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Abstract: Emerging evidence suggests that an important function of the sleeping brain is the removal
of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste
removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS.
A decrease in MLV function is associated with Alzheimer’s and Parkinson’s diseases, intracranial
hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is
now being actively discussed in the scientific community: night stimulation of the BWRS might be
an innovative and promising strategy for neurorehabilitation medicine. This review highlights new
trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology
for the effective removal of wastes and unnecessary compounds from the brain in order to increase
the neuroprotection of the CNS as well as to prevent or delay various brain diseases.

Keywords: brain diseases; meningeal lymphatic vessels; photobiomodulation

1. Therapeutic Properties of Activation of Brain Waste Removal System (BWRS)
during Deep Sleep

What do we sleep for? A widespread belief is that sleep is a crucial function of the brain
that is necessary for our recharging, leaving our energy refreshed when we wake up. Good
sleep also helps to maintain our health and protects against the development of various
diseases, including brain pathologies [1]. When we do not get enough sleep, our brain
and body cannot function properly. Long-term sleep deficit can lead to the formation of
dementia. Indeed, the results of a recent study on a large group of 8000 volunteers observed
from their middle age till their 70th year of age for 25 years revealed a higher incidence of
dementia in people aged 50–60 years who chronically did not get enough sleep (6 h and
less a night) [2]. It is interesting to note that even one night of sleep deprivation causes
an increase in the level of beta-amyloid (Aβ) protein in the brain of young and healthy
volunteers [3,4]. There is a growing body of evidence suggesting that sleep disturbance is
an independent risk factor of cognitive impairment, and the measurement of sleep quality
can be an innovative method to screen for Alzheimer’s disease (AD) [5–14]. It is well known
that people with AD experience poor and short sleep, which is associated with increased
Aβ deposition in their brains [8,11]. Experimental and clinical studies have shown that the
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Aβ content in cerebral spinal fluid (CSF) is the highest in the evening before sleep and the
lowest in the morning after sleep [3,15]. There is the hypothesis that sleep is accompanied
by Aβ clearance from the brain [3,15]. It was recently discovered that sleep deficit causes
the opening of the blood–brain barrier (BBB) to inflammatory mediators and immune
cells in both humans and rodents [16–20]. Sleep is considered an important biomarker
and a promising therapeutic target for cerebral small-vessel diseases, including AD and
brain pathologies associated with BBB disruption [16]. Chronic sleep restriction promotes
astrocytic phagocytosis of synaptic elements and microglia activation, i.e., the brain begins
to “eat” itself [21]. Obviously, sleep is essential for the health of the central nervous
system (CNS). However, the mechanisms underlying the phenomenon of restorative sleep
remain unknown.

Aristotle came up with the brilliant idea that sleep triggers brain cleansing [22]. After
2000 years, his idea was confirmed by several studies suggesting that sleep activates unique
brain processes for the removal of metabolites and wastes [15,23–28] (Figure 1). However,
not all sleep is crucial to CNS health. There are two types of sleep: non-rapid eye movement
(NREM) or deep sleep and rapid eye movement (REM) sleep, when we dream. Current
studies demonstrate that only NREM sleep is optimal for functions of the BWRS [29,30].
BWRS activity is significantly increased during NREM sleep and is dramatically suppressed
during wakefulness [15]. Animal data clearly demonstrate a 95% reduction in Aβ removal
from the brain during wakefulness and the activation of this process during NREM sleep
due to a 60% increase in interstitial fluid (ISF) space [15]. Later, it was confirmed that sleep
induces the enhancement of BWRS activity arising from the expansion of ISF space [31].
Body posture during sleep is also important for the optimization of BWRS function [32].
Lee et al. reported that the horizontal position of the body during sleep contributes the
most to optimal waste removal, including Aβ clearance from the brain [32].

