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Abstract: Loewi’s discovery of acetylcholine (ACh) release from the frog vagus nerve and the
discovery by Dale and Dudley of ACh in ox spleen led to the demonstration of chemical transmission
of nerve impulses. ACh is now well-known to function as a neurotransmitter. However, advances in
the techniques for ACh detection have led to its discovery in many lifeforms lacking a nervous system,
including eubacteria, archaea, fungi, and plants. Notably, mRNAs encoding choline acetyltransferase
and muscarinic and nicotinic ACh receptors (nAChRs) have been found in uninnervated mammalian
cells, including immune cells, keratinocytes, vascular endothelial cells, cardiac myocytes, respiratory,
and digestive epithelial cells. It thus appears that non-neuronal cholinergic systems are expressed in
a variety of mammalian cells, and that ACh should now be recognized not only as a neurotransmitter,
but also as a local regulator of non-neuronal cholinergic systems. Here, we discuss the role of non-
neuronal cholinergic systems, with a focus on immune cells. A current focus of much research on
non-neuronal cholinergic systems in immune cells is α7 nAChRs, as these receptors expressed on
macrophages and T cells are involved in regulating inflammatory and immune responses. This makes
α7 nAChRs an attractive potential therapeutic target.

Keywords: local regulator; non-neuronal; cholinergic system; immune cell; α7 nAChR; T cell;
differentiation; Treg

1. Introduction

In 1914, Ewins [1] identified acetylcholine (ACh) as an active principle in ergot, a
product of the fungus Claviceps purpurea, that elicits an inhibitory effect on the heart but
a stimulatory effect on intestinal muscle. This discovery led Dale to study the pharmaco-
logical properties of various choline esters, including ACh, and found that ACh produced
effects most similar to muscarine [2]. However, because of the lack of evidence for the
presence of ACh in the animals, Dale was reluctant to suggest that ACh may be a neuro-
transmitter in parasympathetic neurons (see a review by Burgen [3]). In 1921, Loewi found
that electrical stimulation of the attached vagus nerve induced release of Vagusstoff, a
factor exerting a negative chronotropic effect, from isolated frog hearts into the perfusate [4].
Subsequently, Vagusstoff was pharmacologically identified as ACh [5]. In 1929, Dale and
Dudley discovered ACh in the spleens of oxen and horses [6]. Based on those findings,
Dale proposed the term “cholinergic” to describe nerves that transmit their action through
release of ACh [7]. The Nobel Prize was awarded to Sir Henry Dale and Otto Loewi in
1936 for their groundbreaking discovery of chemical transmission of the effects of nerve
impulses. At present, ACh is a well known classic neurotransmitter in the central and
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peripheral cholinergic systems. It is important to note, however, that although it was not
known at the time, the spleen is not innervated by cholinergic nerves [8].

Here, we will first discuss the major components of cholinergic systems: (1) ACh;
(2) choline acetyltransferase (ChAT, E.C. 2.3.1.6), an ACh-synthesizing enzyme; and (3) mus-
carinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively).

1.1. ACh

ACh is relatively stable when kept in acidic solutions with a pH between 3.5 to 5.5
and is chemically unstable in neutral or alkaline solutions, even when stored at −20 ◦C
in a freezer. Furthermore, ACh is highly unstable within a physiological context. For
example, the effects of ACh released from nerve terminals at the neuromuscular junction
are terminated within a few milliseconds by the action of the ACh-degrading enzyme
acetylcholinesterase (AChE) [9]. Consequently, levels of ACh in tissues and biological
fluids other than the brain are very low and were difficult to detect until the development
of a sensitive and specific radioimmunoassay (RIA) for ACh [10,11] and high performance
liquid chromatography-electrochemical detection (HPLC-ECD) [12].

1.2. ChAT

Within cholinergic neurons, ACh is synthesized in the cytosol from choline and
acetyl-CoA through a reaction catalyzed by ChAT [13]. When measuring ChAT activity in
peripheral tissue homogenates using the Fonnum procedure [14], it is important to keep
in mind that both ChAT and the mitochondrial matrix enzyme carnitine acetyltransferase
(CarAT, E.C.2.3.1.7) can catalyze ACh synthesis [13,15]. Thus, ACh synthesizing activity
in peripheral tissue homogenates determined using the Fonnum procedure represents the
sum of these two enzyme activities [14]. To determine specific ChAT activity, it is necessary
to assess ACh synthesis in the presence of bromo-ACh (BrACh) or bromo-acetylcarnitine
(BrACar), specific inhibitors of ChAT and CarAT, respectively [13,15]. The physiological
significance of ACh synthesized by CarAT is still unknown.

Recent findings suggest the presence of significant ACh-synthesizing activity in
plasma [16,17]. However, that activity was determined in the presence of abundant acetyl-
CoA [16,17], which is unstable and thus virtually unavailable in plasma under normal
extracellular conditions [18,19]. Therefore, the physiological significance of plasma ACh-
synthesizing activity is currently unclear.

