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Abstract: When tissues are under physiological stresses, such as vigorous exercise and cold exposure,
skeletal muscle cells secrete succinate into the extracellular space for adaptation and survival. By
contrast, environmental toxins and injurious agents induce cellular secretion of succinate to damage
tissues, trigger inflammation, and induce tissue fibrosis. Extracellular succinate induces cellular
changes and tissue adaptation or damage by ligating cell surface succinate receptor-1 (SUCNR-1) and
activating downstream signaling pathways and transcriptional programs. Since SUCNR-1 mediates
not only pathological processes but also physiological functions, targeting it for drug development is
hampered by incomplete knowledge about the characteristics of its physiological vs. pathological
actions. This review summarizes the current status of extracellular succinate in health and disease
and discusses the underlying mechanisms and therapeutic implications.

Keywords: extracellular succinate; succinate receptor-1; succinate dehydrogenase; inflammation;
fibrosis; myocardial infarction

1. Introduction

Succinic acid is a tricarboxylic acid (TCA) cycle metabolite that is derived from succinyl
CoA and oxidized to form fumarate [1]. It is normally confined to the mitochondrial
matrix and its level is tightly regulated [1]. When cells are stressed, disruption of the
TCA cycle may result in elevation of succinate in the matrix and the leakage of excessive
succinate into the cytoplasm, where it acts as a signaling molecule to impact diverse cellular
functions through inhibition of a large group of 2-oxoglutarate-dependent dioxygenases
(2OGDD), notably prolyl hydroxylase (PHD) and ten–eleven translocation (TET) [2,3].
Inhibition of PHD by cytosolic succinate leads to impaired degradation of hypoxia inducible
factor-1 (HIF-1α) and HIF-1α-mediated changes in transcription of metabolic enzymes,
angiogenic factors, and pro-inflammatory mediators [4–7]. Inhibition of TET-2, on the other
hand, results in impaired hydroxylation of DNA methyl groups, and, consequently, DNA
hypermethylation, which is associated with tumorigenesis and cancer metastasis [8,9].
Cytosolic succinate is secreted into the extracellular space and diffused into the circulating
blood, where it acts as a local and/or systemic autacoid, regulating physiological functions
and pathological processes. Cytosolic succinate has been covered in excellent review
articles [10,11]. This paper will focus on extracellular circulating succinate with respect to
its roles as physiological messengers and pathological triggers, its mechanisms of action,
and its potential as a target for new therapeutic strategies.

2. Skeletal Muscle-Derived Extracellular Succinate Confers Physiological Adaptation
to Exercise and Cold Exposure

Extracellular succinate is a crucial messenger to facilitate adaptation to physiological
stresses, such as cold exposure, vigorous exercise, and physical activity. Skeletal muscle
plays a central role in providing extracellular succinate to drive the adaptation.
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2.1. Extracellular Succinate Promotes Muscle Remodeling

It was reported almost a half century ago that aerobic exercise increased blood levels
of succinate [12]. Subsequent studies confirmed the accumulation of succinate during
exercise. A meta-analysis of relevant exercise-associated metabolomic studies reveals
that exercise increase circulating metabolites, including succinate [13]. A recent report
indicates that, in response to exercise, succinate is secreted from skeletal muscle cells
via monocarboxylate transporter-1 (MCT-1), and the secreted succinate activates non-
myofibrillar resident cells such as stromal cells, endothelial cells, and satellite cells in
skeletal muscle to promote skeletal muscle remodeling and innervation via succinate
receptor-1 (SUCNR-1) [14]. It is unclear how exercise induces succinate accumulation.
One possible explanation is that exercise induces muscle cell metabolic reprogramming,
leading to increased glycolysis and a disrupted TCA cycle, such as inhibition of succinate
dehydrogenase (SDH). SDH possesses dual activities: it catalyzes oxidation of succinate
to form fumarate in the TCA cycle and functions as complex II in the ETC to convert
ubiquinone to ubiquinol for oxidative phosphorylation and ATP generation [15,16]. Akin to
exercise-induced skeletal muscle metabolic changes, LPS-stimulated macrophages exhibit
a metabolic shift to aerobic glycolysis and perturbation of the TCA cycle characterized
by blocking isocitrate dehydrogenase activity, which leads to itaconate accumulation [17].
Excessive itaconate inhibits SDH catalytic activity, resulting in succinate accumulation [17].
Contrary to this possible mechanism is a report that congenital deficiency of SDH in a
patient rendered intolerance to exercise due to early skeletal muscle fatigue and weakness
during exercise [18,19]. It was proposed that TCA enzyme deficiency impairs oxidative
phosphorylation and reduces energy supply. Succinate supplementation was reported
to enhance muscle fiber oxidative phosphorylation and increase muscle strength and
endurance [20,21]. The reason for the different roles that extracellular succinate plays in
muscle strength and endurance during exercise is unclear. Further studies are needed to
elucidate the underlying mechanism.

