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Abstract: Chlorogenic acid (CGA) is a bioactive substance with anti-inflammatory activities. Clus-
ters of CD36 have been suggested to be widely involved in inflammatory damage. However, the
mechanism of CGA protecting against LPS-induced inflammation involving the CD36 regulation is
unclear. Here, we demonstrated that CGA protected against LPS-induced cell death and decreased
the production of ROS. Moreover, the SOD, CAT, and GSH-Px activities were also upregulated in
CGA-treated cells during LPS stimulation. CGA reduced COX-2 and iNOS expression and IL-1β, IL-6,
and TNF-α secretion in LPS-stimulated RAW264.7 macrophages. In addition, CGA treatment widely
involved in immune-related signaling pathways, including NF-κB signaling, NOD-like receptor
signaling, and IL-17 signaling using transcriptomic analysis and CD36 also markedly reduced during
CGA pretreatment in LPS-induced RAW264.7 cells. Furthermore, the CD36 inhibitor SSO attenuated
inflammation and oxidative stress by enabling activation of the AMPK/PGC-1α cascade. These
results indicate that CGA might provide benefits for the regulation of inflammatory diseases by
modulating CD36/AMPK/PGC-1α to alleviate oxidative stress.

Keywords: chlorogenic acid; oxidative stress; inflammation; CD36/AMPK/PGC-1α

1. Introduction

Chlorogenic acid (CGA) is a bioactive substance that widely exists in natural food [1].
CGA has been shown to have pharmacological effects due to its immune-regulating, an-
tioxidant, anti-inflammatory, anti-carcinogenic, and anti-bacterial activities [2]. Studies
suggest that CGA is especially effective for the prevention of diseases resulting from
inflammation [3]. The mechanism underlying these effects is unclear.

Inflammation is a crucial physiological and immune response of tissues and cells
against pathogenic challenges [4]. The movement and gathering of neutrophils during
inflammation is significant because proinflammatory cytokines released by macrophages
cause endothelial cells to express adhesion proteins and promote leukocyte motility [5].
Macrophages are the main pro-inflammatory cells that can protect the body from external
intruders by synthesizing inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-α), interleukin (IL)-6 and IL-1β [6–8]. Improper activation or abnormal upregulation
of the cyclooxygenase-2 (COX-2) is often seen in inflammatory diseases [9].

Reactive oxygen species (ROS) function as signaling molecules in host defense re-
sponses. Oxidative stress can result from an excessive buildup of ROS in inflammatory
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processes [10,11]. Expression of inducible nitric oxide synthase (iNOS) promotes ROS gen-
eration and is often positively correlated with proinflammatory cytokine expression [12,13].
Antioxidants decrease ROS by scavenging ROS to activate the endogenous enzymatic an-
tioxidant system in cells and organ systems [14–16]. For instance, the antioxidant enzymes
superoxide dismutase (SOD) and catalase (CAT) scavenge ROS to regulate intracellular ROS
levels and protect cells from oxidative damage [17]. Kuo et al. showed that oxidative stress
leads to the overproduction of ROS and decreased expression of antioxidative enzymes
that protect tissues in vivo [15].

Cluster of differentiation 36 (CD36) is a scavenger receptor that is densely expressed
on the surface of macrophages and has well-known roles in immunity, metabolism, and
atherogenesis [18]. There is increasing evidence that CD36 participates in the inflammatory
response and mitochondrial fatty acid oxidation, which contributes to the regulation of
chronic metabolic diseases [19,20]. In this process, CD36 mediates inactivation of AMP-
activated protein kinase (AMPK) signaling to regulate oxidative metabolism [21]. Key to
cellular metabolism’s energy sensing, AMPK also plays a role in inflammation, oxidative
stress, neurodegeneration, and other types of metabolic stress [22]. In a mouse model
induced by LPS, emerging data suggests that AMPK performs protective roles as a negative
regulator of inflammatory reactions [23].

In this study, we aimed to investigate the anti-inflammatory action of CGA and its un-
derlying molecular mechanism in LPS-induced RAW264.7 macrophages. We hypothesized
that CGA would attenuate LPS-induced inflammation and oxidative stress by modulating
the CD36/AMPK/PGC-1α. Our results demonstrate that CGA negatively regulates CD36,
resulting in activation of an AMPK-dependent anti-inflammatory pathway. This suggests
that CGA has the potential to ameliorate inflammatory effects via the CD36/AMPK/PGC-
1α in inflammation-related diseases.