1.3. mAChRs and nAChRs

Various subtypes of mAChRs and nAChRs are expressed in non-neuronal cholinergic
tissues and organs.

1.3.1. mAChRs

Five distinct mAChR subtypes (M1–M5), acting via two different second messenger
signaling systems, have been identified through molecular cloning [20,21]. M1, M3, and M5
mAChRs are coupled to Gq/11, which, upon stimulation, mediates activation of phospho-
lipase C (PLC), leading to increases in the intracellular free Ca2+ concentration ([Ca2+]i).
M2 and M4 mAChRs are coupled to Gi/o, which, upon stimulation, mediates inhibition
of adenylyl cyclase, leading to declines in cAMP production [22]. Most non-neuronal
cholinergic tissues and cells express all five mAChR subtypes [23–25].

1.3.2. nAChRs

Non-neuronal cholinergic cells and tissues express primarily neuron-type nAChRs
composed of only α and β subunits: eight α (α2–α7, α9–α10) and three β (β2–β4) [23–25]. α7
nAChRs, composed of homomeric α7 subunits, are currently the subject of much research
on non-neuronal cholinergic systems (see Section 4). In addition, subunit α9 assembles
with α10 to form heteromeric α9α10 nAChRs, which exhibit high Ca2+ permeability in
auditory hair cells [26] and human and murine monocytes [27].
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2. Expression of ACh in a Wide Variety of Life Forms

As mentioned above, Ewins in 1914 [1] identified ACh as a biologically active principle
in ergot, and showed that the fungus has the ability to produce ACh. Since then, sporadic
papers have been published reporting the detection of ACh in eubacteria, unicellular
animals, and other organisms (see reviews [28–30]). Taking advantage of the sensitivity,
specificity, and operational simplicity of an RIA for ACh, Horiuchi et al. [31,32] and
Yamada et al. [31,32] conducted comparative biological studies examining the ACh content
and ACh-synthesizing activity in various life forms (Figure 1) [33].Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 19 

 

 

 
Figure 1. Expression of ACh and ACh-synthesizing activity in representative life forms and the 
rooted universal phylogenetic tree adopted from Wheelis et al. [33]. Bacteria: 1, Thermotogales; 2, 
flavobacteria and relatives; 3, cyanobacteria; 4, purple bacteria; 5, Gram-positive bacteria; and 6, 
green nonsulfur bacteria. Archaea-kingdom Crenarchaeota: 7, the genus Pyrodictium; and 8, the 
genus Thermoproteus; and Archaea-kingdom Eurycarhaeota: 9, Thermococcales; 10, 
Methanococcales; 11, Methanobacteriales; 12, Methanomicrobailes; and 13, extreme halophiles. 
Eurycarya: 14, entamoebae; 15, slim molds; 16, animals; 17, fungi; 18, plants; 19, ciliates; 20, 
flagellates; 21, trichomonads; 22, microsporidia; 23, diplomonads. ACh, acetylcholine; CFU, colony 
forming unit; ChAT, choline acetyltransferase. The ACh content was determined using an RIA for 
ACh [11]. ACh synthesis was determined using a modification of the procedure of Fonnum in the 
presence of 0.15 mM acetyl-CoA and 15 mM choline [14]. ChAT-like activity was calculated as the 
ratio of ACh synthesis sensitive to the selective ChAT inhibitor bromoacetylcholine (BrACh) to the 
total ACh synthesis. Arranged from data presented in references [31,32,34]. 

Figure 1. Expression of ACh and ACh-synthesizing activity in representative life forms and the
rooted universal phylogenetic tree adopted from Wheelis et al. [33]. Bacteria: 1, Thermotogales; 2,
flavobacteria and relatives; 3, cyanobacteria; 4, purple bacteria; 5, Gram-positive bacteria; and 6,
green nonsulfur bacteria. Archaea-kingdom Crenarchaeota: 7, the genus Pyrodictium; and 8, the
genus Thermoproteus; and Archaea-kingdom Eurycarhaeota: 9, Thermococcales; 10, Methanococ-
cales; 11, Methanobacteriales; 12, Methanomicrobailes; and 13, extreme halophiles. Eurycarya:
14, entamoebae; 15, slim molds; 16, animals; 17, fungi; 18, plants; 19, ciliates; 20, flagellates;
21, trichomonads; 22, microsporidia; 23, diplomonads. ACh, acetylcholine; CFU, colony forming
unit; ChAT, choline acetyltransferase. The ACh content was determined using an RIA for ACh [11].
ACh synthesis was determined using a modification of the procedure of Fonnum in the presence
of 0.15 mM acetyl-CoA and 15 mM choline [14]. ChAT-like activity was calculated as the ratio of
ACh synthesis sensitive to the selective ChAT inhibitor bromoacetylcholine (BrACh) to the total ACh
synthesis. Arranged from data presented in references [31,32,34].
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They found that all the life forms tested, which included various eubacteria, archaea,
fungi, plants, and animals, expressed some level of ACh and ACh-synthesizing activity.
At present, the enzymes catalyzing ACh synthesis and governing expression of AChRs
in eubacteria, archaea, fungi, and plants remain unknown [34]. However, “17 Shiitake
mushroom” and “18 Bamboo shoot in both upper and lower portion”, as well as “16 Insects and
Annelids”, exhibit ChAT-like ACh-synthesizing activity that is sensitive to BrACh, a selective
ChAT inhibitor. Additionally, “9 Thermoccales (T. kodakaraensis KOD1) collected during the
rapid growth phase showed detectable levels of ChAT-like ACh-synthesizing activity.