2.2. Extracellular Succinate Upregulates Adipose Tissue Energy Expenditure and Thermogenesis

Brown adipose tissues (BATs) act as a central regulator of energy expenditure for
thermogenesis and play an important role in maintaining body temperature during cold
exposure [22,23]. Metabolomic analysis identifies succinate as a key driver of energy
expenditure in BAT [24]. It has been reported that cold-exposure-associated muscular
shivering leads to release of succinate from muscle fibers, resulting in elevation of succinate
levels in the circulating blood [24]. The extracellular succinate is taken up by brown
adipocytes and enters the mitochondria, where it replenishes the substrate for SDH and
complex II to generate ROS and stimulate uncoupled respiration in an uncoupled protein-1
(UCP-1)-dependent manner [24]. Thermogenesis from the UCP-1 pathway is abrogated
by either pharmacological inhibition of muscle contraction or SDH/complex II. It is to be
noted that BAT UCP-1 is a key player in controlling the level of succinate in circulating
blood. Genetic deletion of UCP-1 in mice results in the elevation of blood succinate levels,
which contributes to liver inflammation and fibrosis [25].

In summary, skeletal muscle cells are in a pivotal position to supply extracellular
succinate, which acts as an intercellular messenger to enhance muscle endurance during
vigorous exercise and generate heat during cold exposure (Figure 1).



Int. J. Mol. Sci. 2023, 24, 11165 3 of 18
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Schematic illustration of extracellular succinate as a physiological messenger. Physio-
logical stresses such as vigorous exercise or cold exposure induce skeletal muscle fibers to secrete 
succinate, which acts as a messenger to confer physiological adaptation. 

3. Extracellular Succinate Mediates Diverse Pathophysiological Processes via SUCNR-1 
As described above, extracellular succinate serves as a substrate supplement via an-

aplerosis to confer thermogenesis for adaptation to cold and muscle remodeling to en-
hance endurance during vigorous exercise. However, extracellular succinate mediates di-
verse pathophysiological processes and exacerbates human diseases through interaction 
with a membrane G-protein-coupled receptor (GPCR), GPR91. In searching for natural 
ligands for orphan GPCRs, He et al. identified succinate from animal kidney extracts as a 
selective ligand for GPR91, an orphan GPCR with sequence homology to purinergic re-
ceptors [26–28]. GPR91 was shown to be expressed in the juxtaglomerular apparatus, es-
pecially the afferent arterial endothelial cells, and involved in inducing renin production 
and secretion [29,30]. It was linked to diabetes-associated hypertension, as elevated suc-
cinate in diabetes stimulates renin production via GPR91 [29,30]. GPR91 was detected in 
proximal and distal duct epithelial cells in kidneys and was considered to play a role in 
regulating renal tubular functions, although the exact activity remains to be ascertained 
[31]. Further studies reveal that GPR91 expression is not restricted to renal tissues. In fact, 
it is widely distributed on different cells where it carries out tissue-specific functions and 
mediates pathophysiological processes in human diseases. As GPR91 proves to be a selec-
tive succinate receptor, it is commonly called SUCNR-1. Succinate-ligated SUCNR-1 is 
signaled via Gi and Gq with the activation of cardinal signaling pathways, resulting in 
elevation of intracellular calcium and inositol triphosphate (IP3), reduction of cyclic AMP, 
and activation of ERK1/2 [27]. Under certain circumstances, succinate-activated SUCNR-
1 may signal via Gq, as reported in macrophages by [32]. SUCNR-1 mediates physiologi-
cal roles, such as immune responses, glucose homeostasis, hematopoiesis, and platelet ag-
gregation, and pathological conditions, such as tissue injury, inflammation, fibrosis, and 
cancer metastasis [33–38]. The succinate-SUCNR-1 axis plays a critical role in important 
human diseases (Figure 2). 

Figure 1. Schematic illustration of extracellular succinate as a physiological messenger. Physio-
logical stresses such as vigorous exercise or cold exposure induce skeletal muscle fibers to secrete
succinate, which acts as a messenger to confer physiological adaptation.

