Scanning electron microscope (SEM) coupled with EDS system (HITACHI S-3400N),
Brunauer Emmett Teller method (BET) (BELSORP MAX), X-ray diffractometer (XRD) (APD
2000 PRO), and Fourier-transform infrared (FTIR) spectrophotometer (Nicolet Nexus 670)
techniques were used to characterize the surface morphology, shape, elemental composition,
mean pore diameter, surface area, crystalline structure, and chemical composition of the
activated biochar from Haematoxylum campechianum (ABHC). Additionally, the pH point
of zero charge pHpzc was determined using 0.01 M NaCl as the background electrolyte
solution; the pH of the working solutions was fixed between 1 and 12 (2, 4, 5, 6, 8, 10, and
12) using 0.1 M NaOH and/or HCl. First, the initial pH of each solution was measured
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with a Hanna instruments (model HI2020-01) pH meter. Subsequently, solutions were put
in contact with the adsorbent at 120 rpm at 300.15 K for 24 h. Then, the solutions were
decanted, and the final pH values were measured. The point of intersection between the
curve was obtained by plotting pHfinal vs. pHinitial, and the diagonal curve corresponds to
the pHpzc of the adsorbent [70].

3.4. Sorption

Sorption of Congo red is affected by several parameters, including the pH of the
aqueous medium, temperature, adsorbent dose, adsorbate concentration, and contact time.

Different pH values (4.0, 5.4, 7.0, 8.4, and 10.2) of CR solutions were adjusted by adding
0.1 M HCl and 0.1 M NaOH, using a pH sensor (model HI2020-01, Hanna instruments) at
different initial concentrations (10, 20, 40, 50, 60, 80, and 100 mg/L) and put in contact with
a dose of activated biochar =1 g/L in a rotating incubator at 150 rpm for 24 h at 300.15K.

The effect of the temperature was evaluated by putting in contact with different initial
concentration CR solutions (20, 50, 100, 250, 500, 750, and 1000 mg/L) with a dose of
ABHC =1g/L, pH solution = 7.0 at three different temperatures: 300.15K, 313.15K, and
330.15K for 6 h.

In order to evaluate the effect of the dose of adsorbent material on the dye adsorption,
four doses of ABHC (1, 2, 5, and 10 g/L) were put in contact for 24 h with different initial
concentration CR solutions (20, 50, 100, 250, 500, 750, and 1000 mg/L) at pH solution = 7.0
and temperature = 300.15 K.

After reaching equilibrium, all samples were centrifugated for 5 min at 3500 rpm
and then analyzed by a UV-vis spectrophotometer (model EVOLUTION 220, Thermo
Scientific) using calibration curves (with an interval from 2 to 20 mg/L) and R2 > 0.995 at
the wavelength of 497 nm.

The adsorption capacity (qe) was calculated using the following Equation:

qe =
(Ci − Ce)·V

m
(2)

where Ci (mg/L) is the initial concentration, Ce (mg/L) is the equilibrium concentra-
tion, qe (mg/g) is the adsorption capacity, V (L) is the volume, and m (g) is the mass of
the adsorbent.

Experimental equilibrium data were fitted with the following nonlinear isotherms
models: Langmuir (Equation (3)), Freundlich (Equation (4)), and Redlich–Peterson (Equa-
tion (5)), using the solver add-in from Microsoft’s spreadsheet tool of Microsoft Excel for
Office 365 version 2403.

qe =
QmaxKLCe

1 + KLCe
(3)

where KL (L/mg) is the Langmuir equilibrium constant and Qmax (mg/g) is the maximum
adsorption capacity.

qe = KFC1/n
e (4)

where n (dimensionless) and KF (mg1−1/n·L1/n·g−1) are the exponent and the Freundlich
parameter, respectively.

qe =
KRPCe

1 + αRPCβ
e

(5)

where KRP (L/g) and αRP (L/mg) are the constant of the Redlich–Peterson and β is
a dimensionless parameter between 0 and 1.