These and other findings suggest that ACh is an evolutionarily ancient molecule
that functions as a mediator between adjacent cells and plays a role in regulating growth,
differentiation, water homeostasis, or photosynthesis in archaea [32], mushrooms and
rapidly growing bamboo shoots [31], maize sprouts [35,36], and Urtica dioica [28,29].
However, understanding the biological function of ACh in life forms other than animals
will require further research. This is important, as expression of significant levels of ChAT-
like activity in rapidly growing bamboo shoots suggests that creation of transgenic plants
that overproduce ACh may promote faster growth and higher yields of crops that could
potentially help reduce atmospheric carbon dioxide and solve food shortages.

3. Expression of Non-Neuronal Cholinergic Systems in Mammalian Species

In 1978 Sastry and Sadavongvivad [37] published a pioneering review on cholinergic
systems in non-neuronal tissues. Since then, research in molecular biology has accelerated
the development of tools for determining ACh (e.g., HPLC-ECD and RIA) and for detecting
mRNA expression of cholinergic components. Correspondingly, evidence of expression
of non-neuronal cholinergic systems in various mammalian tissues and cells has been
accumulating. Several reviews addressing this topic in general, and in specific areas
are currently available (see reviews [23–25,38–41]. As a result, “non-neuronal ACh or
cholinergic systems” are now widely recognized in the field of biology. Representative
examples of non-neuronal mammalian cells and tissues expressing ACh or ChAT are listed
in Table 1.

Table 1. Expression of non-neuronal ACh or ChAT in respective mammalian tissues and cells.

1. Cancer cells
(1) Lung cancer cells [42]
(2) Colon cancer cells [43]
(3) Stomach cancer cells [44]

2. Cardiovascular cells
(1) Cardiomyocytes [45]
(2) Vascular endothelial cells [46,47]

3. Immune cells (T cells, B cells, and Monocytes) [48,49]

4. Digestive epithelial cells
(1) Gingival and esophageal epithelial cells [50]
(2) Small intestinal epithelial cells [51]

5. Reproductive organs
(1) Amniotic membrane [52]
(2) Placenta [53]

6. Respiratory epithelial cells
(1) Bronchial epithelial cells [51]

7. Myogenic cells and tendon
(1) Myogenic cells [54]
(2) Tendon [55]

8. Skin
(1) Keratinocytes [41]; see also a review by Kurzen et al. [56]

9. Urinary bladder [57,58]
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4. Cholinergic System in Immune Cells

It has long been known that T cells, B cells, macrophages and dendritic cells all
express both mAChRs and nAChRs and that mAChR and nAChR agonists elicit various
biochemical and functional effects (see reviews [59–61]). Based on those observations,
it was thought until the early 1990s that the parasympathetic nervous system might be
involved in neuro-immune crosstalk [62–64]. However, using the aforementioned advanced
techniques, we were able to show that immune cells express all the components necessary
to compose a cholinergic system, including ACh, ChAT, mAChRs and nAChRs, and AChE
(see reviews [59–61,65,66]).

4.1. ACh Synthesis in Immune Cells

The search for the origin of ACh detected in human plasma [67] led to studies mea-
suring the ACh concentrations in blood cell fractions and plasma [68]. Those studies
revealed that the ACh concentration in rabbit blood cells was 25 times higher than in
plasma. Moreover, intravenously injected nicotine elicited a significant increase in plasma
ACh and a decrease in the ACh content of blood cells, suggesting release of ACh from
blood cells to the plasma, while expression of ChAT activity was detected in rabbit immune
cells and rat lymphocytes [69]. In addition, Kawashima et al. [70] found that the stable
amounts of ACh in human peripheral blood were localized in mononuclear leukocytes
(MNLs) consisting mainly of lymphocytes and a small fraction of monocytes (Figure 2A(1)).
Although considerable interindividual variation in the ACh content of whole blood was
observed, little variation was seen in a given individual when determined on two different
occasions between 6 and 24 months apart (Figure 2A(2)). Furthermore, the ACh content in
MNLs (about 60% of the whole blood) correlated well with that in whole blood (Figure 2B).
These results indicate that plasma ACh is derived from MNLs, which suggests that immune
cells have the ability to synthesize and release ACh. The relationship between the observed
interindividual variation in immune cell ACh content and immunity has not yet been
elucidated. Considering the stable ACh content of MNLs within individuals, it would be
interesting to investigate the relationship between the ACh content of immune cells and
gut microbiota.