3. Extracellular Succinate Mediates Diverse Pathophysiological Processes via SUCNR-1

As described above, extracellular succinate serves as a substrate supplement via
anaplerosis to confer thermogenesis for adaptation to cold and muscle remodeling to en-
hance endurance during vigorous exercise. However, extracellular succinate mediates
diverse pathophysiological processes and exacerbates human diseases through interaction
with a membrane G-protein-coupled receptor (GPCR), GPR91. In searching for natural
ligands for orphan GPCRs, He et al. identified succinate from animal kidney extracts as
a selective ligand for GPR91, an orphan GPCR with sequence homology to purinergic
receptors [26–28]. GPR91 was shown to be expressed in the juxtaglomerular apparatus,
especially the afferent arterial endothelial cells, and involved in inducing renin production
and secretion [29,30]. It was linked to diabetes-associated hypertension, as elevated suc-
cinate in diabetes stimulates renin production via GPR91 [29,30]. GPR91 was detected in
proximal and distal duct epithelial cells in kidneys and was considered to play a role in
regulating renal tubular functions, although the exact activity remains to be ascertained [31].
Further studies reveal that GPR91 expression is not restricted to renal tissues. In fact, it
is widely distributed on different cells where it carries out tissue-specific functions and
mediates pathophysiological processes in human diseases. As GPR91 proves to be a se-
lective succinate receptor, it is commonly called SUCNR-1. Succinate-ligated SUCNR-1
is signaled via Gi and Gq with the activation of cardinal signaling pathways, resulting in
elevation of intracellular calcium and inositol triphosphate (IP3), reduction of cyclic AMP,
and activation of ERK1/2 [27]. Under certain circumstances, succinate-activated SUCNR-1
may signal via Gq, as reported in macrophages by [32]. SUCNR-1 mediates physiological
roles, such as immune responses, glucose homeostasis, hematopoiesis, and platelet aggre-
gation, and pathological conditions, such as tissue injury, inflammation, fibrosis, and cancer
metastasis [33–38]. The succinate-SUCNR-1 axis plays a critical role in important human
diseases (Figure 2).
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the gut microbiota [40,41]. Intestinal epithelial cells express solute carrier 13A (SLC13A) 
family proteins, notably SLC13A-2, -3, and -5, which take up luminal succinate [42]. It was 
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Figure 2. Schematic illustration of the involvement of succinate (SUCN)-SUCNR-1 axis in diverse
pathological processes and human diseases. MI, myocardial infarction; HF, heart failure; CKD,
chronic kidney disease; IBD, inflammatory bowel disease; DM, diabetes mellitus.

4. Succinate Elicits Intestinal Immunity and Triggers Colon Inflammation

Under normal conditions, the intestinal lumen and feces contain low levels of succi-
nate, despite a large quantity of succinate produced by microbial fermentation of dietary
fibers [39]. Low luminal succinate is attributed to the conversion of succinate to short-
chain fatty acids (acetate, propionate, and butyrate) by succinate-consuming bacteria in
the gut microbiota [40,41]. Intestinal epithelial cells express solute carrier 13A (SLC13A)
family proteins, notably SLC13A-2, -3, and -5, which take up luminal succinate [42]. It was
reported that small intestinal epithelial cells take up succinate and convert it to glucose
via gluconeogenesis [43], which exerts a great impact on reducing lipid deposition and
attenuating hepatic inflammation [44]. Despite a low level of succinate in the lumen of the
small intestine, succinate derived from the diet or protist and helminth infestation interacts
with SUCNR-1 expressed on the tuft cells and transmits signals to secrete IL-25, which
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induces tuft cell and goblet cell hypertrophy and activates type 2 innate lymphoid cells
(ILC2) to elicit type II immunity [45–47].