Kinetic studies were conducted from two different initial concentrations: 25 mg/L and
50 mg/L at pH = 7.0, an adsorbent dose = 1 g/L, temperature = 300.15 K, and the following
contact times: 15, 60, 180, 360, 720, 1440, and 2880 min. The obtained experimental data
were fitted with the pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich
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kinetic nonlinear models (Equation (6), Equation (7), and Equation (8), respectively) using
the solver add-in from Microsoft’s spreadsheet tool of Microsoft Excel.

qt = qe,cal(1 − exp(−k1t )) (6)

qt =
k2q2

e,calt
1 + k2qe,calt

(7)

where qe,cal is the theoretical adsorption capacity (mg/g) and k1 (1/min) and k2 [g/(mg·min)]
are the pseudo-first and pseudo-second-order rate constants, respectively.

qt =
1
β

ln(αβt) (8)

where β is the constant related to the extent of surface coverage (g/mg) and α is the
theoretical adsorption capacity [mg/(g·min)].

In addition to the regression coefficient R2, the following error functions were calcu-
lated with the aim of confirming accurate measurement results and a good fit with the
proposed models: absolute error (EABS), sum squared error (SSE), the average percentage
error (ARE), nonlinear chi-square test (χ2), residual root mean square error (RMSE), nor-
malized standard deviation (∆q (%)) (Equation (9), Equation (10), Equation (11), Equation
(12), Equation (13) and Equation (14), respectively).

SSE = ∑N
i=1 (q e,exp − qe,calc

)2
(9)

EABS =
1
n∑N

i=1

∣∣∣(q e,exp − qe,calc

∣∣∣ (10)

ARE(%) =
100
N ∑N

i=1

∣∣∣∣ qe,exp − qe,calc

qe,exp

∣∣∣∣ (11)

χ2 = ∑N
i=1

(q e,exp − qe,calc

)2

qe,calc
(12)

RMSE =

√
1

N − 2∑N
i=1 (q e,exp − qe,calc

)2
(13)

∆q(%) = 100

√√√√ 1
N − 1∑N

i=1

(
qe,exp − qe,calc

qe,exp

)2
(14)

where qe,exp is the adsorption capacity obtained from the batch experiment (mg/g), qe,calc is
the adsorption capacity obtained with a mathematical model corresponding (mg/g), and N
is the corresponding number of observations in the experiment.

3.5. Desorption and Regeneration Study

In order to determine the desorption behavior and reusability of ABHC, 0.01 M and 0.2 M
NaOH solutions were used as desorbing agents. A total of 50 mL of CR at the initial con-
centration of 100 mg/L was put in contact with 50 mg of ABHC for 24 h. Then, CR-loaded
ABHC was regenerated using 50 mL of NaOH solution for CR desorption. Regeneration
was carried out at 300.15 for 24 h. After a time, the sample was centrifuged to obtain the ad-
sorbent. The residual concentration was measured by UV-vis spectrophotometric analysis.
The regenerated ABHC was rinsed with distilled water and dried at 105 ◦C for 2 h before
the next cycle of adsorption took place. Two cycles of consecutive adsorption–desorption
studies were carried out using two different concentrations of NaOH (0.01 M and 0.2 M).
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Qdes (mg/g) is the quantity of dye desorbed that was calculated using Equation (15) [71].

Qdes = Cdes·
V
m

(15)

where Cdes (mg/L) is the concentration of dye left after desorption, V (L) is the volume of
the dye solution, and m (g) is the ABHC mass.

Qads (mg/g) is the quantity of dye adsorbed after sorption that was calculated using
Equation (2).

4. Conclusions

According to the characterization, isotherm, and kinetic results, the interactions in-
volved in the CR removal process onto biochar prepared from Haematoxylum campechianum
waste (ABHC) were electrostatic attraction, hydrophobic attraction, hydrogen bonding, and
n–π and π–π interactions. The results of the evaluated effects (pH, temperature, and dose)
give a maximum adsorption capacity (Qmax) equal to 114.8 mg/g at pH = 5.4, 300.15K, and
a dose of ABHC of 1 g/L.

Advanced machine learning techniques including Gradient Boosting Model combined
with an optimization algorithm were applied to optimize a chemical removal process.
The resulting model predicted a removal percentage of approximately 90.47% under op-
timal conditions: an initial concentration of 10 units, time of 2880 units, temperature at
313.15 units, pH of 4.0, and dosis of 1.0.

Finally, this study underscores the vital role of computational thinking in addressing
environmental challenges through the implementation of computational packages such
as data science, machine learning, and optimization. This work not only contributes
to the field of environmental science but also provides valuable insights for integrating
computational thinking skills into educational curricula. We can foster innovation and
sustainability, empowering individuals to tackle real-world environmental problems with
confidence and efficacy.
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