4.1.1. ChAT in Immune Cells
Determination of ACh Synthesizing Activity in Immune Cells

Fujii et al. [48] detected varying contents of ACh in human leukemic cell lines used
as models for human T cells, B cells, and monocytes. In addition, using BrACh and
BrACar, specific inhibitors of ChAT and CarAT, respectively, they found that ACh synthesis
catalyzed by CarAT was higher than that catalyzed by ChAT in these cell lines. However,
phytohemagglutinin (PHA), which activates MOLT-3 human leukemic T cells via T-cell
receptor (TCR)-mediated pathways, enhanced ChAT activity but not CarAT activity [48].
These observations suggest that ChAT expression in T cells is regulated by immune activity,
whereas CarAT is not involved in regulating immune function. Therefore, before attributing
ACh-synthesizing activity measured in immune cells with the Fonnum method to ChAT, it
is recommended to confirm the BrACh sensitivity of that activity.

4.1.2. ChAT mRNA and Enzyme Expression in Immune Cells

Using reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot
analysis for ChAT protein, Fujii et al. [71] were the first to detect ChAT mRNA and pro-
tein expression in the MOLT-3 T cell line, and were the first to directly demonstrate the
involvement of ChAT in ACh synthesis in immune cells. Later, expression of ChAT mRNA
was similarly detected in human circulating lymphocytes [48,72,73], rat T and B cells [49]
and MNLs [74], and mouse dendritic cells [75]. Expression of ChAT mRNA and protein in
mature and immature human dendritic cells was subsequently confirmed using RT-PCR
and immunocytochemical analyses [76].
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ChAT expression in mouse T and B cells, dendritic cells, and macrophages was later
further confirmed using ChATBAC-eGFP transgenic mice [77] and ChAT-Cre-tdTomato
mice [78]. These findings indicate that immune cells express ChAT for ACh synthesis.
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Figure 2. (A) (1) ACh contents of whole blood from 15 male (◦) and 15 female subjects (•). (2). Stability
of blood ACh content in humans determined on two different occasions. The second measurement
was performed 6 to 24 months after the first. Each bar represents the mean ± S.E.M. (B) Scatterplot
showing the relation between the ACh content of whole blood and that of the MNLs. About 60% of
the whole blood ACh content was localized in the MNL fraction. Arranged from data presented in a
reference [70].

4.1.3. Mechanisms Regulating ACh Synthesis and Release

As described above, T cell stimulation with PHA via a TCR-mediated pathway en-
hances ACh synthesis by promoting ChAT mRNA expression and increasing ChAT ac-
tivity [72]. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator,
and dibutyryl cAMP (dbcAMP), a protein kinase A (PKA) activator, also increase ChAT
activity and ACh synthesis in MOLT-3 human leukemic T cells by upregulating ChAT
gene expression [79,80]. Similarly, the calcium ionophores A23187 and ionomycin also
upregulate expression of ChAT mRNA and its activity [81]. By contrast, FK506, an immuno-
suppressant calcineurin inhibitor, suppresses PHA-induced upregulation of ChAT mRNA
expression [80]. These findings suggest the involvement of calcineurin-mediated pathways
in ChAT gene transcription. Moreover, the summarized data provide compelling evidence
that T cell activation during immune responses mediated through PKC-MAPK and/or
adenylate cyclase-cAMP pathways upregulate ACh synthesis and release and suggest the
lymphocytic cholinergic system is involved in regulating immune function [79,80].
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The α7 nAChR allosteric ligand SLURP-1 promotes ChAT mRNA expression in MOLT-
3 human leukemic T cells. This effect is abolished by the α7 nAChR antagonist methyllyca-
conitine, suggesting a role for α7 nAChRs in regulating ChAT expression in T cells [82].

Recent findings also indicate that during lymphocytic choriomeningitis virus infection,
ChAT gene expression is markedly induced in CD4 and CD8 T cells in an IL-21-dependent
manner, which promotes T cell migration [83].