The BWRS is the most efficient during slow-wave activity (SWA; 0–4 Hz), which is
a major rhythm and a marker of NREM [29,30]. The physiological significance of SWA
remains a mystery, but there is growing evidence that SWA plays an essential role in the
control of sleep quality and the optimization of BWRS function [5,15,30,33–37]. SWA is
strongly controlled, and sleep loss immediately causes a compensatory increase in SWA
time during subsequent nocturnal sleep [33]. Interestingly, it is possible to suppress REM
sleep in mice [38]. However, among the hundreds of mutant mouse models, no mice have
yet been discovered that exhibit NREM sleep loss [39]. SWA is considered brain activity
supporting the sleep regulation of the BWRS [23]. Results of contrast-enhanced magnetic
resonance imaging (MRI) reveal that the circadian rhythm is an important driving force for
the movement of wastes in ISF space and their clearance from the brain [40,41]. The deletion
of aquaporin channels (AQP4) eliminates the effects of the circadian rhythm on brain fluid
transport and the clearance of proteins from the brain [41]. Since AQP4 in astrocytic
endfeet is controlled by the circadian rhythm, AQP4 optimizes brain fluid movement and
waste clearance [29,41,42]. There is evidence that astrocytes control circadian timekeeping
via glutamate signaling [43]. Thus, astrocytes and AQP4 present a checkpoint for BWRS
function during NREM sleep [29,44]. These pioneering findings were obtained in rodents,
whose circadian rhythm differs significantly from that of humans [45]. Presently, the exact
contribution of the circadian rhythm to the optimization of processes of waste clearance
from the human brain remains unknown [41]. Therefore, further studies are necessary to
confirm the circadian control of the BWRS in humans. In addition, SWA is the result of
metabolic and neurochemical changes in the sleeping brain that provide the predominance
of specific neural network oscillations associated with changes in different physiological
parameters, such as blood pressure, heart rate and respiratory changes, which can also
regulate the BWRS [46–49].
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Another factor that concerns SWA is temperature. During NREM sleep, the mouse 
brain neocortex temperature decreases by ~2 °C [50,51]. During this time, the hypothala-
mus stimulates the cooling of the brain, which induces NREM sleep [52]. There is the hy-
pothesis that the cooling of the brain is a key function of sleep to preserve energy that 

Figure 1. BWRS activation during sleep. During wakefulness, the BWRS is inactive; therefore,
wastes and toxins accumulate in the brain. During deep sleep, the BWRS is activated, which is
accompanied by an increase in the drainage of brain tissues and the intense elimination of wastes and
toxins. Figuratively speaking, the brain, during deep sleep, turns into a washing machine, removing
unnecessary compounds from its tissues.

Another factor that concerns SWA is temperature. During NREM sleep, the mouse
brain neocortex temperature decreases by ~2 ◦C [50,51]. During this time, the hypothalamus
stimulates the cooling of the brain, which induces NREM sleep [52]. There is the hypothesis
that the cooling of the brain is a key function of sleep to preserve energy that might be linked
to synaptic remodeling associated with SWA [53]. Cooling during NREM sleep stimulates
the expression of the cold-inducible RNA-binding protein and RNA-binding motif protein
3 genes that are required for structural remodeling (they are also induced in some hiberna-



Int. J. Mol. Sci. 2023, 24, 3221 4 of 17

tors) [53]. The “cooling and cleaning” of the brain is a physiological phenomenon and an
informative platform for therapy in degenerative and neuro-inflammatory diseases [1,54].

Taken together, considerable evidence suggests a functional relationship between
sleep and the BWRS. The BWRS is considered a brain function related to waste and fluid
transport with astrocyte-regulated mechanisms, while BWRS dysfunction is associated with
different brain diseases, especially with cognitive decline [9,15,29,37,55–63]. Indeed, SWA
is a new therapeutic target for AD [9,37]. Patients and animals with AD demonstrate SWA
disturbances [11,37,64–66]. In humans, Aβ accumulation in the brain is correlated with
both decreased SWA time and impaired memory consolidation [67,68]. SWA disruption
is also reported in patients with mild cognitive impairment [69]. It is assumed that sleep
impairment in cognitively normal old people could predict Aβ and tau accumulation in the
brain [70]. Why SWA reflects AD pathology remains unknown. Decreased BWRS function
after insufficient sleep may be related to an increase in the interstitial noradrenaline (NE)
level [15], leading to a reduction in astrocytic volume [71] and the vasoconstriction of
the pial arteries [72]. Aβ-mediated abnormalities in excitatory and inhibitory neurotrans-
mission can be responsible for reducing SWA time [73]. Indeed, Aβ accumulation in the
brain is accompanied by hyperactivity of the cortical neurons [73–75], and blocking neuron
depolarization using gamma-aminobutyric acid A significantly improves NREM-SWA time
in mice with AD [73]. Thus, Aβ-mediated synaptic abnormalities associated with neural
hyperactivity can be another possible mechanism underlying SWA deficit in AD [73–78]. A
better understanding of the astrocyte-mediated mechanisms of regulation of SWA time can
open a new niche for novel pharmacological therapy in AD.