2. Results
2.1. CGA Alleviated the Cell Viability Induced by LPS

The structure of chlorogenic acid is presented in Figure 1A. The toxicity of CGA in
RAW264.7 macrophages was evaluated by CCK-8 assays (Figure 1B). The difference in
viability between LPS-induced and mocked RAW264.7 cells showed significance in that the
proliferation of cells was markedly reduced under LPS induction. CGA treatment enhanced
the proliferation of cells in the groups treated with LPS, especially at a concentration of
80 µM (Figure 1B). These results suggested that CGA mitigated LPS-induced cell death.
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Figure 1. Effect of chlorogenic acid (CGA) on cell proliferation. (A) The chemical structure of CGA.
(B) CCK-8 assays of cell proliferation. Results are shown as the mean ± SD (n = 6). Different letters
indicate significant differences between groups (p < 0.05).
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2.2. CGA Reduced LPS-Induced Oxidative Stress

To explore the effects of CGA on the anti-oxidative stress response, ROS, SOD, CAT,
and GSH-Px levels were determined. The concentrations of 20–150 µM CGA could sig-
nificantly inhibit the generation of ROS in LPS-induced cells (Figure 2A). LPS induced a
significant decrease in SOD, CAT, and GSH-Px activities, while CGA treatment significantly
mitigated cell injury induced by LPS, which showed higher significance in these three
anti-oxidative substances (Figure 2B–D). In general, CGA alleviated the oxidative stress
induced by LPS by promoting the production of antioxidizing substances.
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Figure 2. CGA reduced LPS-induced oxidative stress. (A) ROS production. (B) The activity of SOD.
(C) The activity of CAT activity, and (D) the activity of GSH-Px activity in different groups. Results
are shown as the mean ± SD (n = 3). Different letters indicate significant differences between groups
(p < 0.05).

2.3. CGA Reduced LPS-Induced Inflammatory Mediators and Cytokines Expression

As shown in Figure 3A, treatment with LPS markedly induced IL-1β production
compared with that in mock-treated cells; however, pretreatment with 40, 80, or 150 µM
CGA effectively suppressed the LPS-induced IL-6 and TNF-α levels in LPS-stimulated cells
(Figure 3A,B). To further confirm the regulation of CGA in the anti-inflammatory response,
we determined the protein and mRNA expressions of inflammatory factors. Compared
with mocked cells, the cells treated with LPS had significantly increased mRNA levels of
Il-6, Tnf-α, and Il-1β (Figure 3C–E). Similarly, LPS treatment resulted in increased mRNA
levels of COX-2 and iNOS, which was significantly attenuated by CGA (Figure 3F,G). The
results were similar at the protein level; CGA suppressed LPS-induced protein levels of
IL-1β, IL-6, TNF-α, COX-2, and iNOS in RAW264.7 macrophages (Figure 3H,I).
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Figure 3. CGA reduced LPS-induced inflammatory mediators and cytokines expression. (A,B) The
secretion of IL-6 and TNF-α. (C–G) mRNA level and (H,I) protein expression of IL-6, TNF-α, IL-1β,
COX-2, and iNOS. Results are shown as the mean ± SD (n = 3). Different letters indicate significant
differences between groups (p < 0.05).

2.4. Transcriptomic Analysis Reveals That CGA Alleviates LPS-Induced Inflammation and
Oxidative Stress by Gene Regulation