By contrast, succinate accumulation in the colon exerts a detrimental effect on the
epithelium. Perturbation of colon microbiota by antibiotics, high-fat diet, or inflammatory
mediators results in increasing succinate-producing and diminishing succinate-consuming
strains in the colon microbiome and the consequent overproduction of succinate [48,49].
Unlike the small intestine, which contains succinate-sensing tuft cells, the colon epithelium
contains few, if any, tuft cells and does not elicit immunity. The accumulated luminal
succinate disrupts epithelial barrier function and induces inflammation and fibrosis by
activating macrophages and fibroblasts, which reside in the subepithelial region [49].
Chronic succinate elevation in the colon lumen was reported to induce colitis in mice [49].
Succinate causes epithelial damage, macrophage activation, and fibroblast transdiffer-
entiation by ligating SUCNR-1 and activating SUCNR-1-mediated signaling pathways.
One of the mechanisms by which luminal succinate reaches the subepithelial space is
through a transepithelial pathway in which succinate is taken up by epithelial cells via
Slc13A transporters, such as Slc13A-2 or A-3, and secreted into the extracellular space via
the organic ion transporters [42]. Extracellular succinate is taken up by the infiltrating
macrophages, and elevated cytosolic succinate enhances inflammation through inhibition
of PHD, thereby stabilizing HIF-1α, which mediates IL-1β release [7,50]. As illustrated in
Figure 3, microbiota-derived succinate is handled differently in the small intestine vs. the
colon, carries out physiological functions in the small intestine via tuft cells, and induces
colon epithelial cell damage and subepithelial inflammation and fibrosis by activating
macrophages and fibroblasts.
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Serum and fecal succinate levels are elevated in humans with inflammatory bowel
diseases, i.e., Crohn’s disease and ulcerative colitis [42,49]. SUCNR-1 is detected on epithe-
lial cells as well as inflammatory cells and fibroblasts in the lamina propria of IBD colonic
tissues [42,49]. Importantly, SUCNR-1 expression is correlated with fibrosis [49]. Taken
together, microbiota-derived succinate plays an important role in aggravating inflammation
and inducing fibrosis in human IBD via SUCNR-1.

5. Ischemia-Reperfusion (I/R)-Derived Succinate Contributes to Myocardial Infarction (MI)

Experimental results have shown that I/R injury to vital organs may result in suc-
cinate accumulation and secretion. Comparative metabolomic analysis of I/R-injured
cardiomyocytes has provided valuable information regarding the source of succinate accu-
mulation [51]. I/R injury was reported to cause perturbation of mitochondrial metabolism
with overflow of fumarate generated from the malate–aspartate shunt and the purine nu-
cleotide cycle [51]. Fumarate is reduced to succinate by the reversal of SDH activity [51]. It
was subsequently reported that cardiac ischemia augments the canonical TCA cycle, which
may be the major source of succinate accumulation [52]. It is likely that succinate accumu-
lation is attributable to both sources. I/R injury disturbs the mitochondrial ETC and causes
reversed electron transport at complex I of the ETC, resulting in ROS accumulation [51].

Accumulated succinate in the mitochondrial matrix of cardiomyocytes is released into
the cytoplasm and secreted into the extracellular space via MCT-1 [53], which accounts
for the elevation of circulating succinate levels in patients with acute MI [54]. Elevated
circulating succinate is correlated with the extent of myocardial injury and is considered
a biomarker of I/R injury. I/R-induced succinate secretion was reported in other tissues
and cells, including hepatocytes and neurons [55,56]. The extracellular succinate acts in an
autocrine or paracrine manner to damage cells. It was reported that succinate mediates
ischemia-induced cardiomyocyte apoptosis by altering mitochondrial dynamics; it triggers
Drp-1-dependent mitochondrial fission and induces mitochondrial fragmentation, which
results in mitochondrial dysfunction and apoptosis [57]. Succinate elicits mitochondrial dys-
function and apoptosis through interaction with SUCNR-1 on the cardiomyocyte surface,
which signals via ERK1/2 [57].

Post-MI heart failure has emerged as a serious human disease. Post-MI cardiac
damage is characterized by persistent cardiomyocyte death, myocardiocyte hypertrophy,
myocardial inflammation, and fibrosis, which leads to structural remodeling and functional
failure. Extracellular succinate was considered to play an important role in post-MI heart
failure. It has been reported that succinate induces myocardiocyte hypertrophy via SUCNR-
1 [58]. As will be discussed in the next sections, extracellular succinate contributes to
macrophage recruitment and activation and is a key metabolite in enhancing inflammatory
responses in injured tissues. Furthermore, succinate has been shown to attenuate post-
injury tissue fibrosis by reducing fibroblast differentiation to myofibroblasts, either directly
or indirectly, via controlling macrophage-mediated fibroblast activation and differentiation.
Thus, extracellular succinate is a key player in I/R-induced myocardial infarction and
post-MI heart failure through its actions on apoptosis, inflammation, and fibrosis.

6. Extracellular Succinate Aggravates Inflammatory Responses through
Macrophage Activation

Succinate released into the tissue damage site or pro-inflammatory microenvironment
acts as a proinflammatory factor to attract macrophages, enhance macrophage migra-
tion, and induce macrophage activation. It has been reported that succinate activates
and induces M1 macrophages to release pro-inflammatory cytokines and chemokines by
ligating membrane SUCNR-1 and activating the downstream signaling pathways and
transcriptional program [10]. Of note, macrophages are the target of succinate and also
the source of succinate secretion. For example, LPS-stimulated macrophages undergo
metabolic reprogramming, which leads to succinate accumulation and secretion [17]. The
extracellular succinate-SUCNR-1 pathway contributes to diverse inflammatory disorders
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and aggravates their inflammatory manifestations. By contrast, extracellular succinate
may confer anti-inflammatory messages. Highlighted below are the pro-inflammatory and
anti-inflammatory properties.