Thus, the BWRS is an important function of the sleeping brain that can be disturbed in
animals and patients with different brain diseases, especially AD. Further studies of the
mechanisms of sleep activation of the BWRS and injuries of these processes could offer a
new understanding of the role of sleep in the etiology of neurological pathologies. These
innovative findings could also contribute to the development of new technologies for the
modulation of the therapeutic properties of the BWRS during deep sleep.

In general, significant progress in understanding the restorative mechanisms of sleep
occurred in 2013, when the first study on the activation of the BWRS during deep sleep
in mice was published [15]. The use of new optical technology, multiphoton microscopy,
made it possible to study the movement of brain fluids in living mice with simultaneous
EEG recording.

Later, using multiphoton microscopy, the glymphatic system was discovered, which
is believed to have the function of removing metabolites and toxins and to be activated
during sleep [79,80]. However, due to intensive research in this area, it has become clear
that the perivascular spaces are more preferable routes for the removal of unnecessary
compounds, including Aβ, from the brain than the glymphatic pathway [81]. In recent
human studies, it was confirmed that deep sleep is accompanied by an increase in CSF
generation and the activation of the BWRS [23]. These pioneering results are an important
informative platform for the development of fundamentally new technologies for studying
and controlling the restorative mechanisms of sleep [9,28,82,83]. Pilot studies on rats show
that sleep and opened BBB are equally accompanied by BWRS activation, which has an
identical effect on the EEG dynamics and makes it possible to identify EEG markers of
increased BBB permeability [84]. Non-invasive technology for assessing the BBB using only
EEG is important for monitoring BBB permeability during surgery in order to control the
depth of anesthesia and for the analysis of the progression of a number of brain diseases,
such as AD and Parkinson’s disease, brain trauma, diabetic and COVID-19 cerebrovascular
injuries, and depression [16,85–98].

2. Photobiomodulation of BWRS: Innovative Strategies for Night Therapy of
Brain Diseases

The meningeal lymphatic vessels (MLVs) are regarded as an important part of the
BWRS [99–105]. BWRS dysfunction due to MLV abnormalities contributes to the development
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of neurodegenerative diseases, brain tumors and cerebrovascular accidents [61–63,102–110].
Emerging evidence indicates that MLVs have attracted a lot of therapeutic interest. However,
currently, there are no clinically approved non-pharmacological technologies for the modula-
tion of MLV function. Recent studies suggest that transcranial photobiomodulation (tPBM) of
MLVs might be an innovative technology to target the BWRS [9,28,82,83,111–115].

Recent reviews highlight the actual applications of tPBM to the therapy of sleep
disorders [9,116] and brain diseases associated with sleep injuries, including AD [117–120],
psychological problems [121], brain trauma [122] and other neurological diseases [123,124].
tPBM, known as low-level light therapy, is a technique of non-invasive treatment with
red and near-infrared light irradiation in a photo-therapeutic window (between 600 and
1300 nm) [125,126]. However, light at short wavelengths has very limited penetration into
the brain due to light scattering, while light at long wavelengths has heating effects due to
tissue absorption [126]. Light at wavelengths within range of 600–1300 nm has maximum
penetration depth into the brain because of its minimal absorption and scattering within
biological tissues; thus, it has significant PBM capability [125–128]. The light wavelength of
1300 nm has less scattering and can penetrate deeper into the brain [128]. Recent studies on
mice show that tPBM (1267 nm) stimulates Aβ removal from the brain, which contributes to
the improvement of their neurological status [28,129]. Li et al. demonstrated the therapeutic
effects of tPBM (1267 nm) in mice in a model of intraventricular hemorrhages (IVHs) [130].
The course of tPBM accelerated red blood cell evacuation from the ventricles, which
improved the neurological outcome and reduced mortality in mice [130]. tPBM (1267 nm)
could also be a promising technology for the modulation of the lymphatic delivery of drugs
and nanocarriers to the brain pathology bypassing the BBB [115]. These pilot findings
suggest that tPBM at the light wavelength of 1267 nm could be a novel, non-invasive,
readily applicable and commercially viable technology for the routine treatment of various
brain diseases.