To evaluate the comprehensive mechanism of CGA on anti-inflammation and anti-
oxidative stress, we systematically compared the transcriptomes of mock−treated cells,
LPS−treated cells, and cells co-treated with LPS and CGA (80 µM CGA for 4 h and
1 µg/mL LPS for 24 h). We identified over 5800 DEGs among the three treatment groups,
including 4630 DEGs between the mock-treated cells and LPS−treated cells (2513 upreg-
ulated and 2117 downregulated in the LPS-treated cells) and 1189 DEGs between the
LPS−treated cells and LPS+CGA−treated cells (72 upregulated and 1117 downregulated
in the LPS+CGA−treated cells; Figure S1). These results were confirmed by heatmap and
correlation analysis, which exhibited the gradual change in the characteristics of CGA in
LPS−induced cells (Figure 4A,B). PCA analysis showed that all the samples were well
clustered within their own groups (Figure 4C). GO analysis revealed that the top enriched
terms were mostly related to extracellular regulation, including extracellular organelles and
extracellular membrane-bound organelles (Figure 4D). KEGG analysis revealed that many
pathways are involved in immunoregulation, including NF-κB signaling, TNF signaling,
p53 signaling, NOD-like receptor signaling, and IL-17 signaling (Figure 4E). RT-qPCR was
used to detect the immunoinflammatory marker genes Il7r and Stat1 and the apoptosis-
related gene Casp4 showed that CGA was effective in relieving inflammation (Figure 4F).
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Figure 4. Transcriptomic analysis reveals that CGA alleviates LPS-induced inflammation and ox-
idative stress by gene regulation. (A) A heatmap of differentially expressed genes. (B) Correlation
analysis. (C) Principal component analysis of the samples of mock−treated, LPS−treated, and
CGA+LPS−treated cells. (D) Gene ontology analysis results. (E) KEGG analysis results. (F) qPCR
validation of selected genes. Different letters (a, b, c) indicate significant differences between groups
(p < 0.05). Results are shown as the mean ± SD (n = 3). Different letters and * indicate significant
differences between groups (p < 0.05).
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2.5. CGA Treatment Reduced CD36 Expression

We performed a Venn analysis to identify DEGs whose expression was changed in
opposite directions by LPS treatment and CGA treatment. A total of 613 DEGs showed op-
posite trends in comparisons between mocked cells vs. LPS−treated cells and LPS−treated
cells vs. LPS+CGA−treated cells (Figure 5A and Figure S1). A protein–protein interac-
tion analysis of Cd36 in the selected DEGs identified interactions of Cd36 with Mospd2,
Rap1a, Ptprb, and Fpr2 (Figure 5B). Subsequently, we evaluated CD36 protein expression in
LPS−treated cells, which showed that CD36 expression was higher during LPS stimulation
than in untreated cells and CGA effectively inhibited the CD36 expression in LPS−induced
cells (Figure 5C). In addition, CGA increased the expression of phosphorylated AMPK and
PGC-1α in LPS−induced cells (Figure 5D,E).
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Figure 5. CGA treatment inhibited CD36 expression. (A) A Venn analysis of mock-treated vs.
LPS−treated cells and LPS−treated vs. LPS+CGA−treated cells with 613 shared DEGs with
opposite trends selected. (B) Protein–protein interaction analysis of CD36. Red indicated Cd36.
(C–E) The protein expression of CD36, phosphorylated AMPK, and PGC-1α. Results are shown as
the mean ± SD (n = 3). Different letters indicate significant differences between groups (p < 0.05).
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2.6. CD36 Inhibition Enabled Anti-Inflammation and Oxidative Stress through the
CD36/AMPK/PGC-1α Cascade

To determine whether CD36 can affect the AMPK signaling pathway to regulate
LPS−induced inflammation, we treated LPS−induced RAW264.7 cells with SSO, an in-
hibitor of CD36. SSO increased the levels of PGC-1α and phosphorylated AMPKα and
reduced ROS production in LPS−induced cells (Figure 6A). SSO treatment also inhibited
the generation of ROS during LPS stimulation (Figure 6B). In addition, SSO pretreatment
effectively attenuates the activities of SOD, CAT, and GSH-Px during LPS stimulation
(Figure 6C–E). Furthermore, LPS−induced increases in inflammatory cytokine levels were
also attenuated by pretreatment with SSO (Figure 6F,G). Western blots confirmed that SSO
pretreatment attenuated LPS-induced increases in COX-2 and iNOS protein expression and
IL-1β, IL-6, and TNF-α production (Figure 6H). These results suggest that CD36 suppres-
sion effectively alleviates LPS−induced oxidative stress and inflammation by modulating
the CD36/AMPK/PGC-1α cascade.
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CD36/AMPK/PGC-1α cascade. (A) The phosphorylated AMPKα and PGC-1α protein expression.
(B) ROS levels. (C–E) Oxidative stress parameters (SOD, CAT, and GSH-Px activities). (F,G) Inflam-
matory cytokine (IL-6 and TNF-α) expression. (H) Inflammatory mediators and cytokines (IL-1β,
IL-6, TNF-α, COX-2, and iNOS) protein expression. Results are shown as the mean ± SD (n = 3).
Different letters indicate significant differences between groups (p < 0.05).