4.1.4. Storage and Release of ACh in Immune Cells

Within cholinergic neurons, ACh is synthesized in the cytosol and then transported
by vesicular ACh transporter (VAChT) into synaptic vesicles, where it is stored at about
100 times the cytosolic concentration [84]. The VAChT gene is located within the first intron
of the ChAT-encoding gene and is in the same transcriptional orientation as ChAT [85–87], and
coordinated upregulation of VAChT and ChAT gene expression is observed in cholinergic
neurons [84,88–91]. However, no VAChT mRNA expression has been detected in human
peripheral blood MNLs, including T cells, B cells, and monocytes, even after stimulation
with PHA to promote ChAT mRNA expression [72]. These findings argue against vesicular
storage of ACh in lymphocytes.

Mediatophore is a homo-oligomer of a 16-kDa subunit homologous to proteolipid
subunit c of vacuolar H+-ATPase. Mediatophore has been shown to translocate ACh [92–94]
and to be involved in quantal ACh release at the Torpedo nerve-electroplaque junction [95].
Expression of mediatophore mRNA has been confirmed in CCRF-CEM and MOLT-3 human
leukemic T cells [96]. PHA upregulates both ChAT and mediatophore mRNA expression,
thereby increasing ACh release [96]. Furthermore, anti-mediatophore siRNA downregu-
lates expression of mediatophore mRNA and decreases ACh release, but does not suppress
expression of ChAT mRNA [96]. These findings suggest that T cells express mediatophore,
which then plays an important role in mediating ACh release, and that mediatophore
expression is regulated via TCR-mediated pathways.

4.2. Expression of AChRs in Immune Cells

As early as the 1970s, evidence of expression of mAChRs and nAChRs was detected
in lymphocytes isolated from mouse, rat, and human thymus, lymph node, spleen, and
peripheral blood in studies examining the induction of functional and biochemical effects of
cholinergic ligands [63] (see also reviews [59–61]). Later, the expression of various mAChR
subtypes and nAChR subunits in human and mouse lymphocytes was confirmed using
RT-PCR [75,97] (see also a review [98]) (Table 2A). In C57BL/6J mice, mRNAs encoding
all five mAChR subtypes are expressed in MNLs, dendritic cells, and macrophages [75,97].
In humans, however, the pattern of mRNA expression of each mAChR subtype varies
somewhat among individuals, probably due to differences in their immunological status.

4.2.1. mAChRs

All five M1–M5 mAChR subtypes are expressed to varying degrees in human and
mouse immune cells [75,97,98]. The mAChR agonist oxotremorine (Oxo)-M causes an increase
in [Ca2+]i and subsequent [Ca2+]i oscillations in human leukemic T and B cell lines (CEM
and Daudi cells, respectively), leading to potentiation of c-fos gene expression [99,100]. This
finding suggests ACh released from T and B cells acts on M1, M3, and/or M5 mAChRs
to induce intracellular Ca2+ signaling that triggers nuclear signaling and upregulates
gene expression.

M1/M5 mAChR gene-deficient (M1/M5-KO) mice exhibit lower concentrations of
plasma anti-ovalbumin (OVA)-specific IgG1 antibodies when immunized with OVA than
wild-type (WT) mice [101]. Furthermore, upon stimulation with OVA, spleen cells from
M1/M5-KO mice immunized with OVA secrete smaller amounts of the proinflammatory
cytokines tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6 than
spleen cells from WT mice [101]. These findings suggest that M1 and/or M5 mAChRs are
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involved in regulating pro-inflammatory cytokine production leading to the modulation of
antibody production.

Table 2. Expression of mRNAs encoding mAChRs and nAChRs in human immune cells. (A) Expression
of mRNAs Encoding mAChR Subtypes. (B) Expression of mRNAs Encoding nAChR Subunits.

(A) mAChR

Sample Cell Type M1 M2 M3 M4 M5

1 (F) MNLs + + + + +
2 (F) MNLs − + − + +
3 (F) MNLs + + + + +
4 (F) MNLs + − + + +
5 (M) MNLs + + − + +
6 (M) MNLs + − + + +
7 (M) MNLs − + + + +

(B) nAChR

Sample Cell Type α3 α5 α7 α9 α10

1 (F)
T + + + + +
B + + + − +

2 (F)
T + + − + −
B + + + + +

3 (F)
T + + − − −
B + + + − −

4 (F)
T + + + − −
B + + + + +

5 (F)
T + + + + −
B + − − + +

6 (F)
T − + − + −
B + + + + +

7 (F)
T + + + + +
B − + + + +

8 (F)
T − + + + +
B + + + + +

F, female; M, male. MNLs, mononuclear leukocytes. The mRNA expression for each AChR subunit or subtype
was detected by amplifying cDNA samples for 40 cycles using reverse transcription polymerase chain reaction
with specific order and reverse primers. +, positive expression; −,negative expression. Arranged from the data by
Kawashima et al. [98].

In human lung macrophages expressing M1 and M3 mAChR mRNAs, the non-specific
AChR agonist carbachol promotes release of the proinflammatory mediator leukotriene B4,
and that effect is attenuated by the selective M3 mAChR antagonist 4-DAMP [102]. These
findings suggest that M3 mAChRs on macrophages are involved in regulating immune
function by promoting proinflammatory mediator and cytokine production.