6.1. Activated M1 Macrophages Secrete Succinate to Enhance Inflammatory Response and
Exacerbate Inflammatory Disorders

Interferon-γ and LPS convert naïve macrophages into an M1 phenotype [59,60].
Metabolic analysis of LPS-induced M1 macrophages reveals a metabolic shift from ox-
idative phosphorylation to aerobic glycolysis, which is accompanied by a break in the
mitochondrial TCA cycle at isocitrate dehydrogenase (IDH) [17]. IDH catalyzes the conver-
sion of isocitrate to α-ketoglutarate (α-KG), and its breakdown results in the accumulation
of isocitrate, which is further converted to itaconate. Itaconate was reported to inhibit SDH,
resulting in the accumulation of succinate [61,62].

In inflammatory disorders, such as rheumatoid arthritis, macrophage-released suc-
cinate upregulates SUCNR-1 expression on M1 macrophages and stimulates IL-1β pro-
duction via SUCNR-1 to exacerbate arthritis [63]. Succinate accumulation in LPS-treated
macrophages induces IL-1β expression through HIF-1α [7]. LPS-induced M1 macrophages
and microglial cells exhibit changes in mitochondrial dynamics, shifting toward mito-
chondrial fission and fragmentation [64,65]. Mitochondrial fragmentation is pivotal in
pro-inflammatory cytokine production [64]. In addition, it enhances succinate secretion [65].
Drp-1-dependent mitochondrial fragmentation and succinate accumulation may form a
regulatory loop to enhance the activity of pro-inflammatory macrophages. This notion
requires proof through additional experiments.

6.2. Adipose Tissues Release Succinate to Recruit Macrophages and Aggravate Inflammation in Obesity

Adipose tissue inflammation is a cardinal manifestation of obesity that contributes to
insulin resistance and diabetes mellitus. Obese adipocytes were reported to release succi-
nate into the extracellular space and increase the succinate level in circulating blood [66].
Gene expression profiling reveals that succinate enhances inflammatory responses via a
SUCNR-1-mediated signaling pathway [66]. Succinate increases macrophage infiltration in
obese adipose tissues through chemotaxis and promotion of macrophage migration [66].
The effect of succinate on macrophage chemotaxis, migration, and infiltration depends on
SUCNR-1, as macrophage infiltration and adipose tissue inflammation are considerably
reduced in SUCNR-1 knockout mice [66].

6.3. Succinate-SUCNR-1 Axis Is Involved in Macrophage M2 Polarization and
Anti-Inflammatory Actions

Although the succinate-SUCNR-1 axis plays a crucial role in mediating inflamma-
tory responses and aggravating inflammatory disorders, there are reports indicating that
this axis is critical in driving macrophage M2 polarization and inflammation control. A
recent report from our group indicates that succinate induces macrophage M2 polariza-
tion [67]. Furthermore, cancer cell-derived succinate polarizes macrophages into M2-like
tumor-associated macrophages, which contribute to cancer cell migration and cancer metas-
tasis [67]. Succinate induces M2 polarization by SUCNR-1-mediated signaling via the
PI-3K/Akt pathway [67]. In addition to inducting M2 polarization, extracellular succinate
hyperpolarizes M2 macrophages by binding to SUCNR-1, expressed abundantly on M2
macrophages, and signaling via the Gq pathway [32]. The succinate-SUCNR-1-M2 polar-
ization pathway was reported to control inflammation in adipose tissues in healthy, lean
human subjects [68]. In murine models, myeloid-specific deletion of SUCNR-1 promotes
inflammation and alters adipose tissue fat cell distribution, with a reduction of brown
adipocytes [68].

6.4. Succinate Controls Inflammatory Response through Cell–Cell Interaction

Extracellular succinate may act as an intercellular messenger to regulate inflammation.
It was reported that macrophage-derived succinate interacts with transplanted neural



Int. J. Mol. Sci. 2023, 24, 11165 8 of 18

stem cells (NSC) to suppress inflammation in a multiple sclerosis (MS) murine model [69].
Macrophages infiltrated in MS tissues secrete succinate, which interacts with SUCNR-1
expressed on NSCs. This leads to transactivation of ptgs2 coding for cyclooxygenase-2
(COX-2, also known as prostaglandin H synthase-2, PGHS-2). COX-2 and prostaglandin
E synthase catalyze the synthesis of PGE2, which is released into the extracellular space,
where it suppresses macrophage activation and pro-inflammatory cytokine production via
PGE2-specific receptors [70,71]. In addition, macrophage-derived succinate interacts with
NSC SUCNR-1 to activate SLC13 transcription and enhance SLC13 expression, which takes
up succinate and reduces the level of extracellular succinate. Transplantation of NSCs into
the MS model was previously reported to be effective in controlling cerebral inflammation,
but the underlying mechanism was unclear [72,73]. Findings from this report suggest that
the anti-inflammatory effect of NSCs is attributable to macrophage-derived extracellular
succinate, which acts as an inflammation suppressor.