3. Discussion

Numerous diseases and health issues are strongly related to inflammation, which
the body uses as a defense mechanism. Many studies have focused on finding safe can-
didate materials to prevent and treat inflammatory diseases through diverse inhibitory
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actions. CGA has potential anti-inflammatory activities that may prevent the progression
of inflammatory-related diseases [24]. The present study aimed to evaluate the underly-
ing mechanism of CGA in anti-inflammatory effects. CGA treatment did not inhibit cell
viability, which suggests that it may have a few unwanted side effects. Importantly, CGA
exhibited strong anti-inflammatory activity in LPS-induced RAW264.7 macrophage cells by
downregulating the secretion of inflammatory cytokines and mediators such as IL-1β, IL-6,
TNF-α, COX-2, and iNOS, which is consistent with previous findings [25].

Studies have reported that excessive ROS accumulation could decrease antioxidant
defenses and lead to oxidative stress, which plays an important role in the inflammatory
process [26,27]. ROS are required for critical physiological processes and behaviors. How-
ever, they serve as inflammatory mediators in the development of inflammatory illnesses,
and excessive generation of ROS and related species is one of the causes of oxidative
stress [28]. We found that treatment with CGA considerably reduced the production of ROS
in LPS−induced cells. We further confirmed that CGA reduced SOD, CAT, and GSH-Px
levels in the LPS−induced cells, suggesting that CGA plays an important function in the
anti-oxidative stress on LPS−induced inflammation.

We used high-throughput RNA-seq to determine possible molecular mechanisms
by which CGA ameliorates LPS-induced oxidative stress in inflammatory processes. We
identified >5800 DEGs in comparisons between mock−treated and LPS−treated cells and
between LPS−treated and LPS+CGA−treated cells. KEGG analysis results suggested that
these DEGs were mainly enriched in pathways for NF-κB signaling, TNF signaling, p53
signaling, NOD-like receptor signaling, and IL-17 signaling. Among the identified DEGs,
we selected the genes that showed opposite trends in response to LPS treatment and CGA
treatment. CD36 stood out among the selected genes and aroused our interest because of
its role in immunity [24].

As one member of the class B scavenger receptor family, CD36 is distributed in various
types of cells and mediates immunological recognition, inflammation, molecular adhesion,
and apoptosis [29]. Overexpression of CD36 is correlated with chronic inflammation, tu-
morigenesis, and metabolic dysfunction [30,31]. Disruption of CD36 in oleic acid-induced
HeLa cells as well as mice models significantly inhibited cervical cancer carcinogenesis
by downregulating the Src/ERK pathway in vitro and in vivo [32]. Moreover, Sun et al.
reported that the loss of CD36 restored LPS−induced acute lung injury attenuated by
attenuating NF-κB activation in macrophages [33]. We found that the mRNA and pro-
tein expression of CD36 was significantly increased in LPS−induced cells compared with
mocked cells, indicating that inflammatory processes were enhanced in the LPS−induced
cells. CGA treatment reduced the LPS−induced expression of CD36 and thereby inhibited
inflammation, indicating that anti-inflammatory processes were enhanced by CGA. In a
previous study, the absence of CD36 as a key regulatory molecule attenuated ROS produc-
tion in response to inflammatory diseases [34]. We confirmed that pretreatment with SSO,
an inhibitor of CD36, reduced ROS production and inhibited the expression of IL-1β, IL-6,
TNF-α, COX-2, and iNOS in LPS−induced RAW264.7 cells. These results indicated that
CD36 effectively participates in LPS−induced oxidative stress and inflammatory effects.

AMPK is a highly conserved serine/threonine protein kinase that can be regulated by
ROS levels in mitochondria [35]. AMPK acts together with its downstream targets to upreg-
ulate PGC-1α [19] and thereby help control mitochondrial biosynthesis, energy metabolism,
and inflammation as a homeostasis-sensing network. We found that LPS−induced ROS pro-
duction suppresses AMPK phosphorylation, leading to the deactivation of AMPK, whereas
CGA treatment protects AMPKα phosphorylation in LPS−induced macrophages. In a
previous study, AMPK activation was highly related to the effect of inflammation [36]. We,
therefore, considered AMPK as a potential mediator that could regulate the inflammatory
status. CGA upregulates PGC-1α by inhibiting CD36, thus decreasing the expression levels
of IL-1β, IL-6, TNF-α, COX-2, and iNOS to elicit biological effects. These data suggest that
CGA prevents inflammatory responses, and this effect might be mediated by modulation
of the CD36/AMPK/PGC-1α cascade (Figure 7).
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4. Materials and Methods
4.1. Regents and Materials