4.2.2. nAChRs

Immune cells express nAChRs composed mainly of α2–α7, α9, α10, β2, and β3
neuronal type subunits [75]. In human T cells and B cells, for example, variable expression
patterns have been observed for mRNAs encoding the α3, α5, α7, α9, and α10 subunits
(see Table 2B [98]). By contrast, in C57BL/6J mice, mRNAs encoding the nAChR α2, α5,
α6, α7, α10, and β2 subunits are expressed in MNLs, dendritic cells, and macrophages,
while expression of mRNAs encoding the α4, α9, and β4 subunits varies [75,97]. These
findings highlight the need for studies carried out under different physiological and/or
pathophysiological conditions, as patterns of mRNA expression and levels of each nAChR
subunit likely vary depending on the immunological status of the subject. Therefore,
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the lack of AChR mRNA expression in some of human immune cell specimens does not
necessarily imply complete absence, but may be deeply suppressed, perhaps due to the
plasticity of AChR mRNA expression resulting from immune response [103].

4.3. Role of α7 nAChRs in Regulation of Immune Function and Inflammatory Responses

As mentioned above, among the various subtypes of nAChRs expressed in immune
cells, the contributions of homopentameric α7 nAChRs to inflammation and immune cell
function are currently major topics of investigation [104]. Among the wide variety of
nAChR subtypes, α7 nAChRs are expressed in most immune cells, including macrophages,
dendritic cells, T cells and B cells [75,97]. In macrophages, for example, α7 nAChRs have
been shown to negatively control synthesis and release of proinflammatory cytokines such
as TNF-α, IL-1β and IL-6 [105]. This suggests cholinergic regulation of immune cell function
may be mediated, at least in part, via α7 nAChR-driven pathways. Moreover, evidence suggests
the potential utility of α7 nAChR agonists as immunomodulatory agents [104,106,107].

4.3.1. Role of α7 nAChRs in the Regulation of Antibody Production

Upon immunization with OVA, α7 nAChR subunit gene-deficient (α7-KO) mice ex-
hibit higher plasma concentrations of antigen-specific IgG1 antibody than WT mice [108].
In addition, splenocytes from α7-KO mice immunized with OVA produce greater amounts
of the pro-inflammatory cytokines TNF-α, IFN-γ, and IL-6 than splenocytes from C57BL/6J
WT mice immunized with OVA (Fujii et al., 2007) [108]. α7 nAChRs and other nAChR
subunits are also reportedly involved in the regulation of B cell development and activa-
tion [109]. These findings suggest that α7 nAChRs are involved in regulating proinflamma-
tory cytokine production, which in turn modulates antibody production.

4.3.2. Role of α7 nAChRs in the Regulation of T Cell Differentiation and Cytokine Production

Using spleen cells containing macrophages and T cells from OVA-specific TCR trans-
genic DO11.10 mice, Mashimo et al. [107] investigated the effects of the selective α7 nAChR
agonist GTS-21 on the differentiation of CD4+ T cells. Upon activation of spleen cells
with OVA, GTS-21 suppressed the differentiation of CD4+ T cells into regulatory T cells
(Tregs) and effector T cells (Th1, Th2 and Th17) and downregulated production of IL-2,
IFN-γ, IL-4, IL-17, and IL-6. By contrast, upon activation of spleen cells in an antigen
processing-independent manner using the antigen epitope OVA peptide323–339 (OVAp),
GTS-21 promoted the differentiation of CD4+ T cells into Tregs and effector T cells and
upregulated production of the aforementioned cytokines. GTS-21 also promoted differ-
entiation of TCR-activated CD4+ T cells into Tregs and effector T cells in WT C57BL/6J
mice, but had no effect on the differentiation of activated CD4+ T cells in α7-KO mice.
α7 nAChRs thus appear to be involved in the promotion of CD4+ T cell differentiation.
Taken together, the findings summarized in this section suggest (1) that α7 nAChRs ex-
pressed in innate and adaptive immune cells play distinct roles in immune regulation;
(2) that α7 nAChRs on antigen presenting cells such as macrophages and dendritic cells
suppress CD4+ T cell (adaptive immune cells) activation by interfering with antigen pre-
sentation through inhibition of antigen processing; and (3) that α7 nAChRs on CD4+ T
cells upregulate their differentiation into Tregs and effector T cells. These divergent roles of
α7 nAChRs on antigen presenting cells and T cells may contribute to the modulation of
immune response intensity.