tPBM of the brain has been studied extensively for prolonged periods and numerous
devices are available on the market [123]. Figure 2a illustrates a typical tPBM procedure, which
includes irradiation of the patient’s head with an expanded 1064 nm laser beam [131]. Laser
light radiation is applied with a handheld laser head, controlled by a physician [131–133],
because of the potential hazard of invisible collimated laser beams and the requirement to use
appropriate eye and skin protection. Light sources based on light-emitting diodes (LEDs) pro-
vide more flexible applications of tPBM, as they are safer for patients and cheaper than a laser
of equivalent power density. To ensure uniform light energy distribution over a skin surface,
LEDs are assembled into clusters of various sizes and constructions, rigid blocks [118,134] or
flexible panels [135]. LED clusters can be fixed on a patient’s head with a headband [136],
mounted inside a rigid helmet [134], or assembled in a helmet-like structure [137] or in a hat
made of flexible LED panels [135] (Figure 2a–d).

To prevent the heating effect on the head, tPBM devices assembled with a large
number of LEDs are used with a cooling system mounted over each LED cluster [134,137]
(Figure 2b). Other therapeutic applications of PBM include the modification of ambient
light with blue light emitted with an eyeglass-shaped gadget to correct delayed wake phase
disorder [138] (Figure 2e).

Typically, the tPBM procedure is performed on awake patients. However, BWRS activity
is much stronger during sleep than in the awake state, as we discuss above [15,28–32]. Based
on the fact that the BWRS is activated during deep (NREM) sleep, we hypothesize that tPBM
during night sleep might be more effective for the therapy of brain diseases than tPBM
during the day. In our recent review, we discuss that sleep can be a promising therapeutic
target for cerebral small-vessel disease [9]. In our pioneering study, we discovered that tPBM
performed during sleep stimulates Aβ clearance from the mouse brain more effectively than
tPBM applied during wakefulness [28]. The course of night tPBM promotes good recovery
of neurological status and recognition memory in mice with AD compared with the daily
course of tPBM [28]. Several reviews report that the mechanisms of therapeutic effects of
tPBM during sleep could be completely different from those during the awake state [83,139].
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However, the application of tPBM during sleep as a new strategy for the night therapy of
brain diseases is in its infancy. Although the demand for tPBM during sleep has been clearly
formulated, its practical realization has not yet been reported [83,139].
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Figure 2. Devices for tPBM: (a) typical tPBM procedure includes irradiation of patient’ head with
expanded 1064 nm laser beam [131], which has maximum penetration depth into the brain [125–128];
(b) helmet for tPBM with system of forced cooling [134]; (c) helmet with rigid structure assembled of
1070 nm LED clusters [137]; (d) hat made of flexible LED panels [135]; (e) smart sleep glasses [138].

Currently, there are no technologies for simultaneous tPBM and sleep monitoring. Recent
surveys of consumer sleep technologies demonstrate some demand for optional physical
interventions during the sleep process aimed to improve the quality of sleep [140], although the
requirement of strong scientific evidence to legitimize claims about utility, safety, and efficacy,
as well as for informed choice and public trust, are emphasized [141,142]. Sleep technologies
are presented on the market as various sleep-tracking devices [143,144] (Figure 3a–d).
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Figure 3. Sleep-tracking gadgets: (a) BrainBit headband [143]; (b) Philips Smart Sleep Deep Sleep
Headband [142]; (c) Oura ring smart sleep tracker [144]; (d) sleep tracker 2 mm thick belt to be placed
under the sheet on a bed [144].

Commercial sleep-tracking technologies include radars; near-infrared and thermal
imaging devices; bedding-based sleep sensors; and wearable body sensors designed to
be fixed on wrist, finger, feet, waist, chest or head [143,145]. Headbands are also capable
of performing electroencephalography (EEG) recording and analysis that sufficiently im-
prove sleep detection [142,144]. All sleep-tracking technologies use wireless interfaces to
communicate with mobile devices utilizing applications for sleep monitoring.