Chlorogenic acid extracted from sweet potato leaf was obtained from the Food Science
Institute, Zhejiang Academy of Agricultural Sciences. Commercial assay kits for IL-1β, TNF-
α, and IL-6 were purchased from R&D Systems (Minneapolis, MN, USA). Cell-Counting
Kit-8 (CCK-8) was purchased from Vazyme (Wuhan, China). FastQuant RT Kit with gDNA
and TB Green® Premix Ex Taq™ II were obtained from Tiangen (Beijing, China) and
TaKaRa (Dalian, China), respectively. BCA Protein Assay Kit was obtained from Beyotime
(Shanghai, China). Mouse polyclonal antibodies to IL-1β, IL-6, TNF-α, COX-2, CD36,
PGC-1α, and β-actin were obtained from Abcam (Cambridge, UK). Mouse polyclonal
antibodies to iNOS, AMPKα, and p-AMPKα were obtained from CST (Boston, MA, USA).
N-succinimidyl oleate (SSO) was purchased from MCE (Shanghai, China).

4.2. Cell Culture

RAW264.7 cells were purchased from Procell Life Science & Technology Co., Ltd.
(Wuhan, China). Cells were cultured in DMEM (Gibico, Carlsbad, CA, USA) in supple-
mentation with 10% fetal bovine serum (Gibico, Carlsbad, CA, USA) at 37 ◦C with 5% CO2
under sterile conditions.

4.3. Cell Viability Assay

The proliferation of RAW264.7 cells was measured by Cell Counting Kit-8 (CCK8,
Vazyme, Nanjing, China). In brief, cells were plated on 24-well plates overnight. When
incubated, 50 µL CCK-8 solution was added to the cell suspension, and the cells were
incubated for another 4 h for color development. Finally, the proliferation of cells was
detected by measuring absorbance using a multifunctional microplate reader (Tecan Infinite
M200 PRO; Männedorf, Switzerland) at 450 nm.

4.4. Reactive Oxygen Species Detection

After treatment, the cells were collected, and the ROS level (fluorescence intensity/mL)
was determined by undergoing 2,7-dichlorofluorescein diacetate (DCFH-DA) assay. In
brief, the cell suspension was mixed with 10 µM diluted regent at 37 ◦C for 30 min. The
cells were then detected by fluorescence microplate reader with an excitation wavelength
of 488 nm and an emission wavelength of 525 nm; all samples were detected with multiple
readings (Tecan, Mannedorf, Switzerland).



Int. J. Mol. Sci. 2023, 24, 13516 10 of 13

4.5. Determination of GSH-Px, SOD and CAT Activities

The cells were collected and treated by ultrasonic wave, and then the cells were cen-
trifuged at 8000× g, 4 ◦C for 10 min to collect the supernatant. Finally, the CAT (U/mg.prot)
activities were detected with wavelength of 405 nm, and the GSH-Px (U/mg.prot) and SOD
(U/mg.prot) activities were detected with wavelength of 340 nm using microplate reader
(Tecan) following the manufacturer’s instructions.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

RAW264.7 cells were treated with different concentrations of CGA or 100 µM SSO for
4 h and then stimulated with 1 µg/mL LPS for 24 h. The culture supernatants were collected
after centrifugation at 1000 rpm for 5 min at 4 ◦C and subjected to double antibody sandwich
ELISA for detection of TNF-α, and IL-6 with ELISA kits according to the manufacturer’s
recommendations. The concentrations of TNF-α (pg/mL), and IL-6 (pg/mL) in the samples
were detected at the absorbance of 490 nm with a multifunctional microplate reader (Tecan
Infinite M200 PRO; Tecan, Männedorf, Switzerland).

4.7. Real-Time Quantitative PCR (RT-qPCR)

Total RNA was isolated from cell samples using TRIzol reagent (Invitrogen) and used
to synthesize cDNA with a FastQuant RT Kit (With gDNase). RT-qPCR was conducted in a
LightCycler® 96 Real-Time PCR System with TB Green PCR Master Mix. Reactions were
initiated by incubation at 95 ◦C for 30 s, 40 cycles of 95 ◦C for 5 s, and 60 ◦C for 20 s. The 18s
gene was used as an internal reference gene and the relative expression level was calculated
using the 2−∆∆CT method. The gene primers for RT-qPCR are provided in Table 1.