Stimulation of α7 nAChRs with nicotine suppresses differentiation of naïve CD4+ T cell
activated with anti-CD3/CD28 Abs into Th1 and Th17 cells, but enhances differentiation
into Th2 cells [110,111]. On the other hand, Galitovskiy et al. [112] showed that in oxazolone
colitis, nicotine acts via α7 nAChR-mediated pathways to increase the percentage of colonic
Tregs while reducing Th17 cells, and that nicotine increases numbers of Tregs among CD4+

CD62L+ T cells activated with anti-CD3/CD28 Abs. These findings suggest that α7 nAChR
signaling is involved in regulating immune function through modification of T cell activities
such as differentiation and cytokine production.
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4.3.3. Role of α7 nAChRs in the Promotion of Human CD4+ T Cell Differentiation
into Tregs

Along with CHRNA7, the gene encoding the normal α7 nAChR subunit, a human-
specific partially duplicated gene, CHRFAM7A, which lacks coding for the subunit’s ligand
binding region, is also present on chromosome 15 [113]. Their expression yields two differ-
ent mRNAs for α7 subunits, and their translation produces the normal α7 subunit as well
as a mutated dup7 subunit lacking the ligand-binding site [114]. Consequently, in humans,
α7 nAChRs composed of pentameric α7 and dupα7 subunits in varying proportions can be
formed. α7 nAChRs with a large dupα7 composition may not function well as ion channels,
as dupα7 acts as a dominant negative regulator of ion channel function [115–120]. These
differences in the structure of human and animal α7 nAChRs complicate the generalization
of α7 nAChR pharmacological data from animals to humans.

α7 nAChRs have been shown to have dual functions as canonical ionotropic channels
and non-canonical metabolic signaling receptors in both neuronal and non-neuronal cholin-
ergic cells [121]. In immune cells, α7 nAChRs appear to function as metabotropic rather
than as ionotropic receptors [122–124]. α7 nAChRs with metabotropic function are coupled
to heterotrimeric G proteins such as Gαq. Upon activation by a ligand, metabotropic α7
nAChR function induces release of G proteins, which then bind to the G protein-binding
cluster in the M3-M4 loop of the channel and activate signaling cascades to mobilize Ca2+

from intracellular stores [125,126]. Because dupα7 retains the M3-M4 loop, once at least
one intact α7 subunit contained in the α7 nAChR is activated by a ligand, dupα7 should,
theoretically, contribute to the metabotropic receptor function. However, the functional
effects of dupα7 subunits contained within metabotropic α7 nAChRs on immune cells are
not yet known.

As described above, animal studies have shown that α7 nAChRs expressed in CD4+

T cells are involved in promoting differentiation into Tregs [106,107,112,127,128]. How-
ever, the finding that human peripheral blood leukocytes express more CHRFAM7A than
CHRNA7 [120,129,130] indicates the necessity for translational studies using human speci-
mens to confirm the efficacy of compounds found to be effective in animal studies.

To address that issue, Mashimo et al. [131] investigated the mRNA expression of
both the α7 and dupα7 subunits in human CD4+ T cells and the effect of the α7 nAChR
agonist GTS-21 on Treg differentiation. Varying levels of α7 and dupα7 subunit mRNA
were detected in human CD4+ T cells obtained from 15 subjects of different ethnic origins
(Figure 3A), and no clear trends in the mRNA expression of the α7 and dupα7 subunits were
observed across gender, age, or ethnicity. The cause of the large interindividual variation in
α7 and dupα7 subunit expression is not yet clear, but genetic disposition, immunological
regulation, or both may be responsible. Moreover, the greater interindividual variation
in expression of the α7 than dupα7 subunit suggests that α7 nAChRs in CD4+ T cells are
more susceptible to immune stimulation in daily life.

TCR-activation in T cells promotes ChAT mRNA expression, resulting in increased
ACh synthesis and release [72]. Mashimo et al. [131] observed that following TCR activation
in T cells, CHRNA7 expression was profoundly suppressed on days 4 and 7 as compared
to day 1 (Figure 3B). This suggests that CHRNA7 expression may be suppressed by a
negative feedback mechanism activated by the continuous α7 nAChR activation elicited
by ACh released from T cells. By contrast, CHRFAM7A expression was unaffected by the
negative feedback, and remained nearly constant. The different expression patterns of
CHRNA7 and CHRFAM7A can be explained by the finding that CHRNA7 and CHRFAM7A
are independently regulated by their respective promoters [120,129,132].