7. Injured Hepatocytes Secrete Succinate to Activate Hepatic Stellate Cells (HSC) and
Induce Fibrosis

Liver fibrosis signifies an advanced stage of liver diseases, including liver cirrhosis
and non-alcoholic steatohepatitis (NASH), and is often associated with liver failure [74–79].
Liver fibrosis is orchestrated by macrophages and HSCs. A selective subset of macrophages
secretes pro-fibrotic factors to transdifferentiate HSCs [75]. Extracellular succinate is identi-
fied as one of the important pro-fibrotic factors. Liver tissues injured by ischemia release
succinate, which activates adjacent HSCs [56]. HSCs are located in the subendothelial
space and contact the basolateral surface of hepatocytes. Succinate released from injured
hepatocytes enhances adjacent HSC migration and proliferation [80] and induces HSC
activation and differentiation by interacting with HSC surface SUCNR-1 [56], which signals
the expression of α-SMA and collagen I in HSC, thereby increasing extracellular matrix
deposition [81,82]. SUCNR-1 expression is upregulated in activated HSCs [79]. Suppression
of SUCNR-1 expression by siRNA abrogates α-SMA expression. The succinate–SUCNR-1
axis plays a pivotal role in liver fibrosis following hepatic damage.

It is important to note that extracellular succinate suppresses SDH expression, thereby
augmenting succinate accumulation and secretion [81,82]. Inhibition of SDH with malonate
increases succinate accumulation, accompanied by enhanced expression of α-SMA. HSCs
cultured in a medium simulating a NASH-producing diet, such as a methionine- and
choline-free medium or high-palmitate medium, exhibit reduced SDH activity and an
increased succinate level, accompanied by elevated myofibroblast markers [83]. Mice
given a NASH diet have reduced SDH expression and increased succinate levels. It was
reported that succinate suppresses SDH activity by reducing sirtuin 3 (Sirt3) [84]. Sirt3
binds to the SDHA subunit and enhances SDH catalytic activity through control of lysine
acetylation [84,85]. In HSC cellular experiments and NASH animal models, succinate was
reported to reduce Sirt3, accompanied by suppression of SDH and an increase in SUNCR-
1 and succinate [84]. Furthermore, Sirt3 reduction is correlated with SDH suppression.
Taken together, the experimental findings suggest that SDH suppression, extracellular
succinate accumulation, and SUCNR-1 upregulation form a vicious cycle to enhance HSC
activation and myofibroblast transdifferentiation and perpetuate myofibroblast-mediated
liver fibrosis following hepatic damage by viral infection, toxin exposure, and/or a high-fat
diet (Figure 4). This vicious cycle is likely to drive tissue damage and fibrosis in other vital
organs subjected to I/R and toxic injuries.
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8. Cancer Cell-Derived Succinate Acts as a Messenger in Tumor Microenvironment to
Educate Stromal Cells and Promote Cancer Progression

Wu et al. from our group reported that lung cancer cells secrete succinate, which
induces M2-like TAMs and promotes cancer cell migration and metastasis [67]. Other
types of cancer cells, such as gastric cancer cells, were reported to secrete succinate to
increase angiogenesis and promote cancer growth [86]. The mechanism by which succinate
is accumulated and secreted into the microenvironment has not been fully elucidated, but
several reports imply that reduced expression of SDH subunits and the consequent loss of
SDH activity may account for succinate accumulation. For example, reduced expression
of the SDHB or SDHD subunit was reported in colorectal, gastric, hepatocellular, ovarian,
and clear-cell renal cell carcinoma [8,85–87]. Silencing of cancer cell SDHB was reported
to result in loss of SDH activity and a change in cancer cell behavior; cells are more
migratory and exhibit epithelial mesenchymal transition (EMT) [87–90]. Of note, mutations
of SDH subunits, notably SDHB and SDHD, are detected in hereditary paragangliomas and
pheochromocytomas [91,92]. Subunit B mutation results in loss of SDH catalytic activity
and an increase in angiogenesis via cytosolic succinate accumulation, which increases
HIF-1α [93]. Tumors bearing SDHB mutations are prone to malignant transformation and
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metastasis [94,95]. Paraganglioma and pheochromocytoma cells express SUCNR-1. Genetic
deletion of SUCNR-1 results in reduced tumor growth and metastasis, suggesting that
tumor-released succinate promotes tumor growth through activation of SUCNR-1 [94,96,97].
Taken together, the reported data suggest that SDHB mutation or expression defect is a
major source of succinate accumulation and secretion. It should be mentioned that TRAP-1
plays a role in controlling SDH activity. TRAP-1 expression is often increased in cancer
cells, which has been shown to inhibit SDH activity [98–100].