3. Mechanisms of tPBM of BWRS

There are a number of studies on the mechanisms underlying tPBM of the
BWRS [9,28,111–115,129]. It is reported that PBM causes the dilation of both MLVs and
mesenteric lymphatics [114,130]. The PBM-mediated dilation of lymphatic vessels (LVs) is
associated with an increase in the permeability of the lymphatic endothelium and a decrease
in the expression of tight junction (TJ) proteins [114]. TJ proteins are the main components
of the lymphatic endothelium and play a crucial role in the regulation of lymph movement
in the lymphatic network [146]. Changes in the permeability of the lymphatic endothelium
allow wastes and immune cells to be transported with lymph in LVs [147,148]. Indeed, the
transport of antigens, and immune and dendritic cells across LVs is coupled with water flux
and depends on the permeability of LVs [149,150]. These effects of PBM might be related to
the PBM-induced production of nitric oxide (NO) in the lymphatic endothelium [82,130,151].
NO dilates blood and lymphatic vessels via the activation of soluble guanylate cyclase and
protein kinase G, which stimulates the opening of calcium (Ca2+)-activated potassium chan-
nels [152]. The reduction in the Ca2+intracellular level blocks the phosphorylation of myosin
light-chain kinase, leading to vascular relaxation [152]. There are several studies suggesting
that PBM-mediated vascular relaxation is the result of a PBM-induced increase in the activ-
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ity of endothelial NO synthase (eNOS) [82,153–155]. eNOS-induced NO production in the
lymphatic endothelium leads to an increase in lymphatic flow and the removal of wastes and
toxins from different tissues [156].

Recently, it has been shown that PBM increases lymphatic contractility and that PBM
stimulates NO synthesis in isolated cells of the lymphatic endothelium [115,130]. Lymphatic
contractility is important for the movement of cells and molecules in LVs and is regulated
by NO [157]. These facts suggest that the PBM-induced lymphatic contractility could be the
possible mechanism responsible for the PBM-mediated increase in the clearance of wastes
and metabolites from the brain [112,115,130].

Another mechanism of PBM-mediated control of vascular tone is the ability of singlet
oxygen to regulate endothelial relaxation [158]. PBM at the light wavelength of 1267 nm
stimulates the direct generation of singlet oxygen in tissues [159–162]. Singlet oxygen
induces the oxidation of the amino acid tryptophan in mammalian tissues, which leads
to cell production of metabolites such as N-formylkynurenine with the activation of a
heme-containing enzyme called indoleamine 2, 3-dioxygenase 1 [158]. This enzyme is
widely expressed in the blood and lymphatic endothelium, contributing to the relaxation
of vascular tone [158,163,164]. It was recently discovered that endothelial indoleamine 2, 3-
dioxygenase 1 causes the dilation of blood vessels via the formation of singlet oxygen [158].
These pioneering findings shed light on the role of singlet oxygen in the regulation of
vascular tone, opening a new perspective on the modulation of the systemic inflammatory
response of the vasculature.

The PBM-mediated increase in NO production inhibits the activity of the mitochondrial
cytochrome c oxidase (CCO) enzyme, leading to an increase in mitochondrial membrane
potential [165–167]. These PBM effects contribute to an increase in the metabolic and ener-
getic activity of cells via more oxygen consumption, more glucose metabolization and more
ATP production by the mitochondria [165–168]. Recently, a mechanism of PBM-mediated
stimulation of Aβ clearance from the brain via the CCO-mediated activation of the cAMP-
dependent protein kinase signaling pathway was discovered [169]. The neuroprotective
effects of PBM (1068 nm) due to a decrease in the Aβ level in the brain through microglia
activation and angiogenesis were also demonstrated in mice with AD [170]. PBM decreases
Aβ deposition in the brain by recruiting microglia to the Aβ burden [170]. PBM can reduce
Aβ accumulation in the brain by increasing angiogenesis [171]. Indeed, the PBM (1070 nm)-
induced increase in cerebral vessel density is positively correlated with the clearance of
toxins from the brain [171]. PBM (630 nm) also improves brain drainage by contributing to
Aβ removal in the APP/PS1 mouse model of AD [172].