mRNA expression of the α7 and dupα7 nAChR subunits in TCR-activated T cells
was not further affected by GTS-21 (Figure 3B(2)). However, GTS-21 did promote Treg
development to varying degrees in samples from all individuals on days 5 (Figure 3C).
These results suggest the potential ex vivo utility of GTS-21 for rapid preparation of large
numbers of Tregs for adaptive immunotherapy, even with high expression of the dupα7
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subunit. Moreover, the ex vivo utilization of GTS-21 should help reduce the time and
associated costs of preparing sufficient numbers of Tregs.
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significance was assessed with two-way ANOVA and post hoc Tukey tests. (C). Effects of GTS-21 on 
Treg development. GTS-21 enhanced Treg development from TCR-activated human CD4+ T cells on 
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Figure 3. (A). Expression of α7 and dupα7 subunit mRNAs in resting human CD4+ T cells. Expres-
sion levels of CHRNA7 and CHRFAM7A (α7 and dupα7 subunit mRNA, respectively) were first
normalized to GAPDH mRNA in each individual. Then, to compare the magnitude of interindividual
variability in CHRNA7 and CHRFAM7A expression, levels of CHRNA7 and CHRFAM7A mRNA were
divided by the values closest to their respective medians and plotted on a logarithmic scale. The
interindividual variability of CHRNA7 expression was statistically greater than that of CHRFAM7A
expression (F(14, 14) = 2.18 × 10−5). (B). Fluctuations in the mRNA expression of the α7 and dupα7
subunits during TCR activation. Human CD4+ T cells were cultured for up to 7 days in the standard
culture medium in the presence or absence of human T-activator CD3/CD28 Dynabeads with or
without 30 µM GTS-21. Levels of CHRNA7 and CHRFAM7A expression in cells from each individual
was first normalized to GAPDH expression. Then, to detect fluctuations over time induced by TCR
activation, CHRNA7 (1) and CHRFAM7A (2) mRNA levels were further divided by their respective
levels in controls observed on day 1. Bars are the mean ± S.E.M. (n = 6). Statistical significance was
assessed with two-way ANOVA and post hoc Tukey tests. (C). Effects of GTS-21 on Treg development.
GTS-21 enhanced Treg development from TCR-activated human CD4+ T cells on day 5 of culture.
Gates were used to calculate the percentages of Tregs (CD4+CD25+FoxP3+ cells). For comparison,
a line connects the percentage of Tregs observed in the absence and presence of 30 µM GTS-21
among cells from the same individuals. Bars are means ± S.E.M. (n = 10). Statistical significance was
assessed using paired t-tests (** p < 0.01). Arranged from data presented in a reference (Mashimo
et al., 2023) [131].
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4.4. Cholinergic Anti-Inflammatory Reflex

Efferent vagus nerve stimulation saves rats from lethal septic shock induced by in-
traperitoneal administration of the bacterial endotoxin lipopolysaccharide, inhibits hepatic
synthesis of the proinflammatory cytokine TNF-α and suppresses increases in serum TNF-α
concentrations [133]. In addition, Wang et al. [105] found that activation of α7 nAChRs in
LPS-stimulated macrophages inhibits TNF-α synthesis, suggesting the involvement of ACh
in an efferent anti-inflammatory reflex circuit. It was initially proposed that, within this
reflex circuit, postganglionic efferent cholinergic nerves stimulated by preganglionic vagal
efferent directly innervated macrophages, and ACh released from the nerve terminals acted
on α7 nAChRs on macrophages, thereby suppressing TNF-α synthesis [134]. However, the
splenic nerve, which innervates the spleen, is catecholaminergic [135], and no cholinergic
innervation of the spleen has ever been detected [8]. As originally conceived, therefore, this
neural circuit lacks a source of ACh to act on α7 nAChRs in macrophages in the spleen. The
missing link was subsequently identified as a subset of ACh-producing splenic T cells that
release ACh upon vagus nerve stimulation, leading to suppression of TNF-α production
in macrophages [136]. This seems reasonable, as catecholamines have been shown to act
on β adrenoceptors on T cells to increase ACh synthesis and release by promoting ChAT
gene expression via cAMP/PKA pathways [79,80] (see Section 4.1.3). These findings and
the accumulated evidence indicate that stimulation of α7 nAChRs by ACh derived from
T cells induces activation of the JAK2/STAT3 signaling cascade in macrophages and in-
hibits NF-κB-mediated activation of TNF-α transcription, resulting in inhibition of TNF-α
synthesis [137,138].

However, because norepinephrine (NE) is far more stable than ACh in the circu-
lation, we cannot exclude the possibility that NE released from activated sympathetic
nerve terminals not only acts on β2 adrenoceptors in T cells to promote ACh release, but
also attenuates TNF-α synthesis in macrophages [135,139]. Determination of the precise
mechanism underlying the anti-inflammatory reflex will require further investigation.

5. Conclusions

Studies of non-neuronal cholinergic systems recall the fact that the first discovery of
ACh in an animal’s body was in the spleen, which lacks cholinergic innervation. There
is now evidence not only that ACh is expressed in all life forms on earth, but also that
non-neuronal cholinergic systems play key roles in widely varied aspects of the physiology
and pathophysiology of animals, including humans. α7 nAChR expressed in macrophages
and T cells is involved in the regulation of immune function and inflammatory responses,
making it a potential therapeutic target.
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