Succinate in the tumor microenvironment (TME) acts in a paracrine manner to en-
hance cancer cell migration and induce EMT through interaction with SUCNR-1 and the
downstream PI-3K/Akt signaling pathway [67]. It activates endothelial cells and pro-
motes angiogenesis [84]. Furthermore, as described above, it polarizes macrophages into
M2-like tumor-associated macrophages (TAM) [32]. It may also affect other stromal cells
in TME, such as fibroblasts and T-lymphocytes. It is to be noted that macrophages may
secrete succinate into TME to increase TME succinate concentrations. Succinate-induced
HIF elevation contributes to cancer metastasis by upregulating TWIST expression, trig-
gering SNAIL translocation to the nucleus [101–105], and promoting vascular endothelial
growth factor (VEGF) expression, which enhances cancer cell migration, EMT, and metasta-
sis [106,107]. Thus, TME succinate is one of the key messengers to promote cancer growth
and, particularly, cancer metastasis (Figure 5).
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Succinate accumulation as a result of mutation of SDH subunits, notably B and D subunits, expression
defects of SDHB or SDHD expression, or inhibition by TRAP. Succinate is secreted and acts in an
auto- or paracrine manner to drive migration and growth via the signaling pathways, as indicated.
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9. Succinate-SUCNR1 Axis as a Therapeutic Target

Based on experimental findings from animal and cellular studies, a number of succinate-
related therapeutic targets have been proposed. They include targeting SUCNR-1 or SDH
or infusion of succinate, among which, targeting the succinate-SUCNR-1 axis has been more
extensively investigated. Although experimental work suggests that inhibition of SDH
with dimethylmalonate protects against I/R-induced cardiac damage, ROS accumulation,
and inflammation [108–110], it is unclear how SDH inhibitors exert anti-inflammatory
and tissue protection effects. Succinate was proposed to have a beneficial effect against
severe sepsis, primarily through supplementation of succinate for ATP generation, which
rescues tissues from sepsis-associated bioenergetic facture [111–114]. However, logistical
translation of the experimental animal studies into clinical therapeutic use is confronted by
major hurdles [115,116].

As highlighted above, the succinate-SUCNR-1 axis is implicated in mediating or ag-
gravating diverse pathological conditions and diseases, including inflammatory disorders,
I/R injury-mediated organ infarction and post-injury structural remodeling and functional
failure, and cancer progression and metastasis. SUCNR-1 is considered a viable thera-
peutic target [117]. As the knowledge of the SUCNR-1 structure–function relationship
and pathophysiological roles is expanding, structure-based novel antagonists have been
developed [118,119]. These novel compounds have the potential to be therapeutic agents
against inflammation-related diseases and cancer metastasis. However, it should be noted
that SUCNR-1 mediates important physiological functions and represents a key metabo-
lite in maintaining energy homeostasis; systemic use of SUCNR-1 antagonists may be
confronted by severe adverse effects. Furthermore, it has been reported that SUCNR-1
activation confers macrophage anti-inflammatory properties, while SUCNR-1 deficiency
promotes inflammation [68]. How to use the SUCNR-1 antagonists judiciously in treating
SUCNR-1-mediated diseases without jeopardizing normal or beneficial SUCNR-1 actions
is not well understood. Further studies are needed to sort out the different characteristics
between “good” and “evil” SUCNR-1.