4. Conclusions

In modern neurobiology, sleep is considered a novel biomarker and a promising
therapeutic target for brain diseases. This is due to the recent discovery of the nighttime
activation of the BRWS, which plays an important role in the removal of wastes and toxins
from the brain, contributing to the neuroprotection of the CNS. The hypothesis has arisen
in the scientific community that night stimulation of the BWRS might be a breakthrough
strategy as a new treatment of AD, Parkinson’s disease, stroke, brain trauma and oncology.
Although this research is in its infancy, there are pioneering and promising results suggest-
ing that night tPBM stimulates the lymphatic removal of Aβ from the mouse brain more
effectively than daily tPBM and is associated with a greater improvement of the neurologi-
cal status and recognition memory in animals. There is the hypothesis that tPBM modulates
the tone and permeability of the lymphatic endothelium by stimulating NO formation,
promoting the lymphatic clearance of wastes and toxins from brain tissues (Figure 4). It
is assumed that tPBM can also lead to angio- and lymphangiogenesis, which might be
another mechanism responsible for tPBM-mediated stimulation of the BWRS. Typically,
tPBM is used in the awake state. Therefore, there are numerous tPBM devices constructed
to apply a certain dose of light irradiation without technologies for sleep monitoring. To
create a technology for simultaneous tPBM and sleep monitoring, only a wirelessly con-
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trolled gadget with LED or laser sources is needed to perform tPBM during sleep. The
gadget can be controlled directly using a sleep-tracking device or mobile application that
integrates data from various sources, including ambient conditions, e.g., room temperature,
atmospheric pressure etc. Thus, there is a crucial challenge to design autonomous LED or
laser light sources that are capable of providing the required therapeutic dose of light radi-
ation in a certain region of the patient’s head without disturbing the sleeping patient, e.g.,
sleep-tracking headbands [142,144]. To minimize patient discomfort, advanced materials
such as flexible organic LEDs can be used [173,174].
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Figure 4. Emerging strategy of tPBM of the BRWS during deep sleep (NREM-SWA activity with
delta rhythm): (a) Since the BRWS is activated during deep sleep, tPBM-mediated stimulation of
the clearance of wastes and toxins from the brain could be more effective if tPBM were used during
the NREM-SWA activity of the sleeping brain than during wakefulness [28]; (b–d) There is the
hypothesis that tPBM modulates the tone and permeability of the lymphatic endothelium via the
stimulation of eNOS and NO production, promoting the lymphatic clearance of wastes and toxins
from brain tissues [96,137–140].
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Since the idea of tPDT of the BWRS during sleep is in its infancy, here, we only discuss
animal studies, because there are no human data in this area yet. There is evidence of
a possible pharmacological stimulation of lymphaneogenesis for the treatment of brain
tumors and for increasing brain immunity, as well as for the lymphatic excretion of Aβ

from brain tissues [175,176]. However, bringing new pharmaceuticals to the market takes
10 to 15 years. The proposed new pharmacological strategies for the stimulation of the
BWRS have been tested on a small group of animals. It could take a long time for addi-
tional preclinical and clinical trials. In addition, pharmacological studies are not always
successful, as in the case of the development of aducanumab, a novel anti-Aβ antibody for
the treatment of AD. Two phase 3 clinical trials including 3285 participants demonstrated
that aducanumab causes vasogenic edema in 35% of patients associated with different
symptoms, such as headache, confusion, dizziness and nausea, and that microhemorrhages
occur in 19% of AD patients [176]. Therefore, the Food and Drug Administration (FDA)
required Biogen, the pharmacological company, to conduct an additional clinical trial to
verify aducanumab’s clinical benefits. If the trial fails to verify clinical benefits, the FDA
may initiate proceedings to withdraw the approval of aducanumab.

The purpose of our review is to highlight non-pharmacological strategies for the
stimulation of the BWRS that have a high potential to be introduced into routine clinical
practice, as well as those that can become smart sleep gadgets used at home and while
traveling without reducing the high pace of life of modern people. In this aspect, photonic
technologies are the most promising, since they are already widely used in the clinical field
for the treatment of various brain diseases [117–124]. tPBM of the BWRS is the only non-
pharmacological technology proposed to activate the lymphatic excretion of metabolites
and toxins from brain tissues [9,28,82,83,111–115,129]. Further studies of optimal doses and
wavelengths of tPDT, and advantages and limitations of tPBM of the BWRS in patients of
different ages and with various brain diseases could significantly help in the development
of guidelines for its safe use in humans. The auditory effects can affect SWA time [177],
which may also influence the BWRS, and could be an interesting subject of future research.
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