Table 1. Primer sequences used in RT-qPCR analysis.

Gene Primer Sequences (5′ to 3′) Annealing (◦C)

18s
Forward (sense) GTAACCCGTTGAACCCCATT

60Reverse (antisense) CCATCCAATCGGTAGTAGCG

Il-1β
Forward (sense) GGCAGGCAGTATCACTCATTGTG

60Reverse (antisense) GCTCATGTCCTCATCCTGGAAG

Il-6
Forward (sense) TCTACTCGGCAAACCTAGTGCGTTA

60Reverse (antisense) TTCTGACCACAGTGAGGAATGTCCA

Tnf-α Forward (sense) GACCCTCACACTCAGATCATCTTCT
60Reverse (antisense) GCTACGACGTGGGCTACAG

COX-2
Forward (sense) GGCAGGAAGTCTTTGGTCTGGT

60Reverse (antisense) CTGGTTTGGAATAGTTGCTCATCAC

iNOS
Forward (sense) TGCCACGGACGAGACGGATA

60Reverse (antisense) AGGAAGGCAGCGGGCACAT

Il7r
Forward (sense) GCATCCCCAACCAACTGAGG

60Reverse (antisense) GCATCTTCTAGGTCTCTTTTGAGC

Casp4 Forward (sense) TGTCTCATGGCACACTGCAT
60Reverse (antisense) TTCTCCAGAGTTCCCACCTC

Cpt1a Forward (sense) TCGGTGAGCCTGGCCT
60Reverse (antisense) TTGAGTGGTGACCGAGTCTG

Eef2k Forward (sense) CACCTGGAAGATATTGCCACC
60Reverse (antisense) GCTTCGCCACGTAGTTGGA

Stat1
Forward (sense) CGCTGCCTATGATGTCTC

60Reverse (antisense) TTTCCGTATGTTGTGCTG

4.8. Western Blot

Cells were collected after incubation. Then, total protein was extracted using lysis
buffer and quantified using BCA Protein Assay Kits. A 10% SDS-PAGE gel was used to
separate the protein samples, and the gels were transferred to polyvinylidene fluoride
(PVDF) membranes (Bio-Rad, California, USA). The membranes were blocked in 5% non-fat
milk with Tween-20 buffer for 1 h and then incubated with primary antibodies overnight
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at 4 ◦C. Following 1 h incubation with secondary antibodies at room temperature, ECL
detection was performed on the membranes.

4.9. Transcriptomics and Validation

Three biological replicates of mocked, LPS−treated, or LPS+CGA−treated RAW264.7
cells were collected. Total RNA extraction, library construction, sequencing, and differential
expression analysis were conducted by Personal Biotech (Shanghai, China). Differentially
expressed genes (DEGs) were screened as |Fold Change| ≥ 1.5 and FDR < 0.05. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment of DEGs was implemented by R software. A protein–protein interaction network was
constructed using the stringApp(ver.1.7.1) in Cytoscape(ver. 3.9.1). Five significant DEGs
were randomly chosen for validation by RT-qPCR using specific primers synthesized by
Youkang Company (Hangzhou, China) (Table 1).

4.10. Statistical Analysis

Data were presented as the mean ± standard deviation (SD). All significance analyses
were determined using Duncan in SPSS 25.0 (SPSS Inc.; Chicago, IL, USA). For all com-
parisons, p < 0.05 was considered significant difference. All comparisons were performed
using GraphPad Prism 8.0 and the flow chart was drawn with Figdraw.

5. Conclusions

In summary, CGA alleviates the ROS level and upregulates CAT, SOD, and GSH-
Px activities in LPS−treated RAW 264.7 macrophages. CGA played positive roles in
LPS−induced inflammation in RAW 264.7 macrophages. Furthermore, CGA suppressed
LPS−induced inflammation and oxidative stress by regulating CD36/AMPK/PGC-1α
cascade in vitro, suggesting that CGA might provide benefits for the regulation of oxidative
inflammatory diseases. These results represent that CGA has the potential to ameliorate
inflammatory effects via the CD36/AMPK/PGC-1α in inflammation-related diseases.
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