10. Blood Levels of Succinate in Health and Disease

As highlighted in the previous sections, extracellular succinate acts in an autocrine
and/or paracrine fashion to carry out physiological and pathological functions. Importantly,
it is a circulating hormone. Normal human blood contains micromolar concentrations of
succinate. The reported blood concentrations of succinate from several studies varied
with the mean concentrations, ranging from 6.1 µM to 23.5 µM [120]. The variations are
not surprising, as the blood succinate concentration of healthy subjects is regulated by
succinate production and influenced by diverse environmental factors, including diet,
physical activity, and cold temperature [13,24,48,121]. Succinate production by several
organs, including the intestine, heart, muscle, and liver, contributes to the circulating
succinate in healthy subjects [14,54,122]. Under stressful and/or pathological conditions,
such as I/R injury and endotoxemia, succinate production is increased, which leads to
the elevation of circulating succinate levels [54,123]. Of note, a high-fat diet, antibiotic
abuse, and intestinal inflammation alter the composition and metabolism of intestinal
microbiota, resulting in overproduction of intestinal succinate and elevation of circulating
succinate levels, which may cause local and systemic inflammation [48]. A high-fat and
high-sucrose diet was reported to induce obesity and elevate circulating succinate levels
in experimental animals [121]. In fact, elevated circulating succinate has been reported in
several disease animal models, including obesity, hypertension, and metabolic disease [124].
Circulating succinate plays important physiological roles. However, elevation of blood
succinate levels is associated with severe human diseases, such as sepsis and cardiovascular
disease, and is considered a risk factor and biomarker [123,125]. It should be mentioned
that our understanding of circulating succinate remains incomplete. Further studies are
needed to characterize its regulatory mechanisms and systemic actions and to ascertain its
clinical use as a diagnostic and therapeutic biomarker.
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11. Conclusions

Cells under diverse stresses, ranging from vigorous exercise and cold exposure to
bacterial infection and I/R injury, secrete succinate into the extracellular space and raise
the circulating levels of succinate to assist tissue adaptation to the stressful conditions
for survival. Under extreme stresses, such as endotoxemia-induced septic syndrome,
succinate supplementation may rescue cells and tissues from energy depletion. However,
extracellular succinate may turn from Jekyll to Hyde to harm the cells and damage tissues,
leading to cell death and functional failure when tissues are subjected to persistent stresses,
such as bacterial infection and ischemia-reperfusion injury. Although the reason for the
switch from a physiological messenger to a tissue killer has not been fully elucidated,
several factors, such as the nature of the injurious agents, the extent and duration of injury,
and the microenvironment, contribute to the damaging effects. The Jekyll and Hyde roles
of succinate hamper development of succinate-targeted therapy for debilitating human
diseases, including sepsis, heart failure due to myocardial infarction, and a variety of
inflammatory disorders. Further studies are needed to characterize the physiological vs.
pathological roles of extracellular succinate and target the distinct modes of succinate action
in causing cell death, inflammation, and fibrosis.

The actions of extracellular succinate are distinct from those of cytosolic succinate. A
key distinction is that extracellular succinate acts via a specific membrane receptor, SUCNR-
1, which signals via Gi-protein and Gq-protein-mediated signaling pathways [27]. In certain
cell types, such as M2 macrophages, the action of extracellular succinate is signaled via
Gq [32]. As SUCNR-1 is widely expressed in human cells, extracellular succinate induces a
variety of pathological processes in different tissues under diverse stresses. Extracellular
succinate perturbs fundamental cellular metabolism and functions. These fundamental
changes account for various pathological lesions. Of note, both extracellular succinate and
cytosolic succinate increase HIF-1α, albeit via different mechanisms. Extracellular succinate
increases HIF-1α expression via the SUCNR-1→PI-3K/Akt signaling pathway. HIF-1α is
a pleiotropic transcription factor that promotes the expression of genes for angiogenesis,
glycolysis, cancer cell invasion and metastasis, and inflammation. Extracellular succinate
acts in concert with cytosolic succinate to alter cellular metabolism and function and carry
out physiological and pathological roles.

The pro-inflammatory and pro-fibrotic actions of extracellular succinate may be
linked to mitochondrial dynamic changes. It is interesting to note that LPS-stimulated
macrophages exhibit excessive mitochondrial fission accompanied by TCA cycle breaks at
IDH and SDH steps, resulting in succinate, citrate, and itaconate accumulation. Succinate,
in turn, induces mitochondrial fission and fragmentation, thus forming a vicious cycle.
The regulatory loop of mitochondrial fragmentation via Drp-1 and succinate accumulation
and secretion may be a major force in the damaged tissue microenvironment to drive in-
flammation and fibrosis. Mitochondrial fragmentation induced by cellular injury plays an
important role in cardiac and renal dysfunction [126,127], and inhibition of mitochondrial
fission has been shown to alleviate post-infarct cardiac structural damage and functional
impairment [127,128]. Injury-induced mitochondrial fragmentation and the consequent
fragmentation–succinate regulatory loop are targets for developing new therapeutic agents
against inflammation, fibrosis, and organ failure.
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